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Abstract. In this paper, we examine timelike loxodromes on three kinds of

Lorentzian helicoidal surfaces in Minkowski n–space. First, we obtain the first

order ordinary differential equations which determine timelike loxodromes on
the Lorentzian helicoidal surfaces in En

1 according to the causal characters of

their meridian curves. Then, by finding general solutions, we get the explicit

parametrizations of such timelike loxodromes. In particular, we investigate the
timelike loxodromes on the three kinds of Lorentzian right helicoidal surfaces

in En
1 . Finally, we give an example to visualize the results.

1. Introduction

Loxodromes, which are also known as rhumb lines, are curves that make constant
angles with the meridians on the Earth’s surface. Geodesics which minimize the
distance between two points on Earth’s surface, are different from than loxodromes
on Earth’s surface, [26]. Only the equator and the meridians are both constant
course angle and length minimizing. Since loxodromes give an efficient routing
from one position to another by means of a constant course angle, they are still
primarily used in navigation. For details, we refer to [1,2,25,27]. Since the Earth’s
surface can be thought as a Riemannian sphere, the notion of loxodromes can be
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broaden to an arbitrary surface of revolution, where meridians are copies of the
profile curve.

In early of 20th century, C. A. Noble [21] studied the loxodrome on the surface
of revolution in E3 and he also showed that the loxodrome on sphereoid projects
stereographically into the same spiral as the loxodrome on the sphere which is
tangent to the sphereoid along equator. Then, S. Kos et al. [19] and M. Petrović [23]
got the differential equations related to the loxodromes on a sphere and a sphereoid
and determined the length of such loxodromes, respectively.

Later, the topic of loxodromes has been studied on the rotational surfaces in
Minkowski space which is important in general relativity. In 3–dimensional Minkowski
space, there are three types of rotational surfaces with respect to the casual char-
acters of rotation axes and the concept of angle to define loxodromes is not similar
to Riemannian case. Therefore, the results in the Minkowski space are richer than
the Euclidean space. The authors determined the parametrizations of spacelike and
timelike loxodromes on rotational surfaces in E3

1 which have either spacelike merid-
ians or timelike meridians in [3] and [4], respectively. For 4–dimensional Minkowski
space, there are three types of rotation with 2–dimensional axes such as elliptic,
hyperbolic and parabolic rotation leaving a Riemannian plane, a Lorentzian plane
or a degenerate plane pointwise fixed, respectively. Then, M. Babaarslan and M.
Gümüş found the explicit parametrizations of loxodromes on such rotational sur-
faces of E4

1 in [10].
Helicoidal surfaces are the natural generalizations of rotational surfaces and they

play important roles in nature, science and engineering, see [17, 18, 22]. Thus, this
generalization leads the studies to the loxodromes on helicoidal surfaces in [5–9].
Recently, M. Babaarslan and N. Sönmez constructed the three kinds of helicoidal
surfaces in E4

1 by using rotation with 2–dimensional axes and translation in E4
1 and

they also obtained the general form of spacelike and timelike loxodromes on such
helicoidal surfaces in [11].

With the motivation from geometry, M. Babaarslan, B. B. Demirci, and R. Genç
extended the notion of the helicoidal surfaces in E4

1 to higher dimensional Minkowski
space and they made characterization of spacelike loxodromes on these helicoidal
surfaces of En

1 in [12]. In this context, this paper is a sequel of the article given
by [12].

In this paper, we study timelike loxodromes on three types of Lorentzian heli-
coidal surfaces in Minkowski n–space En

1 . We find the equations of timelike loxo-
dromes on such helicodial surfaces which have either spacelike meridians or timelike
meridians and then we get the explicit parametrizations of these loxodromes by find-
ing the general solution of the equations. As particular cases, we consider timelike
loxodromes on each Lorentzian right helicoidal surfaces in En

1 . Finally, we give an
illustrative example.
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2. Preliminaries

Let En
s denote the pseudo–Euclidean space of dimension n and index s, i.e.,

Rn = {(x1, x2, ..., xn) | x1, x2, ..., xn ∈ R} equipped with the metric

ds2 =

n−s∑
i=1

dx2
i −

n∑
j=n−s+1

dx2
j . (1)

For s = 1, En
1 is known as the Minkowski space which is inspired by general rela-

tivity.
A vector v in En

1 is called spacelike if ⟨v, v⟩ > 0 or v = 0, timelike if ⟨v, v⟩ < 0,
and lightlike (or null) if ⟨v, v⟩ = 0 and v ̸= 0. The length of a vector v in En

1 is

given by ||v|| =
√
|⟨v, v⟩| and v is said to be an unit vector if ||v|| = 1.

