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ABELIAN MODULES

N. AGAYEV, G. GÜNGÖROĞLU, A. HARMANCI and S. HALICIOĞLU

Abstract. In this note, we introduce abelian modules as a generalization of abelian

rings. Let R be an arbitrary ring with identity. A module M is called abelian if,

for any m ∈ M and any a ∈ R, any idempotent e ∈ R, mae = mea. We prove that
every reduced module, every symmetric module, every semicommutative module

and every Armendariz module is abelian. For an abelian ring R, we show that the

module MR is abelian iff M [x]R[x] is abelian. We produce an example to show that

M [x, α] need not be abelian for an abelian module M and an endomorphism α of
the ring R. We also prove that if the module M is abelian, then M is p.p.-module

iff M [x] is p.p.-module, M is Baer module iff M [x] is Baer module, M is p.q.-Baer

module iff M [x] is p.q.-Baer module.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1, and modules
will be unitary right R-modules.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. A
module M is called reduced if, for any m ∈ M and any a ∈ R, ma = 0 implies
mR∩Ma = 0. Let e be an idempotent in R. Lee and Zhou extending the notions
of Baer rings, quasi-Baer rings and p.p.-rings to modules: A module M is called
Baer if, for any subset X of M , rR(X) = eR, and M is called quasi-Baer if, for
any submodule X ⊆ M , rR(X) = eR, and M is called p.p.-module if, for any
m ∈ M , rR(m) = eR (see, namely [5]). In this note we call M is a p.q.-Baer if,
for any m ∈ M , rR(mR) = eR. We write R[x], R[[x]], R[x, x−1] and R[[x, x−1]]
for the polynomial ring, the power series ring, the Laurent polynomial ring and
the Laurent power series ring over R, respectively.

In [5], Lee and Zhou introduced those notions and the following notations. For
a module M , we consider

M [x] =

{
s∑

i=0

mix
i : s ≥ 0,mi ∈ M

}
,
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M [[x]] =

{ ∞∑
i=0

mix
i : mi ∈ M

}
,

M [x, x−1] =

{
t∑

i=−s

mix
i : s ≥ 0, t ≥ 0, mi ∈ M

}
,

M [[x, x−1]] =

{ ∞∑
i=−s

mix
i : s ≥ 0, mi ∈ M

}
.

Each of these is an abelian group under an obvious addition operation. Moreover
M [x] becomes a module over R[x] for

m(x) =
s∑

i=0

mix
i ∈ M [x], f(x) =

t∑
i=0

aix
i ∈ R[x]

such that

m(x)f(x) =
s+t∑
k=0

 ∑
i+j=k

miaj

 xk

The modules M [x] and M [[x]] are called the polynomial extension and the power
series extension of M respectively. With a similar scalar product, M [x, x−1] (resp.
M [[x, x−1]]) becomes a module over R[x, x−1] (resp. R[[x, x−1]]). The modules
M [x, x−1] and M [[x, x−1]] are called the Laurent polynomial extension and the
Laurent power series extension of M , respectively.

The module M is called Armendariz if the following condition 1. is satisfied, and
a module M is called Armendariz of power series type if the following condition
2. is satisfied:

1. For any m(x) =
∑n

i=0 mix
i ∈ M [x] and f(x) =

∑s
j=0 ajx

j ∈ R[x],
m(x)f(x) = 0 implies miaj = 0 for all i and j.

2. For any m(x) =
∑∞

i=0 mix
i ∈ M [[x]] and f(x) =

∑∞
j=0 ajx

j ∈ R[[x]],
m(x)f(x) = 0 implies miaj = 0 for all i and j.

The ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies aRb = 0.
A module MR is called semicommutative if, for any m ∈ M and any a ∈ R, ma = 0
implies mRa = 0. Buhphang and Rege in [2] studied basic properties of semicom-
mutative modules. Agayev and Harmanci continued further investigations for
semicommutative rings and modules in [1] and focused on the semicommutativity
of subrings of matrix rings.

2. Abelian Modules

In this section the notion of an abelian module is introduced as a generalization
of abelian rings to modules. We prove that many results of abelian rings can be
extended to modules for this general settings.
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The ring R is called abelian if every idempotent is central, that is ae = ea for
any e2 = e, a ∈ R.

