ENDO-PRINCIPALLY PROJECTIVE MODULES

Abstract

Let R be an arbitrary ring with identity and M a right R-module with $S=\operatorname{End}_{R}(M)$. In this paper, we introduce a class of modules that is a generalization of principally projective (or simply p.p.) rings and Baer modules. The module M is called endo-principally projective (or simply endo-p.p.) if for any $m \in M, l_{S}(m)=S e$ for some $e^{2}=e \in S$. For an endo-p.p. module M, we prove that M is endorigid (resp., endo-reduced, endo-symmetric, endo-semicommutative) if and only if the endomorphism ring S is rigid (resp., reduced, symmetric, semicommutative), and we also prove that the module M is endo-rigid if and only if M is endo-reduced if and only if M is endo-symmetric if and only if M is endo-semicommutative if and only if M is abelian. Among others we show that if M is abelian, then every direct summand of an endo-p.p. module is also endo-p.p.

AMS Mathematics Subject Classification (2010): 13C99, 16D80, 16U80.
Key words and phrases: Baer modules, quasi-Baer modules, endo-principally quasi-Baer modules, endo-p.p. modules, endo-symmetric modules, endo-reduced modules, endo-rigid modules, endo-semicommutative modules, abelian modules.

1. Introduction

Throughout this paper R denotes an associative ring with identity, and modules will be unitary right R-modules. For a module $M, S=\operatorname{End}_{R}(M)$ denotes the ring of right R-module endomorphisms of M. Then M is a left S-module, a right R-module and an (S, R)-bimodule. In this work, for any of the rings T and R and any (T, R)-bimodule $M, r_{R}($.$) and l_{M}($.$) denote the$ right annihilator of a subset of M in R and the left annihilator of a subset of R in M, respectively. Similarly, $l_{T}($.$) and r_{M}($.$) will be the left annihilator of a$ subset of M in T and the right annihilator of a subset of T in M, respectively. A ring is reduced if it has no nonzero nilpotent elements. Recently, the reduced ring concept has been extended to modules by Lee and Zhou in [[2]], that is, a module M is called reduced if for any $m \in M$ and $a \in R, m a=0$ implies $m R \cap M a=0$. A ring R is called semicommutative if for any $a, b \in R, a b=0$ implies $a R b=0$. The module M is called endo-semicommutative if for any

[^0]$f \in S$ and $m \in M, f m=0$ implies $f S m=0$, this class of modules is called S-semicommutative in [3]. Baer rings [iII] are introduced as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. A ring R is said to be quasi-Baer [7] if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. A ring R is called right principally quasi-Baer [5] if the right annihilator of a principal right ideal of R is generated by an idempotent. According to Rizvi and Roman [IT], M is called a Baer (resp. quasi-Baer) module if for all R-submodules (resp. fully invariant R-submodules) N of $M, l_{S}(N)=S e$ with $e^{2}=e \in S$. In what follows, by \mathbb{Z}, $\mathbb{Q}, \mathbb{Z}_{n}$ and $\mathbb{Z} / n \mathbb{Z}$ we denote, respectively, integers, rational numbers, the ring of integers modulo n and the \mathbb{Z}-module of integers modulo n.

2. Endo-Principally Projective Modules

Principally projective rings are introduced by Hattori [9] to study the torsion theory, that is, a ring R is called left (right) p.p. if every principal left (right) ideal is projective. The concept of left (right) p.p. rings has been comprehensively studied in the literature. In [IT2], Lee and Zhou introduced p.p. modules as follows: an R-module M is called $p . p$. if for any $m \in M$, $r_{R}(m)=e R$, where $e^{2}=e \in R$. According to Baser and Harmanci [4], a module M is called principally quasi-Baer if for any $m \in M, r_{R}(m R)=e R$, where $e^{2}=e \in R$. Motivated by these and the aforementioned definitions of Rizvi and Roman we give the following definition.

Definition 2.1. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. The module M is called endo-p.p. if for any $m \in M, l_{S}(m)=S e$ for some $e^{2}=e \in S$.

