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Abstract. In this paper, a generalization of the class of semicommutative rings is inves-

tigated. A ring R is called central semicommutative if for any a, b ∈ R, ab = 0 implies arb

is a central element of R for each r ∈ R. We prove that some results on semicommutative

rings can be extended to central semicommutative rings for this general settings.

1. Introduction

Throughout this paper all rings are associative with identity unless otherwise
stated. A ring R is called semicommutative if for any a, b ∈ R, ab = 0 implies
aRb = 0. Hence R is a semicommutative ring if and only if every right (or left)
ideal annihilator in R is an ideal of R. A ring R is called reduced if it does not have
any nonzero nilpotent elements. A ring R is called weakly semicommutative [7], if
for any a, b ∈ R, ab = 0 implies arb is nilpotent for each r ∈ R. Semicommutative
rings have also been studied under the names IFP rings and zero-insertive (ZI) rings
in the literature. There are some generalization of semicommutative rings. Namely,
a ring R is called g-IFP whenever ab = 0 for any a, b ∈ R with b ̸= 0, there exists a
nonzero c ∈ R such that aRc = 0 (see [5] in detail). In this paper we give another
generalization of semicommutative rings. A ring R is called central semicommuta-
tive if for any a, b ∈ R, ab = 0 implies arb is a central element of R for each r ∈ R.
It is clear that every semicommutative ring is central semicommutative. For any
positive integer n and a ring R, Rn×n and Tn(R) are the ring of n×n matrices and
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the n× n upper triangular matrix ring over the ring R respectively. Let Rn denote
the subring {(aij) ∈ Tn(R) | all aii ’ s are equal for i = 1, 2, ..., n} of Tn(R). If R
is a reduced ring, then Rn is not semicommutative for n ≥ 4 from [6, Example 1.3].
But Rn is weakly semicommutative for all n ≥ 1 by [7, Example 2.1]. We show that
for some rings R, Rn×n for every n ≥ 5 and Tn(R) for every n ≥ 2 are not central
semicommutative rings. Moreover we prove that if R is a commutative reduced ring
and k is a positive integer, then T k

2k+2(R) being a subring of T2k+2(R) is a central
semicommutative ring, and R4 is central semicommutative but not semicommuta-
tive. But in general we prove that Rn is not central semicommutative for n ≥ 5.
It is also proved that every central semicommutative ring is 2-primal.

Throughout this paper, the center of a ring R will be denoted by C(R). For a
positive integer n, Zn denotes the ring of integers Z modulo n. We write R[x] and
R[x, x−1] for the polynomial ring and the Laurent polynomial ring over a ring R,
respectively.

2. Central semicommutative rings

In this section we introduce a class of rings which is a generalization of semi-
commutative rings. We investigate some properties of this class of rings.

Lemma 2.1. If R is a prime central semicommutative ring, then R does not have
any nonzero divisors of zero.

Proof. Let a,b ∈ R with ab = 0. Then for any r ∈ R, arb is a central element and
so a2rb, arb2 are central. For any r ∈ R, b(arb)a = ba(arb) = b(a2rb) = a2rb2 =
a(arb)b = ab(arb) = 0. Hence baRba = 0. By hypothesis ba = 0, and so aRb = 0.
Hence a = 0 or b = 0. 2

Proposition 2.2. Let R be a semiprime central semicommutative ring. Then R is
semicommutative.

Proof. Let a,b ∈ R with ab = 0. As in the proof of Lemma 2.1, baRba = 0 and so
baR is a nilpotent right ideal. By hypothesis ba = 0 implies arb = 0 for all r ∈ R.2

A ring R is called directly finite whenever a, b ∈ R, ab = 1 implies ba = 1.

Proposition 2.3. Every central semicommutative ring is directly finite.