Let α : I ⊂ R −→ En
1 be a smooth regular curve in En

1 , where I is an open
interval. Then, the causal character of α is spacelike, timelike or lightlike if α̇ is
spacelike, timelike or lightlike, respectively, where α̇ = dα/dt.

Let M be a pseudo–Riemannian surface in En
1 given by a local parametrization

x(u, v). Then, the coefficients of the first fundamental form of M are

E = ⟨xu,xu⟩, F = ⟨xu,xv⟩, G = ⟨xv,xv⟩, (2)

where xu and xv denote the partial derivatives of x with respect u and v, respec-
tively. Thus, the induced metric g of M in En

1 is given by

g = Edu2 + 2Fdudv +Gdv2. (3)

Also, a pseudo–Riemannian surface M in En
1 is called a spacelike surface or a

timelike surface if and only if EG− F 2 > 0 or EG− F 2 < 0, respectively. For the
case EG − F 2 = 0, a pseudo–Riemannian surface M is called a lightlike surface.
Throughout this work, we will assume that the surface is nondegenerate.

The length of the curve α on the pseudo–Riemannian surface M between two
points u0 and u1 in En

1 is given by

L =

∫ u1

u0

√√√√∣∣∣∣∣E + 2F
dv

du
+G

(
dv

du

)2
∣∣∣∣∣du. (4)

For later use, we give the following definition of Lorentzian angle in En
1 by using [24].

Definition 1. Let x and y be vectors in En
1 . Then, we have the following state-

ments:

i. for a spacelike vector x and a timelike vector y, there is a unique nonnega-
tive real number θ such that

⟨x, y⟩ = ±||x||||y|| sinh θ. (5)

The number θ is called Lorentzian timelike angle between x and y.
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ii. for timelike vectors x and y, there is a unique nonnegative real number θ
such that

⟨x, y⟩ = ||x||||y|| cosh θ. (6)

The number θ is called Lorentzian timelike angle between x and y. Note
that θ = 0 if and only if x and y are positive scalar multiples of each other.

By using [12], the definition of the helicoidal surfaces in En
1 can be given as

follows.
Let β : I ⊂ R −→ Π ⊂ En

1 be a smooth curve in a hyperplane Π ⊂ En
1 , P be a

(n− 2)-plane in the hyperplane Π ⊂ En
1 and ℓ be a line parallel to P . A helicoidal

surface in En
1 is defined as a rotation of the curve β around P with a translation

along the line ℓ. Here, the speed of translation is proportional to the speed of this
rotation. Thus, there are three types of helicoidal surfaces in En

1 as follows:

2.1. Helicoidal surface of type I. Let {e1, e2, ..., en} be a standard orthonormal
basis for En

1 . Then, we choose a Lorentzian (n − 2)–subspace P1 generated by
{e3, e4, ..., en}, Π1 a hyperplane generated by {e1, e3, ..., en} and a line ℓ1 generated
by en. Assume that β1 : I −→ Π1 ⊂ En

1 , β1(u) = (x1(u), 0, x3(u), ..., xn(u)), is
a smooth regular curve lying in Π1 defined on an open interval I ⊂ R and u is
arc length parameter, that is, x′2

1 (u) + x′2
3 (u) + ... − x′2

n (u) = ε with ε = ±1. For
0 ≤ v < 2π and a positive constant c, we consider the surface M1

H1(u, v) = (x1(u) cos v, x1(u) sin v, x3(u), ..., xn−1(u), xn(u) + cv) (7)

which is the parametrization of the helicoidal surface obtained the rotation of the
curve β1 that leaves the Lorentzian subspace P1 pointwise fixed followed by the
translation along ℓ1. The surface M1 in En

1 is called a helicoidal surface of type I.
Also, the surface M1 is called a right helicoidal surface of type I in En

1 if xn is a
constant function.