Note that a ring R is called right (or left) p.p. if every principal right (or left) ideal of R is a projective right (or left) R-module. Then, it is obvious that the module R is endo-p.p. if and only if the ring R is left p.p. It is clear that all Baer and quasi-Baer modules are endo-p.p.

Example 2.2. Let R be a Prüfer domain (i.e., a ring with an identity, no zero divisors and all finitely generated ideals are projective) and M the right R-module $R \oplus R$. By ([III], page 17) $S=\operatorname{End}_{R}(M)$ is isomorphic to the ring of 2×2 matrices over R, and it is a Baer ring. Hence M is Baer and so it is an endo-p.p. module.

Since $R \cong \operatorname{End}_{R}(R)$, the following example shows that endo-p.p. modules may not be quasi-Baer or Baer.
Example 2.3. ([G], Example 8.2) Consider the ring $S=\prod_{n=1}^{\infty} \mathbb{Z}_{2}$. Let $T=\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid a_{n}\right.$ is eventually constant $\}$ and $I=\left\{\left(a_{n}\right)_{n=1}^{\infty} \mid a_{n}=0\right.$ eventually $\}$. Then

$$
R=\left[\begin{array}{cc}
T / I & T / I \\
0 & T
\end{array}\right]
$$

is a left p.p. ring which is neither right p.p. nor right principally quasi-Baer. It follows that R is an endo-p.p. module but not quasi-Baer or Baer.

Lemma 2.4. If every cyclic submodule of M is a direct summand, then M is endo-p.p.

Proof. Let $m \in M$. We prove $l_{S}(m)=S f$ for some $f^{2}=f \in S$. By hypothesis, $M=m R \oplus K$ for some submodule $K \leq M$. Let e denote the projection of M onto $m R$. It is easy routine to show that $l_{S}(m)=S(1-e)$.

Note that the endomorphism ring of an endo-p.p. module may not be a right p.p. ring in general. For if M is an endo-p.p. module and $\varphi \in S$, then we have two cases. $\operatorname{Ker} \varphi=0$ or $\operatorname{Ker} \varphi \neq 0$. If $\operatorname{Ker} \varphi=0$, then for any $f \in r_{S}(\varphi)$, $\varphi f=0$ implies $f=0$. Hence $r_{S}(\varphi)=0$. Assume that $\operatorname{Ker} \varphi \neq 0$. There exists a nonzero $m \in M$ such that $\varphi m=0$. By hypothesis, $\varphi \in l_{S}(m)=S e$ for some $e^{2}=e \in S$. In this case $\varphi=\varphi e$ and so $r_{S}(\varphi) \leq(1-e) S$. The following example shows that this inclusion is strict.

Example 2.5. Let Q be the ring and N the Q-module constructed by Osofsky in [13]. Since Q is commutative, we can just as well think of N as of a right Q-module. Let $S=\operatorname{End}_{Q}(N)$. By Lemma [2.7], N is an endo-p.p. module. Identify S with the ring $\left[\begin{array}{cc}Q & 0 \\ Q / I & Q / I\end{array}\right]$ in the obvious way, and consider $\varphi=\left[\begin{array}{cc}0 & 0 \\ 1+I & 0\end{array}\right] \in S$. Then $r_{S}(\varphi)=\left[\begin{array}{cc}I & 0 \\ Q / I & Q / I\end{array}\right]$. This is not a direct summand of S because I is not a direct summand of Q. Therefore, S is not a right p.p. ring.

A ring R is called abelian if every idempotent is central, that is, $a e=e a$ for any $e^{2}=e, a \in R$. Abelian modules are introduced in the context of categories by Roos in [[T]] and studied by Goodearl and Boyle [[8], Rizvi and Roman [[І]]. A module M is called abelian if for any $f \in S, e^{2}=e \in S, m \in M$, we have fem $=$ efm. Note that M is an abelian module if and only if S is an abelian ring. Recall that M is called a duo module [14] if every submodule N of M is fully invariant, i.e., $f(N) \leq N$ for all $f \in S$. Note that for a duo module M, if e is an idempotent and f is an element in S, then $(1-e) f e m=0=e f(1-e) m$ for every $m \in M$. Thus every duo module is abelian.

