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(A. Etaner-Uyar).
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Dynamic environments are still a big challenge for optimization algorithms. In this paper, a Genetic
Algorithm using both Multiploid representation and the Bayesian Decision method is proposed. By
Multiploid representation, an implicit memory scheme is introduced to transfer useful information to
the next generations. In this representation, there are more than one genotypes and only one phenotype.
The phenotype values are determined based on the corresponding genotypes values. To determine phe-
notype values, the well-known Bayesian Optimization Algorithm (BOA) has been injected into our algo-
rithm to create a Bayes Network by using the previous population to exploit interactions between
variables. With this algorithm, we have solved the well-known Dynamic Knapsack Problem (DKP) with
100, 250, and 500 items. Also, we have compared our algorithm with the most recent algorithm in the
literature by using the DKP with 100 items. Experiments have shown that the proposed algorithm is effi-
cient and faster than the peer algorithms in the manner of tracking moving optima without using an
explicit memory scheme. In conclusion, using relationships between variables within the optimization
algorithms is useful when concerning dynamic environments.
� 2022 The Authors. Published by Elsevier B.V. on behalf of Karabuk University This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Combinatorial optimization problems such as University Time-
tabling Problem, Traveling Salesman Problem (TSP) [4,13], and
social networks have a dynamic structure due to their nature. Since
the optimum point to be found over time in dynamic environments
will change, the intuitive approaches can only be successful if they
are well adapted to these environments.

The environmental change might occur on both sides (con-
straints and/or objective function) of the optimization algorithms.
The simplest way to address the change is to restart the algorithm.
However, the new optimal solution may not be so far away from
the previous one. For this reason, the restarting idea is not useful.
Instead, already gained information so far could be useful to adapt
to the current environment. To accomplish this adaptation, some
dynamic environment criteria should be considered [6]: (i): fre-
quency of change, (ii): severity of the change, (iii): cycle length/cy-
cle accuracy, (iv): predictability of change.

Genetic Algorithms (GAs) are very popular optimization algo-
rithms that are inspired by the biological evolution of the species
in nature. Despite the huge success of GAs in the literature, they
lose their genetic diversity in changing environments. There are
many reasons for that but in this study, we will focus on two of
them: (i): losing useful solutions, and (ii): not being able to use
relationships between problem variables. To address the reason
(i), an implicit memory scheme is developed by implementing a
multiploid chromosome structure. To address the reason (ii), a
Bayesian Network (BN) is used to exploit relationships between
problem variables (a.k.a. genes in a chromosome).

Epistasismeans the interaction of genes in a chromosome in real
biological life. More clearly, the effect of one gene is dependent on
the presence or absence of another gene(s). In this paper, besides
multiploidy, to take advantage of interactions of genes, the Baye-
sian Optimization Algorithm (BOA) [32], one of the well-known
Estimation of Distribution Algorithm (EDA), is injected into the
proposed Genetic Algorithm variants.

The dynamic version of the well-known Knapsack Problem (KP)
is solved to see its effects on real-world problems. In financial
management and industry, lots of real-world problems are related
to KP. For example, cargo loading, cutting stock, production
scheduling, capital budgeting, project selection, and portfolio man-
agement [28] are examples of the KP domain [22].

Consequently, in this paper, a GA with both using a statistical
method and an implicit memory scheme is proposed to solve
chnology,
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Dynamic Optimization Problems (DOP). The proposed method has
been examined on a set of highly correlated Dynamic KPs to mon-
itor its behavior in dynamic environments. Then, its performance
has been compared to the most recent peer algorithm in the liter-
ature. Results show that the proposed method is quite effective
while solving DOPs.

This paper continues as follows: In 2, the literature background
is investigated. Then, the proposed method is fully described in 3.
In 4, constructing the dynamic test environment and the bench-
mark problems are explained. Experimental results are shown in
5. In 6, the results are briefly discussed and finally, 7 concludes
the paper.
2. Literature Summary

2.1. Dynamic Environments

Among the many of them, the main issue in dynamic environ-
ments is keeping track of the changing optimum [23]. Some strate-
gies are proposed for this issue [20]: (i) Generating diversity when
a change occurs, (ii) Maintaining diversity continuously, (iii) Using
multi-population (iv) Using Memory-based techniques.

2.2. Genetic Algorithms for Dynamic Environments

Since the simple GA loses its diversity in a dynamic environ-
ment, using a memory scheme to save good solutions or using
immigrant schemes might be helpful for its adaptation to the
newly formed environment.