Definition 2.1. A module M is called abelian if, for any m ∈ M and any
a ∈ R, any idempotent e ∈ R, mae = mea.

Lemma 2.2.
1. R is an abelian ring if and only if every R-module is abelian.
2. R is an abelian ring if and only if RR is an abelian module.

Proof. Clear. �

Example 2.3 shows that it is not the case that every R-module is non-abelian
if R is non-abelian ring.

Example 2.3. There are abelian modules MR over a non-abelian rings R.

Proof. Let F be any field. Consider the upper triangle 2 × 2 matrix ring R =(
F F
0 F

)
and the module MR =

(
0 0
0 F

)
. It is easy to check for any m ∈ M and

a, b ∈ R mab = mba. Hence M is an abelian right R-module. Let e =
(

0 1
0 1

)
∈

R. Then e is an idempotent element in R. For a =
(

1 1
0 1

)
∈ R, we have

ae =
(

0 2
0 1

)
and ea =

(
0 1
0 1

)
. Hence the idempotent e is not central. Thus R

is not an abelian ring. �

Proposition 2.4. The class of abelian modules is closed under submodules,
direct products and homomorphic images. Therefore abelian modules are closed
under direct sums.

Proof. Clear from definitions. �

Corollary 2.5. A ring R is abelian if and only if every flat module MR is
abelian.

Proof. It is clear from Proposition 2.4. �

Recall that a module M is called cogenerated by R if it is embedded in a direct
product of copies of R. A module M is faithful if the only a ∈ R such that Ma = 0
is a = 0. Proposition 2.6 is clear from Proposition 2.4.

Proposition 2.6. The following conditions are equivalent:
1. R is an abelian ring.
2. Every cogenerated R-module is abelian.
3. Every submodule of a free R-module is abelian.
4. There exists a faithful abelian R-module.

Lemma 2.7. If the module M is semicommutative, then M is abelian. The
converse holds if M is a p.p.-module.
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Proof. Let e be an idempotent in R and m ∈ M , a ∈ R. Since e is idempotent
and M is semicommutative, we have me(1R−e) = 0 implies that meR(1R−e) = 0.
For any a ∈ R we have mea(1R − e) = 0, that is, mea = meae. On the other
hand, m(1R − e)e = 0 implies that m(1R − e)Re = 0. Then m(1R − e)ae = 0
and so mae = meae. Hence mea = mae. Thus M is abelian. Suppose now
M is an abelian and p.p.-module. Let m ∈ M and a ∈ R with ma = 0. Then
a ∈ r(m) = eR for some e2 = e ∈ R. So me = 0 and a = ea. Hence meR = 0. By
the assumption mRe = 0. Multiplying from the right by a, we have mRea = 0.
Since a = ea, mRa = 0. Thus M is semicommutative. �

Lemma 2.8. If the module M is Armendariz, then M is abelian. The converse
holds if M is a p.p.-module.

Proof. Let m1(x) = me−mer(1−e)x, m2(x) = m(1−e)−m(1−e)rex ∈ M [x]
and f1(x) = 1 − e + er(1 − e)x, f2(x) = e + (1 − e)rex ∈ R[x], where e is an
idempotent in R, m ∈ M and r ∈ R. Then m1(x)f1(x) = 0 and m2(x)f2(x) = 0.
Since M is Armendariz, mer(1− e) = 0 and m(1− e)re = 0. Then

mer = mere = mre.

Suppose now M is an abelian and p.p.-module. For any idempotent e ∈ R, any
a ∈ R and m ∈ M , we have

mea = mae. From Lemma 2.7, M is semicommutative, that is, ma = 0 implies
mRa = 0 for any m ∈ M and a ∈ R. Let m(x) =

∑s
i=0 mix

i ∈ M [x] and
f(x) =

∑t
j=0 ajx

j ∈ R[x]. Assume m(x)f(x) = 0. Then we have

m0a0 = 0(1)

m0a1 + m1a0 = 0(2)

m0a2 + m1a1 + m2a0 = 0(3)
. . .