Theorem 2.6. Consider the following conditions for an R-module M.
(1) M is an endo-p.p. module.
(2) The left annihilator in S of every finitely generated R-submodule of M is generated (as a left ideal) by an idempotent.
Then $(2) \Rightarrow(1)$. If M is duo, also (1) $\Rightarrow(2)$.
Proof. (2) \Rightarrow (1) Clear by definitions.
$(1) \Rightarrow(2)$ Assume that M is a duo module and let N be a finitely generated R-submodule of M. By induction we may assume $N=m_{1} R+m_{2} R$. So $l_{S}\left(m_{1} R\right)=S e_{1}$ and $l_{S}\left(m_{2} R\right)=S e_{2}$ where $e_{1}^{2}=e_{1}, e_{2}^{2}=e_{2} \in S$. Then $l_{S}(N)=\left(S e_{1}\right) \cap\left(S e_{2}\right)$. Clearly, $l_{S}(N) \subseteq S e_{1} e_{2}$. Let $g e_{1} e_{2} \in S e_{1} e_{2}$. Since $m_{1} R$ is fully invariant, $g e_{1} e_{2} N=g e_{1} e_{2} m_{1} R \leq g e_{1} m_{1} R=0$. Hence $S e_{1} e_{2} \subseteq l_{S}(N)$. Thus $l_{S}(N)=S e_{1} e_{2}$. Similarly, $l_{S}(N)=S e_{2} e_{1}$. And we have $S e_{1} e_{2}=S e_{2} e_{1}$. So $e_{1} e_{2}=f e_{2} e_{1}$ for some $f \in S$. Hence

$$
\begin{equation*}
e_{1} e_{2}=e_{1} e_{2} e_{1} \tag{1}
\end{equation*}
$$

Similarly,

$$
\begin{equation*}
e_{2} e_{1}=e_{2} e_{1} e_{2} \tag{2}
\end{equation*}
$$

Replacing (2) in (1) we obtain that $e_{1} e_{2}$ is an idempotent. This completes the proof.

Proposition 2.7. Let M be an abelian module and N a direct summand of M with $S^{\prime}=\operatorname{End}_{R}(N)$. If M is an endo-p.p. module, then N is also endo-p.p.

Proof. Let N be a direct summand of M and $n \in N$. There exists $e^{2}=e \in S$ with $l_{S}(n)=S e$. Since N is a direct summand of M and M is abelian, N is a fully invariant submodule of M. It follows that $e N \leq N$. Then the restriction $e^{\prime}=e_{\mid N}$ belongs to S^{\prime}. We claim that $l_{S^{\prime}}(n)=S^{\prime} e^{\prime}$. Let $f \in l_{S^{\prime}}(n)$. We extend f to $g=f \oplus 0 \in S$. Then $g \in l_{S}(n)$ and so $g=g e$. Hence $f=g_{\mid N}=(g e)_{\mid N}=f e^{\prime} \in S^{\prime} e^{\prime}$. Thus $l_{S^{\prime}}(n) \subseteq S^{\prime} e^{\prime}$. The reverse inclusion is clear.

Let M be an R-module with $S=\operatorname{End}_{R}(M)$. The module M is called endoprincipally quasi-Baer if for any $m \in M, l_{S}(S m)=S e$ for some $e^{2}=e \in S$, this class of modules is called principally quasi-Baer in [20]. Then the following lemma is obvious.

Lemma 2.8. Consider the following conditions for an R-module M.
(1) M is a Baer module.
(2) M is a quasi-Baer module.
(3) M is an endo-p.p. module.
(4) M is an endo-principally quasi-Baer module.

Then $(1) \Rightarrow(2) \Rightarrow(4)$. If M is an endo-semicommutative module, then $(2) \Rightarrow$ (1), (2) $\Rightarrow(3)$ and $(3) \Leftrightarrow(4)$.