2.2. Helicoidal surface of type II. Let {e1, e2, ..., en} be a standard orthonor-
mal basis for En

1 . Then, we choose a Riemannian (n−2)–subspace P2 generated by
{e1, e2, ..., en−2}, Π2 a hyperplane generated by {e1, ..., en−2, en} and a line ℓ2 gener-
ated by e1. Assume that β2 : I −→ Π2 ⊂ En

1 , β2(u) = (x1(u), ..., xn−2(u), 0, xn(u)),
is a smooth regular curve lying in Π2 defined on an open interval I ⊂ R and u is
an arc length parameter, that is, x′2

1 (u) + x′2
2 (u) + ...− x′2

n (u) = ε for ε = ±1. For
v ∈ R and a positive constant c, we consider the surface M2

H2(u, v) = (x1(u) + cv, x2(u), ..., xn−2(u), xn(u) sinh v, xn(u) cosh v) (8)

which is the parametrization of the helicoidal surface obtained the rotation of the
curve β2 which leaves Riemannian subspace P2 pointwise fixed followed by the
translation along ℓ2. The surface M2 in En

1 is called a helicoidal surface of type II.
Also, the surface M2 is called a right helicoidal surface of type II in En

1 if x1 is a
constant function.
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2.3. Helicoidal surface of type III. Let define a pseudo–orthonormal basis
{e1, e2, ..., ξn−1, ξn} for En

1 using a standard orthonormal basis {e1, e2, ..., en−1, en}
for En

1 such that

ξn−1 =
1√
2
(en − en−1) and ξn =

1√
2
(en + en−1), (9)

where ⟨ξn−1, ξn−1⟩ = ⟨ξn, ξn⟩ = 0 and ⟨ξn−1, ξn⟩ = −1. Then, we choose a degen-
erate (n − 2)–subspace P3 generated by {e1, e3, ..., ξn−1}, Π3 a hyperplane gener-
ated by {e1, e3, ..., en−2, ξn−1, ξn} and a line ℓ3 generated by ξn−1. Assume that
β3 : I −→ Π3 ⊂ En

1 , β3(u) = x1(u)e1 + x3(u)e3 + ...+ xn−1(u)ξn−1 + xn(u)ξn, is a
smooth curve lying in Π3 defined on an open interval I ⊂ R and u is an arc length
parameter, that is, x′2

1 (u) + x′2
3 (u) + ...− 2x′

n−1(u)x
′
n(u) = ε for ε = ±1. Then, we

consider the surface M3

H3(u, v) =x1(u)e1 +
√
2vxn(u)e2 + x3(u)e3 + ...+ xn−2(u)en−2

+ (xn−1(u) + v2xn(u) + cv)ξn−1 + xn(u)ξn
(10)

which is the parametrization of the helicoidal surface obtained a rotation of the
curve β3 which leaves the degenerate subspace P3 pointwise fixed followed by the
translation along ℓ3. The surface M3 in En

1 is called the helicoidal surface of type
III. If xn is a constant function, then the helicoidal surface M3 is called a right
helicoidal surface of type III in En

1 .

Remark 1. It can be easily seen that the helicoidal surfaces M1–M3 in En
1 defined

by (7), (8) and (10) reduce to the rotational surfaces in En
1 for c = 0.

3. Timelike Loxodrome on Timelike Helicoidal Surface of Type I in
En
1

In this section, we determine the parametrization of timelike loxodrome on the
timelike helicoidal surface of type I in En

1 defined by (7).
Consider the timelike helicoidal surface of type I, M1, in En

1 given by (7). From a
simple calculation, the induced metric g1 on M1 is defined by

g1 = εdu2 − 2cx′
n(u)dudv + (x2

1(u)− c2)dv2. (11)

Since M1 is a timelike surface in En
1 , we have εx2

1(u)− c2(ε+ x′2
n (u)) < 0. Assume

that α1(t) = H1(u(t), v(t)) is a timelike loxodrome on M1 in En
1 , that is, α1(t)

intersects the meridian m1(u) = H1(u, v0) for a constant v0 with a constant angle
ϕ0 at the point p ∈ M1. Then, we have

⟨α̇1(t), (m1)u⟩ = ε
du

dt
− cx′

n(u)
dv

dt
, (12)

