On Reduced and Semicommutative Modules

Muhittin Başer, Nazim Agayev

Abstract

In this paper, various results of reduced and semicommutative rings are extended to reduced and semicommutative modules. In particular, we show: (1) For a principally quasi-Baer module, M_{R} is semicommutative if and only if M_{R} is reduced. (2) If M_{R} is a p.p.-module then M_{R} is nonsingular.

Key words and phrases: Reduced Rings (Modules), Baer, quasi-Baer and Rings (Modules).

1. Introduction

Throughout this paper all rings R are associative with unity and all modules M are unital right R-modules. For a nonempty subset X of a ring R, we write $r_{R}(X)=\{r \in$ $R \mid X r=0\}$ and $l_{R}(X)=\{r \in R \mid r X=0\}$, which are called the right annihilator of X in R and the left annihilator of X in R, respectively. Recall that a ring R is reduced if R has no nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all idempotents are central).

In [7] Kaplansky introduced Baer rings as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. Acording to Clark [6], a ring R is said to be quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. These definitions are left-right symmetric. Recently, Birkenmeier et al. [4] called a ring R a right (resp. left) principally quasi-Baer (or simply, right (resp. left) p.q.-Baer) ring if the right (resp. left) annihilator of a principally right

[^0](resp. left) ideal of R is generated by an idempotent. R is called a p.q.-Baer ring if it is both right and left p.q.-Baer.

Another generalization of Baer rings is a p.p.-ring. A ring R is called a right (resp. left) p.p.-ring if the right (resp. left) annihilator of an element of R is generated by an idempotent. R is called a p.p.-ring if it is both a right and left p.p.-ring.

A ring R is called semicommutative if for every $a \in R, r_{R}(a)$ is an ideal of R. (equivalently, for any $a, b \in R, a b=0$ implies $a R b=0$). Recall from [1] that R is said to satisfy the IFP (insertion of factors property) if R is semicommutative. An idempotent $e \in R$ is called left (resp. right) semicentral if $x e=e x e$ (resp. $e x=e x e$), for all $x \in R$ ([see, [2]).

According to Lee-Zhou [10], a module M_{R} is said to be reduced if, for any $m \in M$ and any $a \in R, m a=0$ implies $m R \cap M a=0$. It is clear that R is a reduced ring if and only if R_{R} is a reduced module.

Lemma [10, Lemma 1.2] The following are equivalent for a module M_{R} :
(1) M_{R} is α-reduced.
(2) The following three conditions hold: For any $m \in M$ and $a \in R$
(a) $m a=0$ implies $m R a=m R \alpha(a)=0$.
(b) $\operatorname{ma\alpha }(a)=0$ implies $m a=0$.
(c) $m a^{2}=0$ implies $m a=0$.

In [10] Lee-Zhou introduced Baer, quasi-Baer and the p.p.-module as follows:
(1) M_{R} is called Baer if, for any subset X of $M, r_{R}(X)=e R$ where $e^{2}=e \in R$.
(2) M_{R} is called quasi-Baer if, for any submodule N of $M, r_{R}(N)=e R$ where $e^{2}=e \in R$.
(3) M_{R} is called p.p. if, for any $m \in M, r_{R}(m)=e R$ where $e^{2}=e \in R$.

In [8] the module M_{R} is called principally quasi-Baer (p.q.-Baer for short) if, for any $m \in M, r_{R}(m R)=e R$ where $e^{2}=e \in R$.

It is clear that R is a right p.q.-Baer ring iff R_{R} is a p.q.-Baer module. If R is a p.q.Baer ring, then for any right ideal I of R, I_{R} is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer, and every Baer module is quasi-Baer. If R is commutative then M_{R} is p.p.-module iff M_{R} is p.q.-Baer module.

2. Reduced Rings and Modules

We start with the following definition which is defined in [5].
Deinition 2.1 A module M_{R} is called semicommutative if $r_{R}(m)$ is an ideal of R for all $m \in M$. (i.e. for any $m \in M$ and $a \in R, m a=0$ implies $m R a=0$.)

It is clear that R is semicommutative if and only if R_{R} is a semicommutative module. Every reduced module is a semicommutative module by [10, Lemma 1.2].

Proposition 2.2 Let $\phi: R \longrightarrow S$ be a ring homomorphism and let M be a right S module. Regard M as a right R-module via ϕ. Then we have:
(1) If M_{S} is a reduced module then M_{R} is a reduced module.
(2) If ϕ is onto, then the converse of the statements in (1) hold.
(3) If S is a reduced ring, then S is a reduced as a right R-module.

Proof. Straightforward.
Lemma 2.3 If M_{R} is a semicommutative module, then for any $e^{2}=e \in R$, mea $=$ mae for all $m \in M$ and all $a \in R$.
Proof. For $e^{2}=e \in R, e(1-e)=(1-e) e=0$. Then for all $m \in M, m e(1-e)=0$ and $m(1-e) e=0$. Since M_{R} is semicommutative, we have $m e R(1-e)=0$ and $m(1-e) R e=0$. Thus for all $a \in R$, mea $(1-e)=0$ and $m(1-e) a e=0$. So, mea $=$ meae and $m a e=$ meae. Hence, mea $=$ mae for all $a \in R$.