2.2.1. Immigrant-based Genetic Algorithms
Random Immigrants (RI) scheme is proposed to maintain diver-

sity at all times in [15]. Then, this scheme is applied to the GA, and
Random Immigrant GA (RIGA) is proposed [8]. In this approach, at
each generation, a portion of the solution candidates is replaced
with new randomly generated solution candidates. This kind of
technique is usually problematic during the stationary periods,
however, shows good performance where the frequency and sever-
ity of the change are relatively high. To address problems for sta-
tionary periods case, Elitism-based GA (EIGA) is proposed [41]
which replaces a portion of the solution candidates nearly mutated
versions of the elite individual of the last generation. However, its
performance sharply decreases if the severity of the change is high
because the individuals in the population start to become similar
to each other. To handle this problem, the Hybrid GA (HIGA) is pro-
posed [43] which merges RIGA and EIGA to maintain a balance
between exploration and exploitation.

2.2.2. Memory-based Genetic Algorithms
Using memory schemes is another solution method for dynamic

environments. Memory scheme can be applied in two ways: (i)
Implicitly by implementing redundant representation, or (ii) Explic-
itly by implementing extra memory area to save old but good
solutions.

Memory/Search GA (MSGA) [41] has two populations: a mem-
ory population and a search population. In the beginning, the sizes
of the populations are equal. After each generation, the sizes of the
populations are updated considering their performance. While the
good solutions are saved in the memory population, the search
population looks for new solutions in the search space. If a change
detected, the algorithm merges the populations, selects a part of
the merged population as the first population, and re-initializes
the second population. The Memory-enhanced GA (MEGA) and
Memory and Random Immigrant GA (MRIGA) are proposed [42].
While in MEGA memory is restarted when a change detected, in
2

MRIGA, the worst solutions in the memory are replaced by random
immigrants. Memory-based Immigrants GA (MIGA) is proposed
[40]. In MIGA, the memory is re-evaluated at each generation
and the best individuals are used for producing immigrants via bit-
wise mutation.

Most recently, the Environment Reaction GA (ERGA) has been
proposed [33]. In ERGA, to enhance the ability to track down the
changing optimal point, some memory updating methods and a
new reaction policy are investigated.

In [37], the authors proposed the domination GA (domGA) as an
implicit memory-using approach. In domGA, solution candidates
have one phenotype and two genotypes. A probability vector is
used to determine phenotype values based on the corresponding
genotype values. In our work, the same approach is applied, how-
ever, a different method is used to create a probability vector:
while they use a probabilistic learning approach in their work,
we let the BN create the probability vector.

2.3. Bayesian Optimization Algorithm

The BOA constructs a BN to evolve a population and sample new
individuals [31]. A BN is a directed acyclic graph (DAG) that shows
connections between variables (nodes). In BOA, first, randomly a
population is formed. Then the population is evaluated to select
high-quality solutions via a selection method. Next, a BN is con-
structed by using selected candidate solutions. After that, by using
BN, new candidate solutions are sampled. Last, some or all of the
existing population are replaced by new candidate solutions.

2.4. Most Recent Works on Dynamic Optimization

Adaptive Immigrant GA (AIGA) is proposed in [25] which
bitwise-mutates the elite solution from the previous generation
with a probability of pi

m which is updated each generation after
the evaluation of the effectiveness of immigrants with a given
equation for dynamic environments.

Cooperative Co-Evolutionary Algorithms (CCEAs) are adapted to
the dynamic environments by introducing the RI scheme, and EI
scheme in [2].

The immigrant schemes (e.g., random, elitism-based, hybrid)
are applied to the Population-based Incremental Learning (PBIL)
and compared to both standard PBIL algorithm and each other to
see the effectiveness to solve DOPs in [26].

In [36], the authors used RI and Memory-based Immigrants (MI)
in their work for DOPs. In the work, they put immigrants into the
population after a change instead of putting every generation.

A BOA-based EA for dynamic environments is proposed in [21].
The proposed method starts with a randomly formed population.
In the BOA part, a BN is constructed by using the population, and
the next generation is populated via this BN. If a change occurs
algorithm retrieves useful solutions from the memory and also
retrieves proper network (for BN) translation from the memory
and uses it for biasing (modifying) the transition probabilities dur-
ing BN constructing step.