ε

(
du

dt

)2

− 2cx′
n(u)

du

dt

dv

dt
+ (x2

1(u)− c2)

(
dv

dt

)2

< 0. (13)

In this context, there are two following cases occur with respect to the causal
character of the meridian curve m1(u).
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Case i. M1 has a spacelike meridian curve m1(u), that is, ε = 1. Using the
equations (12) and (13) in (5), we get

sinhϕ0 = ±
du
dt − cx′

n(u)
dv
dt√

−
(
du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − (x2

1(u)− c2)
(
dv
dt

)2 . (14)

Case ii. M1 has a timelike meridian curve m1(u), that is, ε = −1. Using the
equations (12) and (13) in (6), we obtain

coshϕ0 = −
du
dt + cx′

n(u)
dv
dt√(

du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − (x2

1(u)− c2)
(
dv
dt

)2 . (15)

After a simple calculation in equations (14) and (15), we get the following lemma.

Lemma 1. Let M1 be a timelike helicoidal surface of type I in En
1 defined by (7).

Then, α1(t) = H1(u(t), v(t)) is a timelike loxodrome with u̇ ̸= 0 if and only if one
of the following differential equations is satisfied:

(i.) for having a spacelike meridian,

(sinh2 ϕ0(x
2
1(u)− c2) + c2x′2

n (u))v̇
2 − 2c cosh2 ϕ0x

′
n(u)u̇v̇ + cosh2 ϕ0u̇

2 = 0, (16)

(ii.) for having a timelike meridian,

(cosh2 ϕ0(x
2
1(u)− c2) + c2x′2

n (u))v̇
2 − 2c sinh2 ϕ0x

′
n(u)u̇v̇ − sinh2 ϕ0u̇

2 = 0, (17)

where ϕ0 is a nonnegative constant.

Theorem 1. A timelike loxodrome on a timelike helicoidal surface of type I in En
1

defined by (7) is parametrized by α1(u) = H1(u, v(u)), where v(u) is given by one
of the following functions:

(i.) v(u) = ± 1

2 sinhϕ0

∫ u

u0

dξ√
c2 − x2

1(ξ)
,

(ii.) v(u) = ± 1

2 coshϕ0

∫ u

u0

dξ√
c2 − x2

1(ξ)
,

(iii.) for sinh2 ϕ0(x
2
1(ξ)− c2) + c2x′2

n (ξ) ̸= 0,

v(u) =

∫ u

u0

2c cosh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(c

2(x′2
n (ξ) + 1)− x2

1(ξ))

2 sinh2 ϕ0(x
2
1(ξ)− c2) + 2c2x′2

n (ξ)
dξ,

(iv.) for cosh2 ϕ0(x
2
1(ξ)− c2) + c2x′2

n (ξ) ̸= 0,

v(u) =

∫ u

u0

2c sinh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(c

2(x′2
n (ξ)− 1) + x2

1(ξ))

2 cosh2 ϕ0(x
2
1(ξ)− c2) + 2c2x′2

n (ξ)
dξ,

where ϕ0 is a nonnegative constant and c > 0 is a constant.

Proof. Assume that M1 is a timelike helicoidal surface in En
1 defined by (7) and

α1(t) = H1(u(t), v(t)) is a timelike loxodrome on M1 in En
1 . From Lemma 1, we

have the equations (16) and (17).
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For a spacelike meridian, the equation (16) implies

(sinh2 ϕ0(x
2
1(u)−c2)+c2x′2

n (u))

(
dv

du

)2

−2c cosh2 ϕ0x
′
n(u)

dv

du
+cosh2 ϕ0 = 0. (18)

If sinh2 ϕ0(x
2
1(u)− c2) + c2x′2

n (u) = 0, then the equation (18) becomes

2c cosh2 ϕ0x
′
n(u)

dv

du
− cosh2 ϕ0 = 0 (19)

whose the solution is v(u) = 1
2c

∫ u

u0

dξ
x′
n(ξ)

. On the other side, sinh2 ϕ0(x
2
1(u)− c2) +

c2x′2
n (u) = 0 implies x′

n(u) = ± sinhϕ0

c

√
c2 − x2

1(u) for ϕ0 ̸= 0. Thus, we get the

desired equation in (i). Also, we note that c2 − x2
1(u) > 0 due the fact that M1 is

a timelike surface in En
1 .

