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ENDO-PRINCIPALLY PROJECTIVE MODULES

B. Ungor1, N. Agayev2, S. Halicioglu 3 and A. Harmanci4

Abstract. Let R be an arbitrary ring with identity and M a right
R-module with S = EndR(M). In this paper, we introduce a class of
modules that is a generalization of principally projective (or simply p.p.)
rings and Baer modules. The module M is called endo-principally pro-
jective (or simply endo-p.p.) if for any m ∈ M , lS(m) = Se for some
e2 = e ∈ S. For an endo-p.p. module M , we prove that M is endo-
rigid (resp., endo-reduced, endo-symmetric, endo-semicommutative) if
and only if the endomorphism ring S is rigid (resp., reduced, symmetric,
semicommutative), and we also prove that the module M is endo-rigid if
and only if M is endo-reduced if and only if M is endo-symmetric if and
only if M is endo-semicommutative if and only if M is abelian. Among
others we show that if M is abelian, then every direct summand of an
endo-p.p. module is also endo-p.p.
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1. Introduction

Throughout this paper R denotes an associative ring with identity, and
modules will be unitary right R-modules. For a module M , S = EndR(M)
denotes the ring of right R-module endomorphisms of M . Then M is a left
S-module, a right R-module and an (S,R)-bimodule. In this work, for any of
the rings T and R and any (T,R)-bimodule M , rR(.) and lM (.) denote the
right annihilator of a subset of M in R and the left annihilator of a subset of
R in M , respectively. Similarly, lT (.) and rM (.) will be the left annihilator of a
subset of M in T and the right annihilator of a subset of T in M , respectively.
A ring is reduced if it has no nonzero nilpotent elements. Recently, the reduced
ring concept has been extended to modules by Lee and Zhou in [12], that is,
a module M is called reduced if for any m ∈ M and a ∈ R, ma = 0 implies
mR∩Ma = 0. A ring R is called semicommutative if for any a, b ∈ R, ab = 0
implies aRb = 0. The module M is called endo-semicommutative if for any
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f ∈ S and m ∈ M , fm = 0 implies fSm = 0, this class of modules is called
S-semicommutative in [3]. Baer rings [10] are introduced as rings in which the
right (left) annihilator of every nonempty subset is generated by an idempotent.
A ring R is said to be quasi-Baer [7] if the right annihilator of each right ideal
of R is generated (as a right ideal) by an idempotent. A ring R is called right
principally quasi-Baer [5] if the right annihilator of a principal right ideal of R
is generated by an idempotent. According to Rizvi and Roman [17], M is called
a Baer (resp. quasi-Baer) module if for all R-submodules (resp. fully invariant
R-submodules) N of M , lS(N) = Se with e2 = e ∈ S. In what follows, by Z,
Q, Zn and Z/nZ we denote, respectively, integers, rational numbers, the ring
of integers modulo n and the Z-module of integers modulo n.

2. Endo-Principally Projective Modules

Principally projective rings are introduced by Hattori [9] to study the tor-
sion theory, that is, a ring R is called left (right) p.p. if every principal left
(right) ideal is projective. The concept of left (right) p.p. rings has been
comprehensively studied in the literature. In [12], Lee and Zhou introduced
p.p. modules as follows: an R-module M is called p.p. if for any m ∈ M ,
rR(m) = eR, where e2 = e ∈ R. According to Baser and Harmanci [4], a
module M is called principally quasi-Baer if for any m ∈ M , rR(mR) = eR,
where e2 = e ∈ R. Motivated by these and the aforementioned definitions of
Rizvi and Roman we give the following definition.

Definition 2.1. Let M be an R-module with S = EndR(M). The module M
is called endo-p.p. if for any m ∈ M , lS(m) = Se for some e2 = e ∈ S.

Note that a ring R is called right (or left) p.p. if every principal right (or
left) ideal of R is a projective right (or left) R-module. Then, it is obvious that
the module R is endo-p.p. if and only if the ring R is left p.p. It is clear that
all Baer and quasi-Baer modules are endo-p.p.