Proof. Let R be a central semicommutative ring and a, b ∈ R with ab = 1. Then
a(ba − 1) = 0. For any r ∈ R, ar(ba − 1) is central in R. By commuting with
b, we have bar(ba − 1) = 0. Multiplying the latter by a from the left we obtain
ar(ba− 1) = 0. Replacing r by b we have ba = 1. 2

Let R be a ring, P (R) the prime radical and N(R) the set of all nilpotent el-
ements of the ring R. Since P (R) is the intersection of all prime ideals of R, it is
a nil ideal, therefore P (R) ⊆ N(R). The ring R is called 2-primal if P (R) = N(R)
(see [3] and [5]). In [8, Theorem 1.5] it is proved that every semicommutative ring
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is 2-primal. In this direction we prove the following theorem.

Theorem 2.4. Every central semicommutative ring is 2-primal.

Proof. Let a ∈ N(R). Assume a2 = 0. Then ara is central and so asara = ara2s =
0 for r, s ∈ R. Hence for any prime ideal P , since r and s are arbitrary elements
in R, asara ∈ P implies a ∈ P . Then a ∈ P (R). Now assume a3 = 0. Then for
any r ∈ R, ara2 is central. We commute the latter by a we obtain a2ra2 = 0. By
hypothesis, for any s ∈ R, asara2 is central. Again for any t ∈ R atasara2 = 0.
Similarly for any u ∈ R, atasaraua is central. By commuting with av for any v ∈ R
we have avatasaraua = 0. Then for any prime ideal P , avatasaraua ∈ P . Hence
a ∈ P , and so is a ∈ P (R). By an induction on the index of nilpotency of a, we
may conclude that N(R) ⊆ P (R). 2

Lemma 2.5. Every subring of a central semicommutative ring is central semicom-
mutative.

Proof. Let S be a subring of central semicommutative ring R, and a, b ∈ R with
ab = 0. Then arb is central for all r ∈ R. Hence arb commutes with every element
of R, in particular it commutes with every element of S. 2

Lemma 2.6. Let R be a central semicommutative ring. Then every idempotent is
central.

Proof. Let e2 = e ∈ R. By hypothesis e(1 − e) = 0 implies er(1 − e) is central for
all r ∈ R. Commuting e by er(1 − e) we obtain er(1 − e) = 0. Similarly we have
(1− e)re = 0. Hence er = ere = re. 2

The following example shows that, the converse of the Lemma 2.6 may not be
true in general.

Example 2.7. Consider the ring

R =

{(
a b
c d

)
| a, b, c, d ∈ Z, a− d ≡ b ≡ c ≡ 0( mod 2 )

}
Then only idempotents of R are zero and identity matrices, and(

0 2
0 0

)(
0 2
0 0

)
=

(
0 0
0 0

)
, but

(
0 2
0 0

)(
0 0
2 0

)(
0 2
0 0

)
is not central.

Lemma 2.8. Let R be a commutative or reduced ring. Then R2 and R3 are central
semicommutative.

Proof. If R is a reduced ring, then R2 and R3 are semicommutative by
[6], therefore they are central semicommutative. Assume that R is commu-

tative. We prove R3 is central semicommutative. Let A =

 a b c
0 a d
0 0 a

,
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A2 =

 a2 b2 c2
0 a2 d2
0 0 a2

 and AA2 = 0. Then aa2 = 0, ab2+ba2 = 0, ac2+bd2+ca2 =

0 and ad2 + da2 = 0. We use these to obtain, for any elements a1, b1, c1 and d1 in
R, aa1a2 = 0, aa1b2 + (ab1 + ba1)a2 = 0, aa1d2 + (ad1 + da1)a2 = 0. Then for any

A1 =

 a1 b1 c1
0 a1 d1
0 0 a1

 ∈ R3, AA1A2 =

 0 0 u
0 0 0
0 0 0

 for some u ∈ R. It is clear

that AA1A2 ∈ C(R3). The rest is clear since the commutativity of R implies that
of R2. 2

We now introduce a notation for some subrings of Tn(R). Let k be a natural
number smaller than n. Say

T k
n (R) = {

n∑
i=j

k∑
j=1

xje(i−j+1)i +

n−k∑
i=j

n−k∑
j=1

aijej(k+i) : xj , aij ∈ R}

where eij ’ s are matrix units. Elements of T k
n (R) are in the form

x1 x2 ... xk a1(k+1) a1(k+2) ... a1n
0 x1 ... xk−1 xk a2(k+2) ... a2n
0 0 x1 ... a3n

...
x1


where xi ∈ R, ajs ∈ R, 1 ≤ i ≤ k, 1 ≤ j ≤ n− k and k + 1 ≤ s ≤ n.