If sinh2 ϕ0(x
2
1(u)− c2)+ c2x′2

n (u) ̸= 0, it can be easily obtained that the solution
v(u) of the differential equation (18) is given by the integral in (iii).

Similarly, for a timelike meridian, the equation (17) implies

(cosh2 ϕ0(x
2
1(u)−c2)+c2x′2

n (u))

(
dv

du

)2

−2c sinh2 ϕ0x
′
n(u)

dv

du
− sinh2 ϕ0 = 0. (20)

If cosh2 ϕ0(x
2
1(u) − c2) + c2x′2

n (u) = 0, the equation (20) reduces to the following
equation

2c sinh2 ϕ0x
′
n(u)

dv

du
+ sinh2 ϕ0 = 0 (21)

whose the solution is v(u) = − 1
2c

∫ u

u0

dξ
x′
n(ξ)

for a nonzero constant ϕ0. Since x
′
n(u) =

± coshϕ0

c

√
c2 − x2

1(u), we get the desired equation in (ii). Also, we note that c2 −
x2
1(u) > 0 due the fact that M1 is a timelike surface in En

1 . If cosh2 ϕ0(x
2
1(u) −

c2)+ c2x′2
n (u) ̸= 0, the solution v(u) of the differential equation (20) is given by the

integral in (iv). Thus, we get the parametrization of the loxodrome with respect
to u parameter such that α1(u) = H1(u, v(u)), where v(u) is defined by one of the
integrals in (i)-(iv). □

Now, we consider a timelike right helicoidal surface of type I in En
1 , denoted by

MR
1 , that is,

HR
1 (u, v) = (x1(u) cos v, x1(u) sin v, x3(u), . . . , xn−1(u), xn0

+ cv), (22)

where c ̸= 0 and xn0
are constants. Then, from the equation in (iii) of Theorem 1,

we give the following corollary.

Corollary 1. A timelike loxodrome on a timelike right helicoidal surface of type I
in En

1 defined by (22) is parametrized by αR
1 (u) = HR

1 (u, v(u)) where v(u) is given
by

v(u) = ± cothϕ0

∫ u

u0

dξ√
c2 − x2

1(ξ)
(23)

for constant ϕ0 > 0.
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Using the equation (4) and Corollary 1, we give the following statement:

Corollary 2. The length of a timelike loxodrome on a timelike right helicoidal
surface of type I in En

1 defined by (22) between two points u0 and u1 is given by

L =

∣∣∣∣u1 − u0

sinhϕ0

∣∣∣∣ ,
for constant ϕ0 > 0.

4. Timelike Loxodrome on Timelike Helicoidal Surface of Type II in
En
1

In this section, we determine the parametrization of timelike loxodrome on the
timelike helicoidal surface of type II in En

1 defined by (8).
Consider the timelike helicoidal surface of type II, M2, in En

1 given by (8). From
a simple calculation, the induced metric g2 on M2 is defined by

g2 = εdu2 + 2cx′
1(u)dudv + (c2 + x2

n(u))dv
2. (24)

Since M2 is a timelike surface in En
1 , we have c2(ε− x′2

1 (u)) + εx2
n(u) < 0. Assume

that α2(t) = H2(u(t), v(t)) is a timelike loxodrome on M2 in En
1 , that is, α2(t)

intersects the meridian m2(u) = H2(u, v0) for a constant v0 with a constant angle
ϕ0 at the point p ∈ M2. Then, we have

⟨α̇2(t), (m2)u⟩ = ε
du

dt
+ cx′

1(u)
dv

dt
, (25)

ε

(
du

dt

)2

+ 2cx′
1(u)

du

dt

dv

dt
+ (c2 + x2

n(u))

(
dv

dt

)2

< 0. (26)

In this context, there are two following cases occur with respect to the causal
character of the meridian curve m2(u).
Case i. M2 has a spacelike meridian curve m2(u), that is, ε = 1. Using the
equations (25) and (26) in (5), we get

sinhϕ0 = ±
du
dt + cx′

1(u)
dv
dt√

−
(
du
dt

)2 − 2cx′
1(u)

du
dt

dv
dt − (c2 + x2

n(u))
(
dv
dt

)2 . (27)

Case ii. M2 has a timelike meridian curve m2(u), that is, ε = −1. Using the
equations (25) and (26) in (6), we obtain

coshϕ0 =
−du

dt + cx′
1(u)

dv
dt√(

du
dt

)2 − 2cx′
1(u)

du
dt

dv
dt − (c2 + x2

n(u))
(
dv
dt

)2 . (28)

After a simple calculation in equations (27) and (28), we get the following lemma.

