On Reduced and Semicommutative Modules

Muhittin Başer, Nazim Agayev

Abstract

In this paper, various results of reduced and semicommutative rings are extended to reduced and semicommutative modules. In particular, we show: (1) For a principally quasi-Baer module, M_R is semicommutative if and only if M_R is reduced. (2) If M_R is a p.p.-module then M_R is nonsingular.

Key words and phrases: Reduced Rings (Modules), Baer, quasi-Baer and Rings (Modules).

1. Introduction

Throughout this paper all rings R are associative with unity and all modules M are unital right R-modules. For a nonempty subset X of a ring R, we write $r_R(X) = \{r \in R \mid Xr = 0\}$ and $l_R(X) = \{r \in R \mid rX = 0\}$, which are called the right annihilator of X in R and the left annihilator of X in R, respectively. Recall that a ring R is *reduced* if R has no nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all idempotents are central).

In [7] Kaplansky introduced *Baer* rings as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [6], a ring R is said to be *quasi-Baer* if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. These definitions are left-right symmetric. Recently, Birkenmeier et al. [4] called a ring R a *right* (resp. *left*) *principally quasi-Baer* (or simply, *right* (resp. *left*) *p.q.-Baer*) ring if the right (resp. left) annihilator of a principally right

²⁰⁰⁰ Mathematics Subject Classification: 16D80, 16S36, 16W60.

(resp. left) ideal of R is generated by an idempotent. R is called a p.q.-Baer ring if it is both right and left p.q.-Baer.

Another generalization of Baer rings is a p.p.-ring. A ring R is called a *right* (resp. *left*) p.p.-ring if the right (resp. *left*) annihilator of an element of R is generated by an idempotent. R is called a p.p.-ring if it is both a right and left p.p.-ring.

A ring R is called *semicommutative* if for every $a \in R$, $r_R(a)$ is an ideal of R. (equivalently, for any $a, b \in R$, ab = 0 implies aRb = 0). Recall from [1] that R is said to satisfy the *IFP* (*insertion of factors property*) if R is semicommutative. An idempotent $e \in R$ is called *left* (resp. *right*) semicentral if xe = exe (resp. ex = exe), for all $x \in R$ ([see, [2]).

According to Lee-Zhou [10], a module M_R is said to be reduced if, for any $m \in M$ and any $a \in R$, ma = 0 implies $mR \cap Ma = 0$. It is clear that R is a reduced ring if and only if R_R is a reduced module.

Lemma [10, Lemma 1.2] The following are equivalent for a module M_R :

(1) M_R is α -reduced.

- (2) The following three conditions hold: For any $m \in M$ and $a \in R$
 - (a) ma = 0 implies $mRa = mR\alpha(a) = 0$.
 - (b) $ma\alpha(a) = 0$ implies ma = 0.
 - (c) $ma^2 = 0$ implies ma = 0.

In [10] Lee-Zhou introduced Baer, quasi-Baer and the p.p.-module as follows:

(1) M_R is called *Baer* if, for any subset X of M, $r_R(X) = eR$ where $e^2 = e \in R$.

(2) M_R is called *quasi-Baer* if, for any submodule N of M, $r_R(N) = eR$ where $e^2 = e \in R$.

(3) M_R is called p.p. if, for any $m \in M$, $r_R(m) = eR$ where $e^2 = e \in R$.

In [8] the module M_R is called *principally quasi-Baer* (p.q.-*Baer* for short) if, for any $m \in M$, $r_R(mR) = eR$ where $e^2 = e \in R$.

It is clear that R is a right p.q.-Baer ring iff R_R is a p.q.-Baer module. If R is a p.q.-Baer ring, then for any right ideal I of R, I_R is a p.q.-Baer module. Every submodule of a p.q.-Baer module is p.q.-Baer module. Moreover, every quasi-Baer module is p.q.-Baer, and every Baer module is quasi-Baer. If R is commutative then M_R is p.p.-module iff M_R is p.q.-Baer module.

2. Reduced Rings and Modules

We start with the following definition which is defined in [5].

Deinition 2.1 A module M_R is called *semicommutative* if $r_R(m)$ is an ideal of R for all $m \in M$. (i.e. for any $m \in M$ and $a \in R$, ma = 0 implies mRa = 0.)

It is clear that R is semicommutative if and only if R_R is a semicommutative module. Every reduced module is a semicommutative module by [10, Lemma 1.2].

Proposition 2.2 Let $\phi : R \longrightarrow S$ be a ring homomorphism and let M be a right S-module. Regard M as a right R-module via ϕ . Then we have:

- (1) If M_S is a reduced module then M_R is a reduced module.
- (2) If ϕ is onto, then the converse of the statements in (1) hold.
- (3) If S is a reduced ring, then S is a reduced as a right R-module.