In [27], the author proposed a PBIL variant with a memory
scheme to solve cyclically changing DOPs.
3. Proposed Algorithm

For solving DOPs and adapting to the new environment, we pro-
pose Multiploid GA (MGA) which has three components: The first,
Bayesian Decision mechanism to determine the phenotype values
of the individuals by injecting BOA source code into MGA, the sec-
ond, multiploid representation of individuals as implicit memory
scheme, and finally the third, random and/or Bayesian Immigrant
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schemes. To see the effects of the components, eight different vari-
ants of the proposed algorithm are implemented by switching on
and off random and Bayesian immigrant schemes and setting the
number of genotypes to two different values, 2 (diploidy) and 4
(multiploidy):

� Bayesian Diploid GA (BDGA) (No immigrant)
� Bayesian Immigrant Diploid GA (BIDGA) (Bayesian Immigrant
only)

� Bayesian Random-only Immigrant Diploid GA (BRoIDGA) (Ran-
dom Immigrant only)

� Bayesian Random Immigrant Diploid GA (BRIDGA) (Both Baye-
sian and Random Immigrant)

� Bayesian Multiploid GA (BMGA) (No immigrant)
� Bayesian Immigrant Multiploid GA (BIMGA) (Bayesian Immi-
grant only)

� Bayesian Random-only Immigrant Multiploid GA (BRoIMGA)
(Random Immigrant only)

� Bayesian Random Immigrant Multiploid GA (BRIMGA) (Both
Bayesian and Random Immigrant)

In MGA, the GA part is used to carry out the optimization pro-
cess, BOA is used for (i): determining phenotype values, and (ii):
creating immigrants by sampling new individuals using its own
BN. The related pseudo-code can be seen in 1.

3.1. Explanation of MGA

Foremost, MGA employs a multiploid representation, which
means that each solution candidate has multiple genotypes but
only one phenotype. The goal is, here, to create an implicit memory
scheme that will pass on what has been learned so far to future
generations. To do this, all genetic operators are only used on geno-
types, the phenotype is used only to evaluate fitness value [37].

Algorithm1: Pseudocode for MGA
3

The pseudocode of the MGA is shown in 1. Also, its flowchart is
shown in 1. First, the number of genotypes is determined (see Sec-
tion 5.2) and BOA and/or Random immigrant scheme is set
optionally.

Next, the genotypes of the solution candidates are generated
randomly in the beginning, and phenotype values are assigned ran-
domly -since a BN is not constructed yet- unless corresponding
genotype values are the same. Then the fitness values are calcu-
lated, and by using the best k% of them, a BN is constructed. The
BN is then used to populate an aux-population (short for
auxiliary-population) which has the same size as MGA has. Last,
similar to PBIL does, a probability vector is built using the aux-
population. If at least one of the corresponding genotype values
are different, the probability vector is employed to determine the
phenotype value for the particular gene.

The standard tournament selection (size of four) is applied in
the MGA’s selection phase: Randomly chosen four solution candi-
dates are compared and the fittest one is passed on to the next gen-
eration. This operation is performed until the size of the next
generation is satisfied. Next, the BOA and/or Random immigrant
schemes are performed if they are set. Simply, for the BOA immi-
grant scheme, a portion of the solution candidates in the aux-
population are moved to the main population randomly, and for
the Random immigrant scheme, a portion of the randomly-
chosen solution candidates from the main population is switched
with the solution candidates are generated at random to maintain
diversity. Without recalculating its fitness value, the elite solution
candidate from the last iteration is passed on to the current gener-
ation (elitism). In addition, the immigrant steps are carried out in
this step according to the algorithm variants mentioned in
Section 3.

The uniform crossover approach is employed for crossover
operation. It begins by randomly generating a mask vector in bin-
ary and then selecting two individuals, say i1, and i2, at each itera-
tion. For each variable j (genes in chromosome), if the mask

vector’s corresponding value is 1, i1’s 1st genotype’s jth variable is

swapped with i2’s 2nd genotype’s jth variable with a probability
of pc. This procedure is performed on each pair of genotypes in
each solution candidate separately.

The simple bitwise mutation is employed as a mutation tool.
The genotypes of each solution candidate are inverted with a prob-
ability of pm in the bitwise mutation process.

The phenotype construction stage follows the genetic operators.
If the genotype values are the same, as seen in 1, this value is also
used for the phenotype as well. Otherwise, the probability vector of
the BOA is used to determine if it will be one or zero.