3. Applications

If R is a ring, then some properties of R-modules do not characterize the ring R, namely there are reduced R-modules but R need not be reduced and there are abelian R-modules but R need not be an abelian ring. Because of that endo-reduced modules, endo-rigid modules, endo-symmetric modules, and endo-semicommutative modules are studied by the present authors in recent papers (see [Z]). Our next endeavor is to investigate relationships between endo-reduced, endo-rigid, endo-symmetric, endo-semicommutative and abelian modules by using endo-p.p. modules.

Lemma 3.1. Let M be an R-module. If M is an endo-semicommutative module, then S is a semicommutative ring. The converse holds if M is an endo-p.p. module.

Proof. The first statement is from [Σ, Proposition 2.20]. Conversely, assume that M is an endo-p.p. module and S is a semicommutative ring. Let $\mathrm{fm}=0$ for $f \in S$ and $m \in M$. Since M is an endo-p.p. module, there exists $e^{2}=e \in S$ such that $l_{S}(m)=S e$. Since $f m=0, f \in l_{S}(m)=S e$ and then $f g \in S e g$ for
all $g \in S$. By assumption, S is an abelian ring and so e is central in S. Then $e g=g e$ for all $g \in S$. Hence $f g \in S g e \subseteq S e=l_{S}(m)$. Thus $f g m=0$ for all $g \in S$. This completes the proof.

Lemma 3.2. If a module M is endo-semicommutative, then M is abelian. The converse holds if M is an endo-p.p. module.

Proof. One way is clear because S semicommutative implies S abelian and so M is abelian. Suppose that M is an abelian and endo-p.p. module. Let $f \in S$, $m \in M$ with $f m=0$. Then $f \in l_{S}(m)$. Since M is an endo-p.p. module, there exists an idempotent e in S such that $l_{S}(m)=S e$ and so $S e m=0$ and $f e=f$. By supposition, $e S m=0$. Then $f e S m=f S m=0$.

Recall that an R-module M is called endo-reduced if $\mathrm{fm}=0$ implies that Imf $\cap S m=0$ for each $f \in S, m \in M$, this class of modules is called reduced in [2$]$. Following the definition of a reduced module in [[12] and [[16],M is endoreduced if and only if $f^{2} m=0$ implies $f S m=0$ for each $f \in S, m \in M$. Also, an R-module M is called endo-rigid [[2] if for any $f \in S$ and $m \in M, f^{2} m=0$ implies $f m=0$. In this direction we have the following result.

Lemma 3.3. If M is an endo-reduced module, then S is a reduced ring. The converse holds in case M is an endo-p.p. module.

Proof. The first statement is from [$[$, , Lemma 2.11 and Proposition 2.14]. Conversely, assume that M is an endo-p.p. module and S is a reduced ring. Then in particular S is an abelian ring. Let $f m=0$ for $f \in S$ and $m \in M$, and $\mathrm{fm}^{\prime}=g m \in f M \cap S m$. We may find an idempotent e in S such that $f \in l_{S}(m)=S e$. By assumption, e is central in S. So $f=f e=e f$. Multiplying $\mathrm{fm}^{\prime}=g m$ from the left by e, we have $\mathrm{fm}^{\prime}=e g m=g e m=0$. Hence $f M \cap S m=0$. Thus M is endo-reduced.

Lemma 3.4. If a module M is endo-reduced, then it is endo-semicommutative. The converse is true if M is endo-p.p.

Proof. Similar to the proof of Lemma [3.3].
Lemma 3.5. If M is an endo-rigid module, then S is a reduced ring. The converse holds if M is an endo-p.p. module.

Proof. The first statement is from [Z, Lemma 2.20]. Conversely, assume that M is an endo-p.p. module and S is a reduced ring. Let $f^{2} m=0$ for $f \in S$ and $m \in M$. Since M is an endo-p.p. module, there exists $e^{2}=e \in S$ such that $f \in l_{S}(f m)=S e$. Then efm $=0$ and $f=f e$. By assumption, S is an abelian ring and so e is central in S. Then $\mathrm{fm}=\mathrm{fem}=$ efm $=0$. Hence M is an endo-rigid module.