Proposition 2.4 Let M_{R} be a p.q.-Baer module, then M_{R} is semicommutative if and only if M_{R} is reduced.
Proof. Assume M_{R} is reduced. Then M_{R} is a semicommutative module by [10, Lemma 1.2].

Conversely, assume M_{R} is semicommutative. Let $m a=0$ for $m \in M$ and $a \in R$. Since M_{R} is p.q.-Baer, $a \in r_{R}(m)=r_{R}(m R)=e R$ where $e^{2}=e \in R$. Let $x \in m R \cap M a$. Write $x=m r=m^{\prime} a$ for some $r \in R$ and $m^{\prime} \in M$. Since $a \in r_{R}(m), a=e a$. Then $x=m^{\prime} a=m^{\prime} e a=m^{\prime}$ ae by Lemma 2.3. So $x=m r e=m e r=0$ since er $\in r_{R}(m)$. Therefore $m R \cap M a=0$. Consequently M_{R} is a reduced module.

Corollary 2.5 [3, Proposition 1.14.(iv)] If R is a right p.q.-Baer ring, then R satisfies the IFP if and only if R is reduced.

Corollary 2.6 [3, Corollary 1.15] The following are equivalent.
(1) R is a p.q.-Baer ring which satisfies the IFP.
(2) R is a reduced p.q.-Baer ring.

Proposition 2.7 If M_{R} is a semicommutative module, then
(1) M_{R} is a Baer module if and only if M_{R} is a quasi-Baer module.
(2) M_{R} is a p.p.-module if and only if M_{R} is a p.q.-Baer module.

Proof. (1) " \Rightarrow " It is clear.
" \Leftarrow ": Assume M_{R} is a quasi-Baer module. Let X be any subset of M_{R}. Then $r_{R}(X)=\bigcap_{x \in X} r_{R}(x)$. Since M_{R} is semicommutative, $\bigcap_{x \in X} r_{R}(x)=\bigcap_{x \in X} r_{R}(x R)$. But M_{R} is quasi-Baer module then $r_{R}(X)=\bigcap_{x \in X} r_{R}(x R)=r_{R}\left(\sum_{x \in X} x R\right)=e R$, where $e^{2}=e \in R$. Consequently $r_{R}(X)=e R$, where $e^{2}=e \in R$ and hence M_{R} is a Baer module.
(2) Since M_{R} is semicommutative, $r_{R}(m)=r_{R}(m R)$ for all $m \in M$. Hence proof is clear.

Corollary 2.8 If R is a semicommutative ring, then
(1) R is a Baer ring if and only if R is a quasi-Baer ring.
(2) R is a p.p.-ring if and only if R is a p.q.-Baer ring.

Proposition 2.9 The following conditions are equivalent:
(1) M_{R} is a p.q.-Baer module.
(2) The right annihilator of every finitely generated submodule is generated (as a right ideal) by an idempotent.
Proof. $\quad "(2) \Rightarrow(1) "$ Clear.
$"(1) \Rightarrow(2) "$ Assume that M_{R} is p.q.-Baer and $N=\sum_{i=1}^{k} n_{i} R$ is a finitely generated submodule of M_{R}. Then $r_{R}(N)=\bigcap_{i=1}^{k} e_{i} R$ where $r_{R}\left(n_{i} R\right)=e_{i} R$ and $e_{i}^{2}=e_{i}$. Let $e=e_{1} e_{2} \ldots e_{k}$. Then e is a left semicentral idempotent and $\bigcap_{i=1}^{k} e_{i} R=e R$ since each e_{i} is a left semicentral idempotent. Therefore, $r_{R}(N)=e R$.

Corollary 2.10 [3, Proposition 1.7.] The following conditions are equivalent for a ring R :
(1) R is a right p.q.-Baer ring.
(2) The right annihilator of every finitely generated ideal of R is generated (as a right ideal) by an idempotent.

Lemma 2.11 Let M_{R} be a p.p.-module. Then M_{R} is a reduced module if and only if M_{R} is a semicommutative module.
Proof. $\quad \Rightarrow$ ": It is clear by [10, Lemma 1.2]
" \Leftarrow ": It follows from Proposition 2.7 and Proposition 2.4

Corollary 2.12 Let R be a right p.p.-ring. Then R is a reduced ring if and only if R is a semicommutative ring.

Proposition 2.13 Let R be an abelian ring. If M_{R} is a p.p.-module then M_{R} is a reduced module.