Example 2.2. Let R be a Prüfer domain (i.e., a ring with an identity, no
zero divisors and all finitely generated ideals are projective) and M the right
R-module R ⊕ R. By ([10], page 17) S = EndR(M) is isomorphic to the ring
of 2 × 2 matrices over R, and it is a Baer ring. Hence M is Baer and so it is
an endo-p.p. module.

Since R ∼= EndR(R), the following example shows that endo-p.p. modules
may not be quasi-Baer or Baer.

Example 2.3. ([6], Example 8.2) Consider the ring S =
∞∏

n=1
Z2. Let

T = {(an)∞n=1|an is eventually constant} and I = {(an)∞n=1|an = 0 eventually}.
Then

R =

[
T/I T/I
0 T

]
is a left p.p. ring which is neither right p.p. nor right principally quasi-Baer.
It follows that R is an endo-p.p. module but not quasi-Baer or Baer.
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Lemma 2.4. If every cyclic submodule of M is a direct summand, then M is
endo-p.p.

Proof. Let m ∈ M . We prove lS(m) = Sf for some f2 = f ∈ S. By hypothesis,
M = mR⊕K for some submodule K ≤ M . Let e denote the projection of M
onto mR. It is easy routine to show that lS(m) = S(1− e).

Note that the endomorphism ring of an endo-p.p. module may not be a
right p.p. ring in general. For if M is an endo-p.p. module and φ ∈ S, then we
have two cases. Kerφ = 0 or Kerφ ̸= 0. If Kerφ = 0, then for any f ∈ rS(φ),
φf = 0 implies f = 0. Hence rS(φ) = 0. Assume that Kerφ ̸= 0. There exists
a nonzero m ∈ M such that φm = 0. By hypothesis, φ ∈ lS(m) = Se for
some e2 = e ∈ S. In this case φ = φe and so rS(φ) ≤ (1− e)S. The following
example shows that this inclusion is strict.

Example 2.5. Let Q be the ring and N the Q-module constructed by Osof-
sky in [13]. Since Q is commutative, we can just as well think of N as of a
right Q-module. Let S = EndQ(N). By Lemma 2.4, N is an endo-p.p. mod-

ule. Identify S with the ring

[
Q 0

Q/I Q/I

]
in the obvious way, and consider

φ =

[
0 0

1 + I 0

]
∈ S. Then rS(φ) =

[
I 0

Q/I Q/I

]
. This is not a direct

summand of S because I is not a direct summand of Q. Therefore, S is not a
right p.p. ring.

A ring R is called abelian if every idempotent is central, that is, ae = ea for
any e2 = e, a ∈ R. Abelian modules are introduced in the context of categories
by Roos in [19] and studied by Goodearl and Boyle [8], Rizvi and Roman [18].
A module M is called abelian if for any f ∈ S, e2 = e ∈ S, m ∈ M , we have
fem = efm. Note that M is an abelian module if and only if S is an abelian
ring. Recall that M is called a duo module [14] if every submodule N of M is
fully invariant, i.e., f(N) ≤ N for all f ∈ S. Note that for a duo module M , if
e is an idempotent and f is an element in S, then (1−e)fem = 0 = ef(1−e)m
for every m ∈ M . Thus every duo module is abelian.

Theorem 2.6. Consider the following conditions for an R-module M .
(1) M is an endo-p.p. module.
(2) The left annihilator in S of every finitely generated R-submodule of M is
generated (as a left ideal) by an idempotent.
Then (2) ⇒ (1). If M is duo, also (1) ⇒ (2).

Proof. (2) ⇒ (1) Clear by definitions.
(1) ⇒ (2) Assume that M is a duo module and let N be a finitely generated
R-submodule of M . By induction we may assume N = m1R + m2R. So
lS(m1R) = Se1 and lS(m2R) = Se2 where e21 = e1, e22 = e2 ∈ S. Then
lS(N) = (Se1)∩ (Se2). Clearly, lS(N) ⊆ Se1e2. Let ge1e2 ∈ Se1e2. Since m1R
is fully invariant, ge1e2N = ge1e2m1R ≤ ge1m1R = 0. Hence Se1e2 ⊆ lS(N).
Thus lS(N) = Se1e2. Similarly, lS(N) = Se2e1. And we have Se1e2 = Se2e1.
So e1e2 = fe2e1 for some f ∈ S. Hence

(1) e1e2 = e1e2e1.
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Similarly,

(2) e2e1 = e2e1e2

Replacing (2) in (1) we obtain that e1e2 is an idempotent. This completes the
proof.