4. Constructing Dynamic Test Environments

4.1. Dynamic Benchmark Test Environment Generator

The XOR Generator proposed in [39] is a dynamic environment
generator with different difficulty degrees for any binary encoded

stationary problem. Assume X
!

is a binary encoded solution candi-
date for a problem, then the fitness value of that solution candidate
is calculated for time t as shown in (1).

f X
!
; t

� �
¼ f X

!�M
!

k

� �
ð1Þ

where � is the XOR operator and M
!

k is a masking vector for the kth

environment. In the beginning, mask M
!

is initialized with zeros.
After that, every s generations, it is updated as shown in (2).



Fig. 1. Flowchart of MGA.

E. Gazioğlu and A.Sima Etaner-Uyar Engineering Science and Technology, an International Journal xxx (xxxx) xxx
M
!

k ¼ M
!

k�1 � T
!

k ð2Þ

where T
!

k is a binary template.
Besides the above generator (random environment), there are

also cyclic and cyclic with noise environments which are proposed
in [44]. In order to construct a cyclic environment, we first con-

struct K binary encoded templates1 T
!

0ð Þ; . . . ; T! K � 1ð Þ randomly
but exclusively: Assume that each template is a row of a matrix, then
the number of total ones in a column of the matrix must be 1. The

first mask M
!

0ð Þ is composed of zeros, then the rest of the XOR masks
are constructed as shown in (3).

M
!

iþ 1ð Þ ¼ M
!

ið Þ � T
!

i%Kð Þ; i ¼ 0; . . . ::2K � 1: ð3Þ
With the above formula, after K environmental changes, the

M
!

Kð Þ will be all ones and then the K base states will be reused to
construct next K masks till to return to the environment

M
!

0ð Þ ¼ 0
!
.

By using the above cyclic environment generator, Yang and Yao
also introduced the cyclic environment with noise [44] via intro-
ducing noise to the next mask by using bitwise flipping with a
small probability, called pn.

4.2. Dynamic Knapsack Problem

Dynamic Knapsack Problem (DKP), proposed in [29], is the
dynamic form of the 0/1 KP,and its aim is to collect as many items
as possible to maximize profit while ensuring that the knapsack’s
total weight does not surpass the capacity allotted C [35]. The KP
is an NP-hard combinatorial optimization problem that can be seen
in real-world scenarios such as choosing investments or resource
allocation. [22,10,5,30,38,7,24]. 4 shows the formula of the 0/1 KP.

max f xð Þ ¼
Xn
i¼1

pi � xi

subject to
Xn
i¼1

wixi 6 C xi 2 0;1f g;
ð4Þ

where xi denotes the decision value in binary format, indicating if
the item i is collected or not, pi denotes the item i’s profit value,
wi denotes the item i’s weight, and C is the capacity.
1 Each template should contain q � l ¼ l=K ones.

4

Because the correlation between profits and weights influences
the DKP’s complexity, strongly correlated datasets are formed for
this work as it is explained in [29].
5. Experimental Studies

5.1. Design

Before testing the MGA, first, some key parameters are set. For a
fair comparison, these parameters are set to exact same values as
used in [33]. The frequency of change, s, is set to 20 and 40. The
severity of the change, q, is set to 0.1, 0.2, 0.5, 1.0. At this point,
it should be indicated that the results given for point 1.0 are not
very realistic since in the real world there is no such an oscillation
state. However, still, the reason we tested our algorithm for point
1.0 is to conform to the literature. The probability of noise pn is
set to 0.05 for the noisy cyclic environment.Also, each algorithm
has 100 fitness function calculations per generation. And the num-
ber of generations, is calculated as follows: G ¼ s� T , where
T ¼ 60. Thus, we achieve the number of fitness calculations per
generation specified in [33].

Besides the above adjustments, the other parameters’ settings
can be seen in 1. These settings are commonly accepted values in
the literature by experiments, except pn, which is based on [39].

A total of 72 test environments are generated by using three
DKP datasets, four different q values, two different s values, and
three different environment schemes. Then, these 72 environments
are solved by variants of the proposed method mentioned in Sec-
tion 3.50 independent runs (N) with the same set of seeds were
executed for each test. The best-of-generation for each run is saved
[44], and total performance is calculated as seen in 5.

FBOG ¼ 1
G

XG
i¼1

1
N

XN
j¼1

FBOGij

 !

where G denotes the number of generations, N denotes the number

of total runs, FBOGij
is the ith generation’s best-of-fitness value of the

jth run, and finally, FBOG denotes total offline performance.