Proof. Straightforward.

Lemma 2.3 If M_R is a semicommutative module, then for any $e^2 = e \in R$, mea = mae for all $m \in M$ and all $a \in R$.

Proof. For $e^2 = e \in R$, e(1-e) = (1-e)e = 0. Then for all $m \in M$, me(1-e) = 0 and m(1-e)e = 0. Since M_R is semicommutative, we have meR(1-e) = 0 and m(1-e)Re = 0. Thus for all $a \in R$, mea(1-e) = 0 and m(1-e)ae = 0. So, mea = meae and mae = meae. Hence, mea = mae for all $a \in R$.

Proposition 2.4 Let M_R be a p.q.-Baer module, then M_R is semicommutative if and only if M_R is reduced.

Proof. Assume M_R is reduced. Then M_R is a semicommutative module by [10, Lemma 1.2].

Conversely, assume M_R is semicommutative. Let ma = 0 for $m \in M$ and $a \in R$. Since M_R is p.q.-Baer, $a \in r_R(m) = r_R(mR) = eR$ where $e^2 = e \in R$. Let $x \in mR \cap Ma$. Write x = mr = m'a for some $r \in R$ and $m' \in M$. Since $a \in r_R(m)$, a = ea. Then x = m'a = m'ea = m'ae by Lemma 2.3. So x = mre = mer = 0 since $er \in r_R(m)$. Therefore $mR \cap Ma = 0$. Consequently M_R is a reduced module.

Corollary 2.5 [3, Proposition 1.14.(iv)] If R is a right p.q.-Baer ring, then R satisfies the IFP if and only if R is reduced.

Corollary 2.6 [3, Corollary 1.15] The following are equivalent.

- (1) R is a p.q.-Baer ring which satisfies the IFP.
- (2) R is a reduced p.q.-Baer ring.

Proposition 2.7 If M_R is a semicommutative module, then

(1) M_R is a Baer module if and only if M_R is a quasi-Baer module.

(2) M_R is a p.p.-module if and only if M_R is a p.q.-Baer module.

Proof. (1) " \Rightarrow " It is clear.

" \Leftarrow ": Assume M_R is a quasi-Baer module. Let X be any subset of M_R . Then $r_R(X) = \bigcap_{x \in X} r_R(x)$. Since M_R is semicommutative, $\bigcap_{x \in X} r_R(x) = \bigcap_{x \in X} r_R(xR)$. But M_R is quasi-Baer module then $r_R(X) = \bigcap_{x \in X} r_R(xR) = r_R(\sum_{x \in X} xR) = eR$, where $e^2 = e \in R$. Consequently $r_R(X) = eR$, where $e^2 = e \in R$ and hence M_R is a Baer module.

(2) Since M_R is semicommutative, $r_R(m) = r_R(mR)$ for all $m \in M$. Hence proof is clear.

Corollary 2.8 If R is a semicommutative ring, then

(1) R is a Baer ring if and only if R is a quasi-Baer ring.

(2) R is a p.p.-ring if and only if R is a p.q.-Baer ring.

Proposition 2.9 The following conditions are equivalent:

(1) M_R is a p.q.-Baer module.

(2) The right annihilator of every finitely generated submodule is generated (as a right ideal) by an idempotent.

Proof. "(2) \Rightarrow (1)" Clear.

"(1) \Rightarrow (2)" Assume that M_R is p.q.-Baer and $N = \sum_{i=1}^k n_i R$ is a finitely generated submodule of M_R . Then $r_R(N) = \bigcap_{i=1}^k e_i R$ where $r_R(n_i R) = e_i R$ and $e_i^2 = e_i$. Let $e = e_1 e_2 \dots e_k$. Then e is a left semicentral idempotent and $\bigcap_{i=1}^k e_i R = eR$ since each e_i is a left semicentral idempotent. Therefore, $r_R(N) = eR$.

Corollary 2.10 [3, Proposition 1.7.] *The following conditions are equivalent for a ring R:*

(1) R is a right p.q.-Baer ring.

(2) The right annihilator of every finitely generated ideal of R is generated (as a right ideal) by an idempotent.

Lemma 2.11 Let M_R be a p.p.-module. Then M_R is a reduced module if and only if M_R is a semicommutative module.

Proof. " \Rightarrow ": It is clear by [10, Lemma 1.2]

" \Leftarrow ": It follows from Proposition 2.7 and Proposition 2.4

Corollary 2.12 Let R be a right p.p.-ring. Then R is a reduced ring if and only if R is a semicommutative ring.

Proposition 2.13 Let R be an abelian ring. If M_R is a p.p.-module then M_R is a reduced module.