Lemma 2.9. Let R be any ring. Then

(1) Rn is not central semicommutative for all n ≥ 5.

(2) Tn(R) is not central semicommutative for all n ≥ 2.

(3) Rn×n is not central semicommutative for all n ≥ 2.

(4) If R is reduced, then for n ≥ 4 and k = [n2 ], the subring T k
n (R) is central

semicommutative.

Proof. (1) Let eij denote the n×n matrix units. Then e12e34 = 0. But e12e23e34 =
e14 and e15 = e14e45 ̸= e45e14 = 0. Hence e12e23e34 is not central and so R5 is not
central semicommutative. Since R5 may be embedded, as a subring, in Rn for any
n ≥ 5, by Lemma 2.5 Rn for any n ≥ 5 is not a central semicommutative ring.
(2) Assume that Tn(R) is central semicommutative for some n ≥ 2. Let e2 = e ∈
Tn(R). By Lemma 2.6 e is a central element of Tn(R). Hence e = 0 or e is the
identity. So it cannot be central semicommutative.
(3) Assume that Rn×n is central semicommutative for all n ≥ 2. By Lemma 2.5,
Tn(R) will be central semicommutative. This is not the case.
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(4) By [1, Theorem 2.5] T k
n (R) is semicommutative for n ≥ 4 and k = [n2 ] and so

it is central semicommutative. 2

In [7] it is proved that R5 is a weakly semicommutative ring. But in Lemma
2.9(1) we prove that R5 is not central semicommutative. So, weakly semicommuta-
tive rings are not central semicommutative. But we have the following lemma.

Proposition 2.10. Every central semicommutative ring is weakly semicommuta-
tive.

Proof. Let a, b ∈ R and ab = 0. We will prove (arb)2 = 0 for any r ∈ R.
Since R is a central semicommutative ring, for any r ∈ R, arb is in C(R). Then
(arb)2 = (arba)rb = (a2rb)rb = (a2rbr)b = (ra2rb)b = r(a2rb2) = (ra)(arb)b =
rab(arb) = 0. 2

Theorem 2.11. (i) For any ring R, T k
n (R) is not a central semicommutative ring,

where n ∈ N, n ≥ 4 and 0 ≤ k ≤ [n−3
2 ].

(ii) If T k
n (R) is a central semicommutative ring, where n ∈ N, n ≥ 4 and

2k + 2 ≤ n, then R is commutative and n = 2k + 2.

Proof. (i) e1(k+1)e(k+2)(2k+2) = 0 and e1(k+1)(e12 + e23 + ... + e(k+1)(k+2) +

... + e(n−1)n)e(k+2)(2k+2) = e1(2k+2) ∈ C(T k
n (R)). But e1(2k+2)(e12 + e23 + ... +

e(2k+2)(2k+3)+...+e(n−1)n) ̸= 0 = (e12+e23+...+e(2k+2)(2k+3)+...+e(n−1)n)e1(2k+2).

Therefore, if 2k + 3 ≤ n, then T k
n (R) cannot be central semicommutative.

(ii) Assume that R is not commutative. Then there are elements a, b ∈ R
such that ab ̸= ba. Since e1(k+1)e(k+2)(2k+2) = 0 where 2k + 2 ≤ n and T k

n (R) is
central semicommutative, we can write that e1(k+1)a(e12 + e23 + ...+ e(k+1)(k+2) +

... + e(n−1)n)e(k+2)(2k+2) = ae1(2k+2) ∈ C(T k
n (R)) and so ae1(2k+2)b = bae1(2k+2),

that is ab = ba. But this is a contradiction. By (i) 2k + 3 > n and 2k + 2 ≤ n,
n = 2k + 2. 2

Example 2.12 shows that the converse of Theorem 2.11 (ii) may not be true in
general.