By hypothesis there exists an idempotent e0 ∈ R such that r(m0) = e0R. Then
(1) implies e0a0 = a0. Multiplying (2) by e0 from the right, we have

0 = m0a1e0 + m1a0e0 = m0e0a1 + m1e0a0 = 0 + m1a0.

It follows that m1a0 = 0. By (2) m0a1 = 0. Let r(m1) = e1R. So e0a1 = a1 and
e1a0 = a0. Multiplying (3) by e0e1 from the right and using

m0Re0 = 0 and m1Re1 = 0 and m2a0e0e1 = m2a0

we have
m2a0 = 0.

Then (3) becomes m0a2 + m1a1 = 0.
Multiplying this equation by e0 from right and using

m0a2e0 = m0e0a2 = 0 and m1a1e0 = m1e0a1 = m1a1

we have
m1a1 = 0.



ABELIAN MODULES 239

From (3) m0a2 = 0. Continuing in this way, we may conclude that miaj = 0 for all
1 ≤ i ≤ s and 1 ≤ j ≤ t. Hence M is Armendariz. This completes the proof. �

Corollary 2.9. If M is an Armendariz module of power series type, then M
is abelian. The converse is true if M is a p.p.-module.

Proof. Similar to the proof of Lemma 2.8. �

The following example shows that, the converse of the first part of Lemma 2.7
and Lemma 2.8 may not be true in general.

Example 2.10. There exists an abelian module that is neither Armendariz
nor semicommutative.

Proof. Let Z be the ring of integers and Z2×2 the 2× 2 full matrix ring over Z,

R =
{(

a b
c d

)
∈ Z2×2 : a ≡ d mod 2, b ≡ c ≡ 0 mod 2

}
and consider M to be the right R-module RR. Since 0 and 1 are only idempo-

tents in R, MR is an abelian module. For
(

0 0
−2 2

)
∈ M and

(
0 2
0 2

)
∈ R, we

have
(

0 0
−2 2

) (
0 2
0 2

)
= 0, but

(
0 0

−2 2

) (
2 4
0 2

) (
0 2
0 2

)
6= 0. So, M is not

semicommutative. On the other hand, let

m(x) =
(

2 2
0 0

)
+

(
0 2
0 0

)
x ∈ M [x],

f(x) =
(

0 2
0 −2

)
+

(
0 2
0 0

)
x ∈ R[x].

Then m(x)f(x) = 0, but
(

2 2
0 0

) (
0 2
0 0

)
6= 0. Therefore M is not an Armendariz

module. �

Lemma 2.11. If M is a reduced module, then M is abelian. The converse
holds if M is a p.p.-module.

Proof. Let M be reduced. Since any reduced module is semicommutative and
by Lemma 2.7, any semicommutative module is abelian, M is abelian. Conversely,
let M be an abelian and p.p.-module. Suppose ma = 0 for m ∈ M and a ∈ R.
If x ∈ mR ∩ Ma, then there exist m1 ∈ M and r1 ∈ R such that x = mr1 =
m1a. Since M is a p.p.-module, ma = 0 implies that a ∈ rR(m) = eR for some
idempotent e2 = e ∈ R. Then a = ea and xe = mr1e = m1ae. Since M is abelian
and me = 0, mr1e = mer1 = m1ae = m1ea = m1a = 0. Hence mR ∩Ma = 0,
that is, M is reduced. �

Example 2.12 shows that there exists a p.q.-Baer module M but it is not a
p.p.-module, and M is an abelian module but it is not reduced. So the converse
statement of Theorem 2.11 need not be true in general.
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Example 2.12. There exists an abelian p.q.-Baer module M that it is neither
a reduced nor p.p.-module.

Proof. We consider the ring R and module M as in Example 2.10, that is,

R =
{(

a b
c d

)
∈ Z2×2 : a ≡ d, b ≡ 0 and c ≡ 0 mod 2

}
In [3, Example 2 (1)], it is proven that M is a p.q.-Baer but not p.p.-module. In
Example 2.10, it is proven that M is an abelian module, but not semicommutative.
Since every reduced module is semicommutative, M can not be a reduced module.

�

In [6] the module M is called symmetric if, mab = 0 implies mba = 0, for any
m ∈ M and a, b ∈ R.