Lemma 2. Let M2 be a timelike helicoidal surface of type II in En
1 defined by (8).

Then, α2(t) = H2(u(t), v(t)) is a timelike loxodrome with u̇ ̸= 0 if and only if one
of the following differential equations is satisfied:
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(i.) for having a spacelike meridian,

(sinh2 ϕ0(x
2
n(u) + c2) + c2x′2

1 (u))v̇
2 + 2c cosh2 ϕ0x

′
1(u)u̇v̇ + cosh2 ϕ0u̇

2 = 0, (29)

(ii.) for having a timelike meridian,

(cosh2 ϕ0(x
2
n(u) + c2) + c2x′2

1 (u))v̇
2 + 2c sinh2 ϕ0x

′
1(u)u̇v̇ − sinh2 ϕ0u̇

2 = 0, (30)

where ϕ0 is a nonnegative constant.

Theorem 2. A timelike loxodrome on a timelike helicoidal surface of type II in En
1

defined by (8) is parametrized by α2(u) = H2(u, v(u)), where v(u) is given by one
of the following functions:

(i.) v(u) =

∫ u

u0

−2c cosh2 ϕ0x
′
1(ξ)±

√
sinh2 (2ϕ0)(c

2(x′2
1 (ξ)− 1)− x2

n(ξ))

2 sinh2 ϕ0(x
2
n(ξ) + c2) + 2c2x′2

1 (ξ)
dξ,

(ii.) v(u) =

∫ u

u0

−2c sinh2 ϕ0x
′
1(ξ)±

√
sinh2 (2ϕ0)(x

2
n(ξ) + c2(x′2

1 (ξ) + 1))

2 cosh2 ϕ0(x
2
n(ξ) + c2) + 2c2x′2

1 (ξ)
dξ,

where ϕ0 is a nonnegative constant.

Proof. Assume that M2 is a timelike helicoidal surface in En
1 defined by (8) and

α2(t) = H2(u(t), v(t)) is a timelike loxodrome on M2 in En
1 . From Lemma 2, we

have the equations (29) and (30).
For a spacelike meridian, the equation (29) implies

(sinh2 ϕ0(x
2
n(u)+c2)+c2x′2

1 (u))

(
dv

du

)2

+2c cosh2 ϕ0x
′
1(u)

dv

du
+cosh2 ϕ0 = 0. (31)

Since sinh2 ϕ0(x
2
n(u)+c2)+c2x′2

1 (u) ̸= 0 for all u ∈ I ⊂ R, it can be easily obtained
that the solution v(u) of the differential equation (31) is given by the integral in
(i).

Similarly, for a timelike meridian, the equation (30) implies

(cosh2 ϕ0(x
2
n(u)+c2)+c2x′2

1 (u))

(
dv

du

)2

+2c sinh2 ϕ0x
′
1(u)

dv

du
− sinh2 ϕ0 = 0. (32)

Due to cosh2 ϕ0(x
2
n(u) + c2) + c2x′2

1 (u) ̸= 0, the solution v(u) of the differential
equation (32) is given by the integral in (ii). Thus, we get a parametrization of the
loxodrome with respect to u parameter such that α2(u) = H2(u, v(u)), where v(u)
is defined by one of the integrals in (i) and (ii). □

Now, we consider a timelike right helicoidal surface of type II in En
1 denoted by

MR
2 , that is,

HR
2 (u, v) = (x10 + cv, x2(u), . . . , xn−2(u), xn(u) sinh v, xn(u) cosh v), (33)

where c ̸= 0 and x10 are constants. Since MR
2 is a timelike surface in En

1 , we have
ε(c2 + x2

n(u)) < 0. This inequality can be only satisfied when ε = −1. Thus,
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the meridian curve of MR
2 must be timelike. Then, from the equations in (ii) of

Theorem 2, we give the following corollary.