Proposition 2.7. Let M be an abelian module and N a direct summand of M
with S′ =EndR(N). If M is an endo-p.p. module, then N is also endo-p.p.

Proof. Let N be a direct summand of M and n ∈ N . There exists e2 = e ∈ S
with lS(n) = Se. Since N is a direct summand of M and M is abelian, N
is a fully invariant submodule of M . It follows that eN ≤ N . Then the
restriction e′ = e|N belongs to S′. We claim that lS′(n) = S′e′. Let f ∈ lS′(n).
We extend f to g = f ⊕ 0 ∈ S. Then g ∈ lS(n) and so g = ge. Hence
f = g|N = (ge)|N = fe′ ∈ S′e′. Thus lS′(n) ⊆ S′e′. The reverse inclusion is
clear.

Let M be an R-module with S = EndR(M). The module M is called endo-
principally quasi-Baer if for any m ∈ M , lS(Sm) = Se for some e2 = e ∈ S,
this class of modules is called principally quasi-Baer in [20]. Then the following
lemma is obvious.

Lemma 2.8. Consider the following conditions for an R-module M .
(1) M is a Baer module.
(2) M is a quasi-Baer module.
(3) M is an endo-p.p. module.
(4) M is an endo-principally quasi-Baer module.
Then (1) ⇒ (2) ⇒ (4). If M is an endo-semicommutative module, then (2) ⇒
(1), (2) ⇒ (3) and (3) ⇔ (4).

3. Applications

If R is a ring, then some properties of R-modules do not characterize the
ring R, namely there are reduced R-modules but R need not be reduced and
there are abelian R-modules but R need not be an abelian ring. Because of
that endo-reduced modules, endo-rigid modules, endo-symmetric modules, and
endo-semicommutative modules are studied by the present authors in recent
papers (see [2]). Our next endeavor is to investigate relationships between
endo-reduced, endo-rigid, endo-symmetric, endo-semicommutative and abelian
modules by using endo-p.p. modules.

Lemma 3.1. Let M be an R-module. If M is an endo-semicommutative mod-
ule, then S is a semicommutative ring. The converse holds if M is an endo-p.p.
module.

Proof. The first statement is from [2, Proposition 2.20]. Conversely, assume
that M is an endo-p.p. module and S is a semicommutative ring. Let fm = 0
for f ∈ S and m ∈ M . Since M is an endo-p.p. module, there exists e2 = e ∈ S
such that lS(m) = Se. Since fm = 0, f ∈ lS(m) = Se and then fg ∈ Seg for
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all g ∈ S. By assumption, S is an abelian ring and so e is central in S. Then
eg = ge for all g ∈ S. Hence fg ∈ Sge ⊆ Se = lS(m). Thus fgm = 0 for all
g ∈ S. This completes the proof.

Lemma 3.2. If a module M is endo-semicommutative, then M is abelian. The
converse holds if M is an endo-p.p. module.

Proof. One way is clear because S semicommutative implies S abelian and so
M is abelian. Suppose that M is an abelian and endo-p.p. module. Let f ∈ S,
m ∈ M with fm = 0. Then f ∈ lS(m). Since M is an endo-p.p. module, there
exists an idempotent e in S such that lS(m) = Se and so Sem = 0 and fe = f .
By supposition, eSm = 0. Then feSm = fSm = 0.

Recall that an R-module M is called endo-reduced if fm = 0 implies that
Imf ∩ Sm = 0 for each f ∈ S, m ∈ M , this class of modules is called reduced
in [2]. Following the definition of a reduced module in [12] and [16], M is endo-
reduced if and only if f2m = 0 implies fSm = 0 for each f ∈ S, m ∈ M . Also,
an R-module M is called endo-rigid [2] if for any f ∈ S and m ∈ M , f2m = 0
implies fm = 0. In this direction we have the following result.

Lemma 3.3. If M is an endo-reduced module, then S is a reduced ring. The
converse holds in case M is an endo-p.p. module.