Example 2.12. Let R = Z4 be the ring of integers modulo 4 and

A =


2 0 1 0
0 2 1 2
0 0 2 0
0 0 0 2

, B =


2 2 1 2
0 2 1 0
0 0 2 0
0 0 0 2

 in R4. Then AB = 0. For

C =


1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 0

 and D =


0 0 2 0
0 0 0 0
0 0 0 0
0 0 0 0

 in R4, it is easy to check that

ACB = D and D is not central in R4. Hence R4 is not central semicommutative.

Theorem 2.13. Let R be a commutative reduced ring and k a positive integer.
Then T k

2k+2(R) is a central semicommutative ring.
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Proof. Note that T k
2k+2(R) is equal to the following set{(

A B
0 a11

)
: A ∈ T k

2k+1(R), B =
(
b1 ... bk+2 a1k ... a12

)T}
. Let X =(

A B
0 a11

)
and Y =

(
A1 B1

0 a′11

)
∈ T k

2k+2(R) and XY = 0. Then AA1 = 0,

AB1 + Ba′11 = 0 and a11a
′
11 = 0. Since AA1 = 0 and R is a reduced ring, we have

the following equalities:

a11a
′
ij = a12a

′
ij = ... = a1ka

′
ij = 0

aija
′
11 = aija

′
12 = ... = aija

′
1k = 0 ... (∗)

Since AB1+Ba′11 = 0, AB1a
′
11+B(a′11)

2 = 0. From being R commutative reduced
and the equalities (*) we have AB1 = Ba′11 = 0. Now we investigate that AB1 = 0.

We can write that A =

(
C D
0 E

)
and B1 =

(
x1 ... xk+2 a′1k ... a′12

)T
where C ∈ T k

k+2(R) , E ∈ T k−2
k−1 (R) and D is a (k + 2) × (k − 1) matrix and

x1, ..., xk+2 ∈ R. Therefore, by

(
C D
0 E

)


x1

...
xk+2

a′1k
...
a′12

 =

 C

 x1

...
xk+2


0

 = 0

we can obtain that C

 x1

...
xk+2

 = 0. This implies the following equalities:

a11x2 = ... = a11xk+2 = 0
a12x3 = ... = a12xk+2 = 0
...
a1kxk+1 = a1kxk+2 = 0
a2(k+2)xk+2 = 0 ........... (∗∗)

Let T ∈ T k
2k+2(R) where T =

(
A2 B2

0 a′′11

)
. Since T k

2k+1(R) is semicommutative,

when R is reduced, by [1] we can obtain that AA2A1 = 0 and a11a
′′
11a

′
11 = 0. Hence

XTY =

(
AA2A1 AA2B1 + (AB2 +Ba′′11)a

′
11

0 a11a
′′
11a

′
11

)
=

(
0 AA2B1

0 0

)
. Also

since R is a commutative reduced ring and by the equalities in (*) we get that

AA2B1+(AB2+Ba′′11)a
′
11 = AA2B1. Let A2 =

(
C2 D2

0 E2

)
where C2 ∈ T k

k+2(R)

, E2 ∈ T k−2
k−1 (R) and D2 is a (k + 2) × (k − 1) matrix. Since R is a commutative

reduced ring, by using (*) we can write the following:
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AA2B1 =


CC2

 x1

...
xk+2

+ (CD2 +DE2)

 a′1k
...
a′12


EE2

 a′1k
...
a′12



 =

 CC2

 x1

...
xk+2


0

.

By (**) there is y ∈ R such that CC2

 x1

...
xk+2

 =


y
0
...
0

. Take any

T1 ∈ T k
2k+2(R) then T1 =

(
A3 B3

0 a′′′11

)
for suitable A3, B3 and a

′′′

11. Therefore

XTY T1 =

 0


y
0
...
0


0 0


(

A3 B3

0 a′′′11

)
=

 0


ya′′′11
0
...
0


0 0

 and T1XTY =

(
A3 B3

0 a′′′11

) 0


y
0
...
0


0 0

 =

 0


a′′′11y
0
...
0


0 0

, that is,XTY T1 = T1XTY

and then we get that XTY ∈ C(T k
2k+2(R)). Thus T k

2k+2(R) is a central semicom-
mutative ring. 2

Corollary 2.14. Let R be a commutative reduced ring. Then R4 is a central
semicommutative ring which is not semicommutative.