Proof. Let ma = 0 for some $m \in M$ and $a \in R$. Then $a \in r_R(m)$. Since M_R is a p.p.-module, $r_R(m) = eR$ where $e^2 = e \in R$. Thus a = ea and me = 0. Let $x \in mR \cap Ma$. Write x = mr = m'a for some $r \in R$ and $m' \in M$. Then x = m'ea = m'ae = mre = mer = 0 since $er \in r_R(m)$. Consequently M_R is a reduced module.

Corollary 2.14 Let R be an abelian ring. If R is a right p.p.-ring then R is a reduced ring.

Proposition 2.15 Let R be an abelian ring and M_R be a p.p.-module. Then M_R is a p.q.-Baer module.

Proof. Let $m \in M$. Since M_R is a p.p.-module, there exists $e^2 = e \in R$ such that $r_R(m) = eR$. It is clear that $r_R(mR) \subseteq r_R(m)$. Let $x \in r_R(m)$. Then x = ex and me = 0. For all $r \in R$, mrx = mrex = merx = 0 since R is abelian. Hence, $x \in r_R(mR)$. Consequently $r_R(mR) = r_R(m) = eR$. Therefore M_R is a p.q.-Baer module.

Corollary 2.16 Abelian right p.p.-rings are right p.q.-Baer.

Let M be a module. A submodule K of M is essential in M, in case for every submodule $L \leq M, K \cap L = 0$ implies L = 0.

Let M be a right module over a ring R. An element $m \in M$ is said to be a singular element of M if the right ideal $r_R(m)$ is essential in R_R . The set of all singular elements of M is denoted by Z(M). Z(M) is a submodule, called the singular submodule of M. We say that M_R is a singular (resp. nonsingular) module if Z(M) = M (resp. Z(M) = 0). In particulary, we say that R is a right nonsingular ring if $Z(R_R) = 0$.

Proposition 2.17 Every p.p.-module is nonsingular.

Proof. Let M_R be a p.p.-module and $m \in Z(M)$. Then $r_R(m)$ is essential in R_R and there exists $e^2 = e \in R$ such that $r_R(m) = eR$. So eR is essential in R_R . But $eR \cap (1-e)R = 0$ for right ideal (1-e)R of R. so (1-e)R = 0 and hence e = 1. Thus $r_R(m) = R$ and so m = 0. Therefore M_R is a nonsingular module.

Corollary 2.18 [9, (7.50)] A right p.p.-ring is right nonsingular. The following Lemma given by Lam [9, (7.8) Lemma].

Lemma Let R be reduced ring. Then R is right nonsingular.

Based on this Lemma, one may suspect that, this result true for module case. But the following example eliminates the possibility.

Example 2.19 The module $(\mathbb{Z}_2)_{\mathbb{Z}}$ is reduced but not right nonsingular.

Acknowledgement

We would like to thank the referee for valuable suggestions which improved the paper considerable.

References

- Bell, H. E.: Near-ring in which each element is a power of itself, Bull. Australian Math. Soc. 2, 363-368 (1970).
- [2] Birkenmeier, G. F.: Idempotents and completely semiprime ideals, Comm. Algebra. 11, 567-580 (1983).
- [3] Birkenmeier, G. F., Kim, J. Y. and Park, J. K.: Principall Quasi-Baer Rings, Comm. Algebra 29(2), 639-660 (2001).

- [4] Birkenmeier, G. F., Kim, J. Y. and Park, J. K.: On extensions of quasi-Baer and principally quasi-Baer rings, J. Pure Appl. Algebra 159, 25-42 (2001).
- [5] Buhpang, A. M. and Rege, M. B.: Semi-commutative Modules and Armendariz Modules, Arap J. Mathematical Sciences 18, 53-65 (2002).
- [6] Clark, W. E.: Twisted matrix units semigroup algebras, Duke Math. J. 34, 417-424 (1967).
- [7] Kaplansky, I.: Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
- [8] Koşan, M. T., Başer, M. and Harmanci, A.: Quasi-Armendariz Modules and Rings, Submitted.
- [9] Lam, T. Y.: Lectures on Modules and Rings, Springer-Verlag, New York, Inc. 1999.
- [10] Lee, T. K. and Zhou, Y.: Reduced Modules, Rings, modules, algebras and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New york, (2004).
- [11] Lee, T. K. and Zhou, Y.: Armendariz Rings and Reduced Rings, Comm. Algebra 6, 2287-2299 (2004).

Received 11.02.2005

Muhittin BAŞER Department of Mathematics, Faculty of Sciences and Arts, Kocatepe University, A.N. Sezer Campus, Afyon-TURKEY e-mail: mbaser@aku.edu.tr

Nazim AGAYEV Graduate School of Natural and Applied Sciences, Gazi University, Maltepe, Ankara-TURKEY