5.2. Preliminary tests for parameter tuning

Before running the actual test, first, the best number of geno-
types is investigated. To get a reliable result, the pm is set to 0.01,
and the Bayesian Immigrant rate, b, and Random Immigrant rate,



Table 1
Parameter settings of MGA.

parameter value

number of generation (G) s� T
population size 100
mutation probability (pm) 0.1
crossover probability (pc) 1.0
probability of noise (pn) 0.05
tournament size for selection 4
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C, are set to 0.0. Also, for the test, 25 independent runs were exe-
cuted for the DKP-500 problem. As depicted in 2, 4 is the best
option for the number of genotypes.

After fixing the number of genotypes to 4, next, the algorithm is
tested to determine the best mutation probability value on the
DKP-500 problem. For the sake of reliability, again, b and C are
set to 0.0. The results can be seen in 3. Results show that using
0:1 is the best option for the probability of mutation, pm.

Finally, the last two tests had applied for determining the BOA
immigrant rate, b, and the random immigrant rate, C. These two
tests had applied for both Diploid and Multiploid algorithms (in
total four tests). Based on the results, it is concluded that setting
both values to 0:1 will give the best result.

5.3. Experimental results

After fixing crucial parameters of the proposed algorithm, three
DKP are solved with eighth variants of the MGA mentioned earlier.
Fig. 2. Sensitivity test for determin

Fig. 3. Sensitivity test for determi

5

The corresponding results are shown in 4 for s ¼ 20 (Results for
s ¼ 40 is not given in this paper due to the page limitation).

When we check 4, we can come up with some conclusions:
While looking up to results from top to bottom, it can be seen

that the general performances of the algorithms are decreases, nat-
urally, since the problems are getting harder.

While looking up to results from left to right, it is seen that both
performances and the behaviors are almost the same for cyclic and
random environments. However, due to the noise effect, for the
cyclic with noise environments, the algorithms performed close
to each other except for minor differences.

Diploid vs. Multiploid: Although BIDGA and BRIDGA perform
slightly better than the other diploid ones, still worse than the
multiploid ones and we have already concluded that in 2 earlier.

When we look at only the multiploid ones, we see that the per-
formances of the algorithms with the Bayesian Immigrant scheme
are getting decreases while the severity of the problem is increases
and vice versa. This is because the Bayesian Immigrant scheme
tends to remain in the local optimum by intensification.

To compare the results to the ERGA’s results which are provided
in [33], we chose only BMGA among the eight variants of the MGA.
Before interpreting the results given in 5, we remind you, again,
that the results given for point 1.0 are not very realistic. When
checking the results in this context, except for two scenarios,
BMGA gave much better results than ERGA. From here, it is under-
stood that BMGA’s implicit memory system and Bayesian Decision
method are more effective for DOPs than ERGA’s open memory
approach.
ing the number of genotypes.

ning probability of mutation.



Fig. 4. Offline performances of the algorithms on DKP 100, 250 and 500 items under random, cyclic and cyclic with noise environments with s ¼ 20 and q ¼ 0:1;0:2;0:5 and
1:0.
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5.4. Non-parametric statistical tests

To apply a statistical test for multiple comparisons, for each test
case, the ”1 � k multiple comparison test” [9] is used, where, k indi-
cates the number of approaches.

In the beginning, by applying the Friedman test [12], an algo-
rithm is highlighted as a controller via selecting the lowest (best)
rank as the control algorithm. Then, a set of post hoc procedures
[11,18,16,19,17,34] are applied to mark the significantly different
algorithm. This operation returns an n � m matrix, and, here, n is
the number of algorithms except the highlighted one and m is
the number of post hoc procedures. Each post hoc method returns
a set of p-values for the control algorithm versus the rest which
enables us to decide which algorithms are significantly different
6

than the highlighted algorithm by checking whether p-values < a
(level of significance: 0.05). The results are shown in 2.

The first thing that catches your eye in the table is that Diploid
algorithms are more successful at q ¼ 1:0 point, except in cyclic
with noisy environments. This is because the system is oscillating
and the Bayesian decision-making stage is called more in Multi-
ploid algorithms than Diploid algorithms, and consequently it
affects the phenotype representation more. Therefore, Diploid
algorithms are more likely to revert to the previous environment
while in the oscillating state. As proof of this, when we look at
the results for cyclic with noise environments, it can be seen that
the Bayesian decision-making stage is more invoked in Multiploid
algorithms and corrects genes distorted by noise better than
Diploid algorithms.



Fig. 5. Offline performances of the ERGA and BMGA on DKP-100 under random, cyclic and cyclic with noise environments with s ¼ 20 and 40 and q ¼ 0:1;0:2;0:5 and 1:0.