Lemma 2.13. If M is a symmetric module, then M is abelian. The converse
holds if M is a p.p.-module.

Proof. Assume that M is a symmetric module. Let m ∈ M and e2 = e, a ∈ R.
Then me(1 − e)a = 0. Being M symmetric implies mea(1 − e) = 0. Hence
mea = meae. Similarly m(1−e)ea = 0 implies m(1−e)ae = 0 and so mae = meae.
It follows that mae = mea.

Conversely, suppose that M is a p.p.-module and abelian. Let m ∈ M , a, b ∈ R
and mab = 0. Since M is a p.p.-module, b ∈ rR(ma) = eR for an idempotent
e ∈ R. Then b = eb and mae = 0. By Lemma 2.7 we have mRae = 0, in particular,
mbae = 0. By hypothesis mba = meba = mbae = 0. Hence M is symmetric. �

Theorem 2.14. Let M be a p.p.-module. Then the following statements are
equivalent.

1. M is reduced.
2. M is symmetric.
3. M is semicommutative.
4. M is Armendariz.
5. M is Armendariz of power series type.
6. M is abelian.

Proof. 1. ⇐⇒ 6. From Lemma 2.11.
2. ⇐⇒ 6. Clear from Lemma 2.13.
3. ⇐⇒ 6. From Lemma 2.7.
4. ⇐⇒ 6. Clear from Lemma 2.8.
5. ⇐⇒ 6. From Corollary 2.9. �

Lemma 2.15. Let M be an abelian and p.p.-module. Then rR(m) = rR(mR),
for any m ∈ M .

Proof. We always have rR(mR) ⊂ rR(m). Conversely, every abelian p.p.-modu-
le is semicommutative, so ma = 0 implies that mRa = 0. Hence rR(m) ⊂ rR(mR).
Therefore rR(m) = rR(mR). �
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Corollary 2.16. Let M be an abelian and p.p.-module. Then M is a p.q.-Baer
module.

Proof. Let M be an abelian and p.p.-module. By Lemma 2.15, we have rR(m) =
rR(mR) = eR for any m ∈ M and an idempotent e ∈ R. Therefore M is a p.q.-
Baer module. �

Remark 2.17. Let S be a subring of a ring R with 1R ∈ S and MS ⊆ LR. If
LR is abelian, then MS is also abelian.

Theorem 2.18. Let R be an abelian ring. Then we have the following:
1. MR is abelian if and only if M [x]R[x] is abelian.
2. MR is abelian if and only if M [[x]]R[[x]] is abelian.

Proof. 1. If M [x]R[x] is abelian, by Remark 2.17, MR is abelian.
Conversely, suppose that MR is an abelian module. If R is abelian, by [4,

Lemma 8(1)] idempotent elements of R[x] belong to the ring R. So let m(x) ∈
M [x], f(x) ∈ R[x] and e(x) = e(x)2 = e2 = e ∈ R. Since R is abelian, by [4,
Lemma 8], R[x] is abelian, hence f(x)e(x) = e(x)f(x). Therefore m(x)f(x)e(x) =
m(x)e(x)f(x), that is, M [x]R[x] is abelian.

2. If R is abelian, by [4, Lemma 8] idempotent elements of R[[x]] belong to the
ring R. The rest is similar to the proof of 1. �

Let α be a ring homomorphism from R to R with α(1) = 1. R[x;α] will denote
the skew polynomial ring over R, hence R[x;α] is the ring with carrier R[x] and
multiplication xa = α(a)x for all a ∈ R. Let

M [x;α] =

{
s∑

i=0

mix
i : s ≥ 0, mi ∈ M

}
.

Then M [x;α] is an abelian group under an obvious addition operation. More-
over M [x;α] becomes a module over R[x;α] under the following scalar product
operation: For m(x) =

∑s
i=0 mix

i ∈ M [x;α] and f(x) =
∑t

i=0 aix
i ∈ R[x;α]

m(x)f(x) =
s+t∑
k=0

 ∑
i+j=k

miα
i(aj)

 xk.

Recall that a module M is said to be α−reduced in [5] if, for any m ∈ M and
any a ∈ R,

1. ma = 0 implies mR ∩Ma = 0
2. ma = 0 if and only if mα(a) = 0.