We now give a relation between endo-reduced modules and endo-rigid modules.

Lemma 3.6. If M is an endo-reduced module, then M is an endo-rigid module. The converse holds if M is endo-p.p.

Proof. The first statement is from [Z, Lemma 2.14]. Conversely, let M be an endo-p.p. and endo-rigid module. Assume that $f m=0$ for $f \in S$ and $m \in M$. Then there exists $e^{2}=e \in S$ such that $f \in l_{S}(m R)=S e$. By Lemma [3.5, e is central in S and $f e=e f=f$ and $e m=0$. Let $f m^{\prime}=g m \in f M \cap S m$. Then efm $m^{\prime}=f m^{\prime}=g e m=0$. Therefore M is endo-reduced.

According to Lambek, a ring R is called symmetric [II] if whenever $a, b, c \in$ R satisfy $a b c=0$ implies $c a b=0$. A module M is called symmetric ([IT] and [15]]) if whenever $a, b \in R, m \in M$ satisfy $m a b=0$, we have $m b a=0$. Symmetric R-modules are also studied in [T] and [T6]. In our case, we have the following.

Definition 3.7. Let M be an R-module with $S=\operatorname{End}_{R}(M)$. The module M is called endo-symmetric if for any $m \in M$ and $f, g \in S$, fgm $=0$ implies $g f m=0$.

Lemma 3.8. If M is an endo-symmetric module, then S is a symmetric ring. The converse holds if M is an endo-p.p. module.

Proof. Let $f, g, h \in S$ and assume $f g h=0$. Then $f g h m=0$ for all $m \in M$. By hypothesis, $h f g m=0$ for all $m \in M$. Hence $h f g=0$. Conversely, assume that M is an endo-p.p. module and S is a symmetric ring. Let $f g m=0$. There exists $e^{2}=e \in S$ such that $f \in l_{S}(g m)=S e$. Then $f=f e$ and egm $=0$. Similarly, there exists an idempotent $e_{1} \in S$ such that $e g \in l_{S}(m)=S e_{1}$. Hence $e g=e g e_{1}$ and $e_{1} m=0$. By hypothesis, $S e_{1} m=0$ implies $e_{1} S m=0$ and so $e g e_{1} S m=e g S m=0$. Thus $0=e g f m=g f e m=g f m$.

Lemma 3.9. If M is endo-symmetric, then M is endo-semicommutative. The converse is true if M is an endo-p.p. module.

Proof. Let $f \in S$ and $m \in M$ with $f m=0$. Then for all $g \in S, g f m=0$ implies $f g m=0$. So $f S m=0$. Conversely, let $f, g \in S$ and $m \in M$ with $f g m=0$. Then $f \in l_{S}(g m)=S e$ for some $e^{2}=e \in S$. So $f=f e$ and $e g m=0$. Since M is endo-semicommutative, $e g S m=0$. Therefore $g f m=$ gfem $=$ gefm $=$ egfm $=0$ because e is central.

Lemma 3.10. If M is an endo-reduced module, then M is endo-symmetric. The converse holds if M is an endo-p.p. module.

Proof. The first statement is from [2, Lemma 2.18]. Conversely, let $f \in S$ and $m \in M$ with $f^{2} m=0$. Then $f \in l_{S}(f m)=S e$ for some $e^{2}=e \in S$. So $f=f e$ and ef $m=0$. By Lemma $\sqrt[3]{3}, M$ is endo-semicommutative, and so ef $S m=0$. Then $f g m=f e g m=e f g m=0$ for any $g \in S$. Therefore $f S m=0$.

The next example shows that the reverse implication of the first statement in Lemma 3.10 is not true in general, i.e., there exists an endo-symmetric module which is neither endo-reduced nor endo-p.p. and nor endo-rigid.