Proof. The first statement is from [2, Lemma 2.11 and Proposition 2.14]. Con-
versely, assume that M is an endo-p.p. module and S is a reduced ring. Then
in particular S is an abelian ring. Let fm = 0 for f ∈ S and m ∈ M ,
and fm′ = gm ∈ fM ∩ Sm. We may find an idempotent e in S such that
f ∈ lS(m) = Se. By assumption, e is central in S. So f = fe = ef . Multi-
plying fm′ = gm from the left by e, we have fm′ = egm = gem = 0. Hence
fM ∩ Sm = 0. Thus M is endo-reduced.

Lemma 3.4. If a module M is endo-reduced, then it is endo-semicommutative.
The converse is true if M is endo-p.p.

Proof. Similar to the proof of Lemma 3.3.

Lemma 3.5. If M is an endo-rigid module, then S is a reduced ring. The
converse holds if M is an endo-p.p. module.

Proof. The first statement is from [2, Lemma 2.20]. Conversely, assume that
M is an endo-p.p. module and S is a reduced ring. Let f2m = 0 for f ∈ S and
m ∈ M . Since M is an endo-p.p. module, there exists e2 = e ∈ S such that
f ∈ lS(fm) = Se. Then efm = 0 and f = fe. By assumption, S is an abelian
ring and so e is central in S. Then fm = fem = efm = 0. Hence M is an
endo-rigid module.

We now give a relation between endo-reduced modules and endo-rigid mod-
ules.

Lemma 3.6. If M is an endo-reduced module, then M is an endo-rigid module.
The converse holds if M is endo-p.p.
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Proof. The first statement is from [2, Lemma 2.14]. Conversely, let M be an
endo-p.p. and endo-rigid module. Assume that fm = 0 for f ∈ S and m ∈ M .
Then there exists e2 = e ∈ S such that f ∈ lS(mR) = Se. By Lemma 3.5, e is
central in S and fe = ef = f and em = 0. Let fm′ = gm ∈ fM ∩ Sm. Then
efm′ = fm′ = gem = 0. Therefore M is endo-reduced.

According to Lambek, a ring R is called symmetric [11] if whenever a, b, c ∈
R satisfy abc = 0 implies cab = 0. A module M is called symmetric ([11]
and [15]) if whenever a, b ∈ R, m ∈ M satisfy mab = 0, we have mba = 0.
Symmetric R-modules are also studied in [1] and [16]. In our case, we have the
following.

Definition 3.7. Let M be an R-module with S = EndR(M). The module M
is called endo-symmetric if for any m ∈ M and f , g ∈ S, fgm = 0 implies
gfm = 0.

Lemma 3.8. If M is an endo-symmetric module, then S is a symmetric ring.
The converse holds if M is an endo-p.p. module.

Proof. Let f, g, h ∈ S and assume fgh = 0. Then fghm = 0 for all m ∈ M . By
hypothesis, hfgm = 0 for all m ∈ M . Hence hfg = 0. Conversely, assume that
M is an endo-p.p. module and S is a symmetric ring. Let fgm = 0. There
exists e2 = e ∈ S such that f ∈ lS(gm) = Se. Then f = fe and egm = 0.
Similarly, there exists an idempotent e1 ∈ S such that eg ∈ lS(m) = Se1.
Hence eg = ege1 and e1m = 0. By hypothesis, Se1m = 0 implies e1Sm = 0
and so ege1Sm = egSm = 0. Thus 0 = egfm = gfem = gfm.

Lemma 3.9. If M is endo-symmetric, then M is endo-semicommutative. The
converse is true if M is an endo-p.p. module.

Proof. Let f ∈ S and m ∈ M with fm = 0. Then for all g ∈ S, gfm = 0
implies fgm = 0. So fSm = 0. Conversely, let f, g ∈ S and m ∈ M with
fgm = 0. Then f ∈ lS(gm) = Se for some e2 = e ∈ S. So f = fe and
egm = 0. Since M is endo-semicommutative, egSm = 0. Therefore gfm =
gfem = gefm = egfm = 0 because e is central.

Lemma 3.10. If M is an endo-reduced module, then M is endo-symmetric.
The converse holds if M is an endo-p.p. module.