Corollary 3. A timelike loxodrome on a timelike right helicoidal surface of type II
in En

1 defined by (33) is parametrized by αR
2 (u) = HR

2 (u, v(u)), where v(u) is given
by

v(u) = ± tanhϕ0

∫ u

u0

dξ√
x2
n(ξ) + c2

(34)

and c, ϕ0 > 0 are constants.

Using the equation (4) and Corollary 3, we give the following statement:

Corollary 4. The length of a timelike loxodrome on a timelike right helicoidal
surface of type II in En

1 defined by (33) between two points u0 and u1 is given by

L =

∣∣∣∣u1 − u0

coshϕ0

∣∣∣∣ , (35)

where ϕ0 is a nonnegative constant.

5. Timelike Loxodrome on Timelike Helicoidal Surface of Type III in
En
1

In this section, we determine the parametrization of timelike loxodrome on the
timelike helicoidal surface of type III in En

1 defined by (10).
Consider the timelike helicoidal surface of type III, M3, in En

1 given by (10). The
induced metric g3 on M3 is defined by

g3 = εdu2 − 2cx′
n(u)dudv + 2x2

n(u)dv
2. (36)

Since M3 is a timelike surface in En
1 , we have 2εx2

n(u)− c2x′2
n (u) < 0. Assume that

α3(t) = H3(u(t), v(t)) is a timelike loxodrome on M3 in En
1 , that is, α3(t) intersects

the meridian m3(u) = H3(u, v0) for a constant v0 with a constant angle ϕ0 at the
point p ∈ M3. Then, we have

⟨α̇3(t), (m3)u⟩ = ε
du

dt
− cx′

n(u)
dv

dt
, (37)

ε

(
du

dt

)2

− 2cx′
n(u)

du

dt

dv

dt
+ 2x2

n(u)

(
dv

dt

)2

< 0. (38)

In this context, there are two following cases occur with respect to the causal
character of the meridian curve m3(u).
Case i. M3 has a spacelike meridian curve m3(u), that is, ε = 1. Using the
equations (37) and (38) in (5), we get

sinhϕ0 = ±
du
dt − cx′

n(u)
dv
dt√

−
(
du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − 2x2

n(u)
(
dv
dt

)2 . (39)
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Case ii. M3 has a timelike meridian curve m3(u), that is, ε = −1. Using the
equations (37) and (38) in (6), we obtain

coshϕ0 = −
du
dt + cx′

n(u)
dv
dt√(

du
dt

)2
+ 2cx′

n(u)
du
dt

dv
dt − 2x2

n(u)
(
dv
dt

)2 . (40)

After a simple calculation in the equations (39) and (40), we get the following
lemma.

Lemma 3. Let M3 be a timelike helicoidal surface of type III in En
1 defined by (10).

Then, α3(t) = H3(u(t), v(t)) is a timelike loxodrome with u̇ ̸= 0 if and only if one
of the following differential equations is satisfied:

(i.) for having a spacelike meridian,

(2 sinh2 ϕ0x
2
n(u) + c2x′2

n (u))v̇
2 − 2c cosh2 ϕ0x

′
n(u)u̇v̇ + cosh2 ϕ0u̇

2 = 0, (41)

(ii.) for having a timelike meridian,

(2 cosh2 ϕ0x
2
n(u) + c2x′2

n (u))v̇
2 − 2c sinh2 ϕ0x

′
n(u)u̇v̇ − sinh2 ϕ0u̇

2 = 0, (42)

where ϕ0 is a nonnegative constant.

Theorem 3. A timelike loxodrome on a timelike helicoidal surface of type III in
En
1 defined by (10) is parametrized by α3(u) = H3(u, v(u)), where v(u) is given by

one of the following functions:

(i.) v(u) =

∫ u

u0

2c cosh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(c

2x′2
n (ξ)− 2x2

n(ξ))

4 sinh2 ϕ0x
2
n(ξ) + 2c2x′2

n (ξ)
dξ,

(ii.) v(u) =

∫ u

u0

2c sinh2 ϕ0x
′
n(ξ)±

√
sinh2 (2ϕ0)(2x

2
n(ξ) + c2x′2

n (ξ))

4 cosh2 ϕ0x
2
n(ξ) + 2c2x′2

n (ξ)
dξ,

where ϕ0 is a nonnegative constant.