Example 3.11. Consider a ring

$$
R=\left\{\left.\left[\begin{array}{ll}
a & b \\
0 & a
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

and a right R-module

$$
M=\left\{\left.\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right] \right\rvert\, a, b \in \mathbb{Z}\right\}
$$

Let $f \in S$ and $f\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{ll}0 & c \\ c & d\end{array}\right]$. Multiplying the latter by $\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$ we have $f\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & c\end{array}\right]$. For any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M, f\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=$ $\left[\begin{array}{cc}0 & a c \\ a c & a d+b c\end{array}\right]$. Similarly, let $g \in S$ and $g\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]=\left[\begin{array}{cc}0 & c^{\prime} \\ c^{\prime} & d^{\prime}\end{array}\right]$. Then $g\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & c^{\prime}\end{array}\right]$.

For any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M, g\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{cc}0 & a c^{\prime} \\ a c^{\prime} & a d^{\prime}+b c^{\prime}\end{array}\right]$. Then it is easy to check that for any $\left[\begin{array}{ll}0 & a \\ a & b\end{array}\right] \in M$,

$$
f g\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]=f\left[\begin{array}{cc}
0 & a c^{\prime} \\
a c^{\prime} & a d^{\prime}+b c^{\prime}
\end{array}\right]=\left[\begin{array}{cc}
0 & a c^{\prime} c \\
a c^{\prime} c & a d^{\prime} c+a d c^{\prime}+b c^{\prime} c
\end{array}\right]
$$

and,

$$
g f\left[\begin{array}{ll}
0 & a \\
a & b
\end{array}\right]=g\left[\begin{array}{cc}
0 & a c \\
a c & a d+b c
\end{array}\right]=\left[\begin{array}{cc}
0 & a c c^{\prime} \\
a c c^{\prime} & a c d^{\prime}+a c^{\prime} d+b c c^{\prime}
\end{array}\right]
$$

Hence $f g=g f$ for all $f, g \in S$. Therefore S is commutative and so M is endo-symmetric. Define $f \in S$ by $f\left[\begin{array}{cc}0 & a \\ a & b\end{array}\right]=\left[\begin{array}{cc}0 & 0 \\ 0 & a\end{array}\right]$, where $\left[\begin{array}{cc}0 & a \\ a & b\end{array}\right] \in$ M. Then $f\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ and $f^{2}\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right]=0$. Hence M is neither endo-reduced nor endo-rigid. If $m=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$, then $l_{S}(m) \neq 0$ since the endomorphism f defined preceding belongs to $l_{S}(m) . M$ is indecomposable as a right R-module, therefore S does not have any idempotents other than zero and identity. Hence $l_{S}(m)$ can not be generated by an idempotent as a left ideal of S.

We now summarize the relations between endo-rigid, endo-reduced, endosymmetric and endo-semicommutative modules and their endomorphism rings by using endo-p.p. modules.

Theorem 3.12. If M is an endo-p.p. module, then we have the following.
(1) M is an endo-rigid module if and only if S is a reduced ring.
(2) M is an endo-reduced module if and only if S is a reduced ring.
(3) M is an endo-symmetric module if and only if S is a symmetric ring.
(4) M is an endo-semicommutative module if and only if S is a semicommutative ring.

Proof. (1) Lemma 3.5, (2) Lemma 3.3, (3) Lemma 3.8, (4) Lemma [3.1.
We wind up the paper with some observations concerning relationships between endo-reduced modules, endo-rigid modules, endo-symmetric modules, endo-semicommutative modules and abelian modules by using endo-p.p. modules.

Theorem 3.13. If M is an endo-p.p. module, then the following conditions are equivalent.
(1) M is an endo-rigid module.
(2) M is an endo-reduced module.
(3) M is an endo-symmetric module.
(4) M is an endo-semicommutative module.
(5) M is an abelian module.

Proof. (1) \Leftrightarrow (2) Lemma [3.6. (2) \Leftrightarrow (3) Lemma [.]. (3) \Leftrightarrow (4) Lemma [.9. (4) \Leftrightarrow (5) Lemma [.2.2.