The module M is reduced if it is 1−reduced, where 1 is the identity endomorphism
of R. In [5, Theorem 1.6], it is proven that if M is α-reduced, then M [x;α] is
reduced and by Lemma 2.11, M [x;α] is abelian. One may suspects that if MR is
abelian, then M [x, α]R[x,α] is abelian also. But this is not the case.

Example 2.19. There exist abelian modules MR such that M [x, α]R[x,α] need
not be abelian.
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Proof. Let F be any field, R =




a b 0 0
0 a 0 0
0 0 u v
0 0 0 u

 : a, b, u, v ∈ F

,

α : R → R defined by

α


a b 0 0
0 a 0 0
0 0 u v
0 0 0 u

 =


u v 0 0
0 u 0 0
0 0 a b
0 0 0 a

 , where


a b 0 0
0 a 0 0
0 0 u v
0 0 0 u

 ∈ R

and consider M to be the right R-module RR. Since R is commutative, R and
M are abelian. We claim M [x;α] is not an abelian module. Let eij denote the
4×4 matrix units having alone 1 as its (i, j)-entry and all other entries 0. Consider
e = e11+e22 and f = e33+e44 ∈ R and e(x) = e+fx ∈ R[x;α]. Then e(x)2 = e(x),
ef = fe = 0, e2 = e, f2 = f , α(e) = f , α(f) = e. An easy calculation reveals that
e(x)e12 = e12 + e34x, but e12e(x) = e12. Hence M [x, α]R[x,α] is not abelian. �

We end this paper with some observations concerning Baer, p.q.-Baer and p.p.-
modules. We show that if a module M is abelian, there is a strong connection
between Baer, p.q.-Baer, p.p.-modules and polynomial extension, power series
extension, Laurent polynomial extension and Laurent power series extension of
M , respectively.

Theorem 2.20. Let M be an abelian module. Then we have:
1. M is a p.p.-module if and only if M [x] is a p.p.-module.
2. M is a Baer module if and only if M [x] is a Baer module.
3. M is a p.q.-Baer module if and only if M [x] is a p.q.-Baer module.
4. M is a p.p.-module if and only if M [x, x−1] is a p.p.-module.
5. M is a Baer module if and only if M [x, x−1] is a Baer module.
6. M is a Baer module if and only if M [[x]] is a Baer module.
7. M is a Baer module if and only if M [[x, x−1]] is a Baer module.

Proof. 1. ” ⇐ ”: Assume that M [x] is a p.p.-module. Let m ∈ M . By the as-
sumption there exists an idempotent element e(x) = e0 + e1x + . . . + enxn ∈ R[x]
such that rR[x](m) = e(x)R[x]. Then e2

0 = e0 and so e0R ⊂ rR(m). Now
let a ∈ rR(m). Since rR(m) ⊂ rR[x](m), ma = 0 implies that a = e(x)a and
so a = e0a. Hence rR(m) ⊂ e0R, that is, rR(m) = e0R. Therefore M is a
p.p.-module.
” ⇒ ”: Let m(x) = m0 + m1x + . . . + mtx

t ∈ M [x]. We claim that

rR[x](m(x)) = eR[x],

where e = e0e1 . . . et, e2
i = ei and rR(mi) = eiR, i = 0, 1, . . . , t. For if, since M is

abelian,

m(x)e = m0e0e1 . . . et + m1e1e0e2 . . . etx + . . . + mtete0e1 . . . et−1x
t = 0.

Then eR[x] ⊆ rR[x](m(x)). Let f(x) = a0 + a1x + . . . + anxn ∈ rR[x](m(x)).
Then m(x)f(x) = 0. Since M is an abelian and p.p.-module, by Lemma 2.8, M
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is Armendariz. So, miaj = 0 and this implies aj ∈ rR(mi) = eiR. Then aj = eiaj

for any i. Therefore f(x) = ef(x) ∈ eR[x]. This completes the proof.
2. ” ⇐ ”: Let M [x] be a Baer module and X be a subset of M . Since M [x]

is Baer, then there exists e(x)2 = e(x) = e0 + e1x + . . . + enxn ∈ R[x] such that
rR[x](X) = e(x)R[x]. We claim that rR(X) = e0R. If a ∈ rR(X), then a = e(x)a
and so a = e0a. Hence rR(X) ⊂ e0R. On the other hand, since Xe(x) = 0, we
have Xe0 = 0, that is, e0R ⊂ rR(X). Then M is a Baer module.
” ⇒ ”: Since M is Baer, M is a p.p.-module. By Lemma 2.8, M is Armendariz.
Then from [5, Theorem 2.5.1(a)], M [x] is Baer.