Proof. The first statement is from [2, Lemma 2.18]. Conversely, let f ∈ S and
m ∈ M with f2m = 0. Then f ∈ lS(fm) = Se for some e2 = e ∈ S. So f = fe
and efm = 0. By Lemma 3.9, M is endo-semicommutative, and so efSm = 0.
Then fgm = fegm = efgm = 0 for any g ∈ S. Therefore fSm = 0.

The next example shows that the reverse implication of the first statement
in Lemma 3.10 is not true in general, i.e., there exists an endo-symmetric
module which is neither endo-reduced nor endo-p.p. and nor endo-rigid.

Example 3.11. Consider a ring
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R =

{[
a b
0 a

]
| a, b ∈ Z

}
and a right R-module

M =

{[
0 a
a b

]
| a, b ∈ Z

}
.

Let f ∈ S and f

[
0 1
1 0

]
=

[
0 c
c d

]
. Multiplying the latter by

[
0 1
0 0

]
we have f

[
0 0
0 1

]
=

[
0 0
0 c

]
. For any

[
0 a
a b

]
∈ M , f

[
0 a
a b

]
=[

0 ac
ac ad+ bc

]
. Similarly, let g ∈ S and g

[
0 1
1 0

]
=

[
0 c′

c′ d′

]
. Then

g

[
0 0
0 1

]
=

[
0 0
0 c′

]
.

For any

[
0 a
a b

]
∈ M , g

[
0 a
a b

]
=

[
0 ac′

ac′ ad′ + bc′

]
. Then it is easy

to check that for any

[
0 a
a b

]
∈ M ,

fg

[
0 a
a b

]
= f

[
0 ac′

ac′ ad′ + bc′

]
=

[
0 ac′c

ac′c ad′c+ adc′ + bc′c

]
and,

gf

[
0 a
a b

]
= g

[
0 ac
ac ad+ bc

]
=

[
0 acc′

acc′ acd′ + ac′d+ bcc′

]
Hence fg = gf for all f , g ∈ S. Therefore S is commutative and so M is

endo-symmetric. Define f ∈ S by f

[
0 a
a b

]
=

[
0 0
0 a

]
, where

[
0 a
a b

]
∈

M . Then f

[
0 1
1 1

]
=

[
0 0
0 1

]
and f2

[
0 1
1 1

]
= 0. Hence M is neither

endo-reduced nor endo-rigid. If m =

[
0 0
0 1

]
, then lS(m) ̸= 0 since the

endomorphism f defined preceding belongs to lS(m). M is indecomposable as
a right R-module, therefore S does not have any idempotents other than zero
and identity. Hence lS(m) can not be generated by an idempotent as a left
ideal of S.

We now summarize the relations between endo-rigid, endo-reduced, endo-
symmetric and endo-semicommutative modules and their endomorphism rings
by using endo-p.p. modules.

Theorem 3.12. If M is an endo-p.p. module, then we have the following.
(1) M is an endo-rigid module if and only if S is a reduced ring.
(2) M is an endo-reduced module if and only if S is a reduced ring.
(3) M is an endo-symmetric module if and only if S is a symmetric ring.
(4) M is an endo-semicommutative module if and only if S is a semicommu-
tative ring.
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Proof. (1) Lemma 3.5, (2) Lemma 3.3, (3) Lemma 3.8, (4) Lemma 3.1.

We wind up the paper with some observations concerning relationships be-
tween endo-reduced modules, endo-rigid modules, endo-symmetric modules,
endo-semicommutative modules and abelian modules by using endo-p.p. mod-
ules.

Theorem 3.13. If M is an endo-p.p. module, then the following conditions
are equivalent.
(1) M is an endo-rigid module.
(2) M is an endo-reduced module.
(3) M is an endo-symmetric module.
(4) M is an endo-semicommutative module.
(5) M is an abelian module.

Proof. (1) ⇔ (2) Lemma 3.6. (2) ⇔ (3) Lemma 3.10. (3) ⇔ (4) Lemma 3.9.
(4) ⇔ (5) Lemma 3.2.

We obtain the following well-known result as a direct consequence.

Corollary 3.14. If R is a right p.p. ring, then the following conditions are
equivalent.
(1) R is a reduced ring.
(2) R is a symmetric ring.
(3) R is a semicommutative ring.
(4) R is an abelian ring.
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