We obtain the following well-known result as a direct consequence.
Corollary 3.14. If R is a right p.p. ring, then the following conditions are equivalent.
(1) R is a reduced ring.
(2) R is a symmetric ring.
(3) R is a semicommutative ring.
(4) R is an abelian ring.

Acknowledgement

The authors would like to thank the referee(s) for valuable suggestions. The first author thanks the Scientific and Technological Research Council of Turkey (TUBITAK) for the financial support.

References

[1] Agayev, N., Halicioglu, S., Harmanci, A., On symmetric modules. Riv. Mat. Univ. Parma (8) 2 (2009), 91-99.
[2] Agayev, N., Halicioglu, S., Harmanci, A., On Rickart modules. Bull. Iran. Math. Soc. Vol. 38 No. 2 (2012), 433-445.
[3] Agayev, N., Ozen, T., Harmanci, A., On a Class of Semicommutative Modules. Proc. Indian Acad. Sci. 119 (2) (2009), 149-158.
[4] Baser, M., Harmanci, A., Reduced and p.q.-Baer Modules. Taiwanese J. Math. 11 (2007), 267-275.
[5] Birkenmeier, G.F., Kim, J.Y., Park, J.K., A sheaf representation of quasi-Baer rings. J. Pure Appl. Algebra 146 (3) (2000), 209-223.
[6] Chatters, A.W., Hajarnavis, C.R., Rings with Chain Conditions. Boston: Pitman 1980.
[7] Clark, W.E., Twisted matrix units semigroup algebras. Duke Math. J. Vol. 34 No. 3 (1967), 417-423.
[8] Goodearl, K.R., Boyle, A.K., Dimension theory for nonsingular injective modules. Memoirs Amer. Math. Soc. 7 (177), 1976.
[9] Hattori, A., A foundation of the torsion theory over general rings. Nagoya Math. J. 17 (1960), 147-158.
[10] Kaplansky, I., Rings of Operators, Math. Lecture Note Series. New York: Benjamin 1965.
[11] Lambek, J., On the representation of modules by sheaves of factor modules. Canad. Math. Bull. 14 (3) (1971), 359-368.
[12] Lee, T.K., Zhou, Y., Reduced Modules, Rings, modules, algebras and abelian groups. 365-377, Lecture Notes in Pure and Appl. Math. 236, New York: Dekker 2004.
[13] Osofsky, B.L., A Counterexample to a lemma of Skornjakov. Pacific J. Math. 15 (1965), 985-987.
[14] Ozcan, A.C., Harmanci, A., Smith, P.F., Duo Modules. Glasgow Math. J. 48 (3) (2006), 533-545.
[15] Raphael, R., Some remarks on regular and strongly regular rings. Canad. Math. Bull. 17 (5) (1974/75), 709-712.
[16] Rege, M.B., Buhphang, A.M., On reduced modules and rings. Int. Electron. J. Algebra 3 (2008), 58-74.
[17] Rizvi, S.T., Roman, C.S., Baer and Quasi-Baer Modules. Comm. Algebra 32 (2004), 103-123.
[18] Rizvi, S.T., Roman, C.S., On \mathcal{K}-nonsingular Modules and Applications. Comm. Algebra 34 (2007), 2960-2982.
[19] Roos, J.E., Sur les categories spectrales localement distributives. C. R. Acad. Sci. Paris 265 (1967), 14-17.
[20] Ungor, B., Agayev, N., Halicioglu, S., Harmanci, A., On Principally Quasi-Baer Modules. Albanian J. Math. 5 (3) (2011), 165-173.

Received by the editors October 31, 2011

[^0]: ${ }^{1}$ Department of Mathematics, Ankara University, Ankara, Turkey, e-mail: bungor@science.ankara.edu.tr
 ${ }^{2}$ Department of Computer Engineering, University of Lefke, Cyprus, e-mail: agayev@eul.edu.tr
 ${ }^{3}$ Department of Mathematics, Ankara University, Ankara, Turkey, e-mail: halici@ankara.edu.tr
 ${ }^{4}$ Department of Mathematics, Hacettepe University, Ankara, Turkey, e-mail: harmanci@hacettepe.edu.tr