Proof. Let $m a=0$ for some $m \in M$ and $a \in R$. Then $a \in r_{R}(m)$. Since M_{R} is a p.p.-module, $r_{R}(m)=e R$ where $e^{2}=e \in R$. Thus $a=e a$ and $m e=0$. Let $x \in m R \cap M a$. Write $x=m r=m^{\prime} a$ for some $r \in R$ and $m^{\prime} \in M$. Then $x=m^{\prime} e a=m^{\prime} a e=m r e=m e r=0$ since $e r \in r_{R}(m)$. Consequently M_{R} is a reduced module.

Corollary 2.14 Let R be an abelian ring. If R is a right p.p.-ring then R is a reduced ring.
Proposition 2.15 Let R be an abelian ring and M_{R} be a p.p.-module. Then M_{R} is a p.q.-Baer module.

Proof. Let $m \in M$. Since M_{R} is a p.p.-module, there exists $e^{2}=e \in R$ such that $r_{R}(m)=e R$. It is clear that $r_{R}(m R) \subseteq r_{R}(m)$. Let $x \in r_{R}(m)$. Then $x=e x$ and $m e=0$. For all $r \in R, m r x=m r e x=m e r x=0$ since R is abelian. Hence, $x \in r_{R}(m R)$. Consequently $r_{R}(m R)=r_{R}(m)=e R$. Therefore M_{R} is a p.q.-Baer module.

Corollary 2.16 Abelian right p.p.-rings are right p.q.-Baer.
Let M be a module. A submodule K of M is essential in M, in case for every submodule $L \leq M, K \cap L=0$ implies $L=0$.

Let M be a right module over a ring R. An element $m \in M$ is said to be a singular element of M if the right ideal $r_{R}(m)$ is essential in R_{R}. The set of all singular elements of M is denoted by $Z(M) . Z(M)$ is a submodule, called the singular submodule of M. We say that M_{R} is a singular (resp. nonsingular) module if $Z(M)=M$ (resp. $Z(M)=0$). In particulary, we say that R is a right nonsingular ring if $Z\left(R_{R}\right)=0$.

Proposition 2.17 Every p.p.-module is nonsingular.

Proof. Let M_{R} be a p.p.-module and $m \in Z(M)$. Then $r_{R}(m)$ is essential in R_{R} and there exists $e^{2}=e \in R$ such that $r_{R}(m)=e R$. So $e R$ is essential in R_{R}. But $e R \cap(1-e) R=0$ for right ideal $(1-e) R$ of R. so $(1-e) R=0$ and hence $e=1$. Thus $r_{R}(m)=R$ and so $m=0$. Therefore M_{R} is a nonsingular module.

Corollary $2.18[9,(7.50)]$ A right p.p.-ring is right nonsingular.
The following Lemma given by Lam [9, (7.8) Lemma].
Lemma Let R be reduced ring. Then R is right nonsingular.
Based on this Lemma, one may suspect that, this result true for module case. But the following example eliminates the possibility.
Example 2.19 The module $\left(\mathbb{Z}_{2}\right)_{\mathbb{Z}}$ is reduced but not right nonsingular.

Acknowledgement

We would like to thank the referee for valuable suggestions which improved the paper considerable.

References

[1] Bell, H. E.: Near-ring in which each element is a power of itself, Bull. Australian Math. Soc. 2, 363-368 (1970).
[2] Birkenmeier, G. F.: Idempotents and completely semiprime ideals, Comm. Algebra. 11, 567-580 (1983).
[3] Birkenmeier, G. F., Kim, J. Y. and Park, J. K.: Principall Quasi-Baer Rings, Comm. Algebra 29(2), 639-660 (2001).
[4] Birkenmeier, G. F., Kim, J. Y. and Park, J. K.: On extensions of quasi-Baer and principally quasi-Baer rings, J. Pure Appl. Algebra 159, 25-42 (2001).
[5] Buhpang, A. M. and Rege, M. B.: Semi-commutative Modules and Armendariz Modules, Arap J. Mathematical Sciences 18, 53-65 (2002).
[6] Clark, W. E.: Twisted matrix units semigroup algebras, Duke Math. J. 34, 417-424 (1967).
[7] Kaplansky, I.: Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
[8] Koşan, M. T., Başer, M. and Harmanci, A.: Quasi-Armendariz Modules and Rings, Submitted.
[9] Lam, T. Y.: Lectures on Modules and Rings, Springer-Verlag, New York, Inc. 1999.
[10] Lee, T. K. and Zhou, Y.: Reduced Modules, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New york, (2004).
[11] Lee, T. K. and Zhou, Y.: Armendariz Rings and Reduced Rings, Comm. Algebra 6, 22872299 (2004).

Muhittin BAŞER

Received 11.02.2005
Department of Mathematics,
Faculty of Sciences and Arts,
Kocatepe University,
A.N. Sezer Campus, Afyon-TURKEY
e-mail: mbaser@aku.edu.tr
Nazim AGAYEV
Graduate School of Natural
and Applied Sciences,
Gazi University,
Maltepe, Ankara-TURKEY

[^0]: 2000 Mathematics Subject Classification: 16D80, 16S36, 16W60.