Proof. Assume that M3 is a timelike helicoidal surface in En
1 defined by (10) and

α3(t) = H3(u(t), v(t)) is a timelike loxodrome on M3 in En
1 . From Lemma 3, we

have the equations (41) and (42).
For a spacelike meridian, the equation (41) implies

(2 sinh2 ϕ0x
2
n(u) + c2x′2

n (u))

(
dv

du

)2

− 2c cosh2 ϕ0x
′
n(u)

dv

du
+ cosh2 ϕ0 = 0. (43)

Since 2 sinh2 ϕ0x
2
n(u) + c2x′2

n (u) ̸= 0 for all u ∈ I ⊂ R, it can be easily obtained
that the solution v(u) of the differential equation (43) is given by the integral in
(i).

Similarly, for a timelike meridian, the equation (42) implies

(2 cosh2 ϕ0x
2
n(u) + c2x′2

n (u))

(
dv

du

)2

− 2c sinh2 ϕ0x
′
n(u)

dv

du
− sinh2 ϕ0 = 0. (44)
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Due to 2 cosh2 ϕ0x
2
n(u)+ c2x′2

n (u) ̸= 0, the solution v(u) of the differential equation
(44) is given by the integral in (ii). Thus, we get the parametrization of the lox-
odrome with respect to u parameter such that α3(u) = H3(u, v(u)), where v(u) is
defined by one of the integrals in (i) and (ii). □

Note that the timelike right helicoidal surface of type III with the timelike merid-
ian does not exist.

6. Visualization

In this section, we give an example to visualize our main results.

Example 1. We consider the following spacelike profile curve:

β1(u) = (x1(u), 0, x3(u), ..., xn(u)).

Then, we have the following parametrization of timelike helicoidal surface M1:

H1(u, v) = (x1(u) cos v, x1(u) sin v, x3(u), ..., xn−1(u), xn(u) + cv).

By using (i) of Theorem 1, we have v(u) = ± 1
2 sinhϕ0

∫ u

u0

dξ√
c2−x2

1(ξ)
. If we choose

x1(ξ) = ck sin ξ for 0 < k < 1, then v(u) = ± 1
2c sinhϕ0

∫ u

u0

dξ√
1−k2 sin2 ξ

= ± 1
2c sinhϕ0

F (u, k),

where F (u, k) is an elliptic integral of first kind (see [13]). Then, the parametriza-
tion of timelike loxodrome on timelike helicoidal surface M1 in Minkowski n–space
is given by

α1(u) = (x1(u) cos v(u), x1(u) sin v(u), x3(u), ..., xn−1(u), xn(u) + cv(u)),

where v(u) = ± 1
2c sinhϕ0

F (u, k) for 0 < k < 1.

7. Conclusion

Loxodromes on various surfaces and hypersurfaces in different ambient spaces
have been studied and many significant results have been obtained, see [3, 14–16,
20,21,28]. In this paper, we investigate the timelike loxodromes on Lorentzian he-
licoidal surfaces in Minkowski n–space which were constructed in [12], called type
I, type II and type III. For this reason, we get the first order ordinary differential
equations which determine the parametrizations of the timelike loxodromes on such
helicoidal surfaces. Solving these equations, we obtain the explicit parametrizations
of the such loxodromes parametrized by the parameter of the profile curves of the
helicoidal surfaces. It is known that a particular case of helicoidal surfaces is right
helicoidal surfaces. We observe that the Lorentzian right helicoidal surfaces appear
only for the Lorentzian helicoidal surfaces of type I having spacelike meridians and
the Lorentzian helicoidal surfaces of type II having timelike meridians. Hence, we
look the parametrizations for timelike loxodromes on which the Lorentzian right
helicoidal of En

1 exist. Moreover, we find the lengths of such loxodromes which
just depend on the points and the angle between the loxodromes and the meridians
of the surfaces. Finally, we give a theoretical example to give the concept of the
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loxodromes. In [11], the graphical examples of the loxodromes can be found for the
4–dimensional Minkowski space. Hence, our results in this paper and [12] can be
used as finding the parametrizations of spacelike and timelike loxodromes on the
nondegenerate helicoidal surfaces in the Minkowski space with the higher dimension
than four.
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