Table 2
Non-parametric statistical test results.

Friedman DKP 100 DKP 250 DKP 500

Cyclic, q ) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0

s = 20 BIMGA BMGA BRoIMGA BDGA BIMGA BIMGA BMGA BDGA BIMGA BMGA BMGA BDGA
BRIMGA BIMGA BMGA BIDGA BMGA BIDGA BIDGA

s = 40 BIDGA BMGA BRoIMGA BDGA BIMGA BIMGA BRoIMGA BRIDGA BIMGA BIMGA BMGA BRIDGA
BRIMGA BRIMGA BMGA BIDGA BRIMGA BRIMGA BMGA BRIMGA BRIMGA BRoIMGA

Cyclic w/n, q ) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
s = 20 BIMGA BRoIMGA BMGA BRIMGA BIMGA BIMGA BRoIMGA BIMGA BRIMGA BIMGA BRoIMGA BIMGA

BRIMGA BMGA BDGA BIMGA BRIMGA BMGA BMGA BRIMGA BMGA BMGA BMGA
s = 40 BMGA BRoIMGA BMGA BMGA BIMGA BRIMGA BMGA BIMGA BIMGA BRIMGA BRIMGA BRIMGA

BRIMGA BMGA BRoIMGA BRIMGA BRIMGA BRIMGA BRIMGA BRIMGA BIMGA
Random, q ) 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0 0.1 0.2 0.5 1.0
s = 20 BIMGA BIMGA BMGA BDGA BIMGA BIMGA BMGA BDGA BIMGA BIMGA BMGA BDGA

BRIMGA BRIMGA BRoIMGA BIDGA BRIMGA BRoIMGA BIDGA BRoIMGA BIDGA
s = 40 BRIMGA BRIMGA BMGA BRIDGA BMGA BMGA BMGA BRIDGA BRIMGA BIMGA BRIMGA BRIDGA

BRoIMGA BIMGA BRIMGA BRIMGA BIMGA BRIMGA

E. Gazioğlu and A.Sima Etaner-Uyar Engineering Science and Technology, an International Journal xxx (xxxx) xxx
6. Result and Discussion

To see the effectiveness of the mechanisms implemented, we
created eight variants of the algorithm by switching on and off
these particular mechanisms, namely, random immigrant scheme
(on/off), Bayesian immigrant scheme (on/off), diploid or
multiploid.

With these eight variants, three DKPs with 100, 250, and 500
items are solved. To observe the performances of the algorithms,
a dynamic environment generator is used. By observing the test
results, several conclusions can be drawn.
7

First, the proposed algorithm’s structure improved simple
GA’s performance for dynamic environments. Second, GAs
with RI perform better than the GAs with Bayesian Immi-
grant ones in most cases, since Bayesian Immigrant causes
local optima.

After comparing these eight variants to each other, one of them
is (BMGA) selected by its performance, for comparing to a GA-
based algorithm (ERGA) proposed by a recent study by solving
the DKP-100 problem [33]. Results show that BMGA has a huge
advantage over the ERGA. Further, knowing that the ERGA’s perfor-
mance is better than other well-known state-of-the-art algorithms
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(RIGA, EIGA, HIGA, MIGA, MEGA, MRIGA, MSGA), it is easy to
understand that BMGA is a good choice to solve DOPs.

7. Conclusion and Future Works

In this paper, a GA-based optimization algorithm is developed
for dynamic environments. First, multiploid representation is
introduced into GA to get an implicit memory scheme: In the pro-
posed algorithm, each candidate solution has four genotypes and
one phenotype. Thus, we can reuse old but good solutions. For
comparison, also a diploid version of the algorithm is imple-
mented. Second, a well-known EDA member, the BOA is embedded
into the structure to exploit interactions between variables (mem-
bers of the candidate solutions) by constructing a BN. This BN is
used for two purposes: (i): Determining phenotype values of the
candidate solutions according to their corresponding genotype val-
ues, and, (ii): sampling new candidate solutions as a whole for
introducing the Bayesian Immigrant scheme. Last, a random immi-
grant scheme is implemented to maintain diversity.

Since the proposed method works only on the binary represen-
tation domain, in future work, we plan to inject the Real-Coded
BOA [1] into the proposed method for real-coded and integer rep-
resentations (which are the limitations of the proposed method) in
order to solve any other DOPs, such as Dynamic Graph Coloring
Problem [3] and/or continuous optimization problems [45,14].
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