3. ” ⇐ ”: Let M [x] be a p.q.-Baer module and m ∈ M . Then rR[x](mR[x]) =
e(x)R[x], where (e(x))2 = e(x) ∈ R[x] and so, we may find e2

0 = e0 ∈ R (e0 is the
constant term of e(x)). Since mR[x]e(x) = 0, mR[x]e0 = 0 and mRe0 = 0. So,
e0R ⊂ rR(mR). Let r ∈ rR(mR) = rR(mR[x]) ⊂ rR[x](mR[x]) = e(x)R[x]. Then
e(x)r = r. This implies e0r = r and so r ∈ e0R. Therefore rR(mR[x]) = e0R, i.e.
M is a p.q.-Baer module.
” ⇒ ”: Let M be a p.q.-Baer module and m(x) = m0 + m1x + . . . + mtx

t ∈ M [x].
Claim:

rR[x](m(x)R[x]) = e(x)R[x],

where e(x) = e0e1 . . . et, rR(miR) = eiR.
Since M is abelian, m(x)f(x)e0 . . . et = 0. Then e(x)R[x]R[x](m(x)R[x]). Let

f(x) = a0 + a1x + . . . + anxn ∈ rR[x](m(x)R[x]).

Then m(x)R[x]f(x) = 0 and so, m(x)Rf(x) = 0. From the last equality we get
m0Ra0 = 0. Hence a0 ∈ rR(m0R) = e0R and so, a0 = e0a0. Since m(x)Rf(x) = 0,
for any r ∈ R,

m0ra1 + m1ra0 = 0.

Multiplying from the right by e0, we get

m0ra1e0 + m1ra0e0 = m1ra0e0 = m1ra0 = 0.

This implies m1Ra0 = 0 and m0Ra1 = 0. Then a0 ∈ rR(m1R) = e1R and
a1 ∈ rR(m0R) = e0R. So, a0 = e1a0 and a1 = e0a1. Again, since m(x)Rf(x) = 0,
for any r ∈ R, m0ra2 + m1ra1 + m2ra0 = 0. Multiplying this equality from right
by e0e1 and using previous results, we get m2ra0 = 0. Then a0 ∈ rR(m2R) = e2R.
So a0 = e2a0. Continuing this process we get ai = ejai for any i, j. This implies
f(x) = e0e1 . . . etf(x). So, M [x] is a p.q.-Baer module.

4. Since every abelian and p.p.-module is Armendariz by Lemma 2.8, the proof
follows from [5, Theorem 2.11 (2)(a)].

5. Since every Baer module is a p.p.-module, the proof follows from [5, Theo-
rem 2.5 (2)(a)].

6. Since, by Corollary 2.9, every abelian and Baer module is Armendariz of
power series type, the proof follows from [5, Theorem 2.5 (2)(a)].

7. By Corollary 2.9, every abelian and Baer module is Armendariz of power
series type, it follows from [5, Theorem 2.5 (2)(b)]. �



244 N. AGAYEV, G. GÜNGÖROĞLU, A. HARMANCI and S. HALICIOĞLU

Proposition 2.21. Let M be an abelian module. If for any countable sub-
set X of M , rR(X) = eR, where e2 = e ∈ R, then M [[x]] and M [[x, x−1]] are
p.p.-modules.

Proof. Let m ∈ M . Since {m} is a countable set, rR(m) = eR. Then from
Theorem 2.14, M is Armendariz of power series type. By [5, Theorem 2.11.(1)(c)]
and [5, Theorem 2.11.(2)(c)], M [[x]] and M [[x, x−1]] are p.p.-modules. �
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