Let S denote a multiplicatively closed subset of R consisting of central regular
elements. Let S−1R be the localization of R at S. Then we have the following.

Proposition 2.15. Let R be a ring. Then R is central semicommutative if and
only if S−1R is central semicommutative.

Proof. Assume that R is a central semicommutative ring and let a1 = s−1a, b1 =
t−1b ∈ S−1R, where t,s ∈ S , and a1b1 = 0. Since s and t are central, a1b1 =
s−1t−1ab = 0, and so ab = 0. By assumption arb ∈ C(R) for all r ∈ R. Let
r ∈ R and u ∈ S. Then s−1t−1u−1 and arb are central, and so s−1t−1u−1arb =
(s−1a)(u−1r)(t−1b) is central for every u−1r ∈ S−1R. Converse is clear since R
may be embedded in S−1R as a subring and central semicommutativity is preserved
under subrings. 2

Corollary 2.16. Let R be a ring. Then R[x] is central semicommutative if and
only if R[x, x−1] is central semicommutative.

Proof. Let S = {1, x, x2, x3, x4, ...}. Then S is a multiplicatively closed subset of
R[x] consisting of central regular elements. It follows from Proposition 2.15. 2
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If R is a central semicommutative ring, then R/I may not be a central semi-
commutative ring in general, as the following example shows.

Example 2.17. Let D be a division ring, R = D[x, y] and I =< x2 > with
xy ̸= yx. Then R is a semicommutative ring and so central semicommutative.
Since (x + I)2 = I and (x + I)(y + I)(x + I) = xyx + I /∈ C(R/I), R/I is not a
central semicommutative ring.

The next example shows that for a ring R and an ideal I, if both R/I and I
are central semicommutative, then R need not be central semicommutative.

Example 2.18. Let F be a field. By Lemma 2.9(2), R = T2(F ) is not a central

semicommutative ring. Let I =

(
F F
0 0

)
. Then I is an ideal of R and R/I ∼= F .

Hence R/I and I are central semicommutative, but R is not.

Lemma 2.19. Let R be a ring and I an ideal of R. If R/I is a central semicom-
mutative ring and I is reduced, then R is a central semicommutative ring.

Proof. Let ab = 0. Since bIa ⊆ I and (bIa)2 = 0, bIa = 0. Therefore
((aRb)I)2 = 0 and so (aRb)I = 0. Since R/I is central semicommutative and
(a + I)(b + I) = I, aRb + I ∈ C(R/I), that is, arbr1 − r1arb ∈ I for all r, r1 ∈ R.
So (arbr1 − r1arb)

2 ∈ (arbr1 − r1arb)I = 0 by (aRb)I = 0. Then for all r, r1 ∈ R
arbr1 = r1arb and so aRb ∈ C(R). 2

For a commutative or reduced ring R, it is shown that R2 is semicommutative,
and so central semicommutative. One may suspect that if R is semicommutative or
central semicommutative, then R2 is central semicommutative. But the following
example erases the possibility. This example appeared also in [4, Example 11].

Example 2.20. Let F be a field, K = F [y] and α : K −→ K, α(f(y) = f(y2) be a
ring homomorphism. Let S = K[x;α] = F [y][x;α] be an Ore extension of K. Then
S satisfies following condition: xf(y) = α(f(y))x = f(y2)x. Also from the fact
that S is a noncommutative integral domain, S is a reduced ring. By Lemma 2.8,
U = S2 is semicommutative and so a central semicommutative ring. But R = U2 is
not a central semicommutative ring. For if

a =


(

0 1
0 0

) (
x 0
0 x

)
(

0 0
0 0

) (
0 1
0 0

)
 and b =


(

0 y
0 0

) (
−y2x 0

0 −y2x

)
(

0 0
0 0

) (
0 y
0 0

)
 ,

then ab = 0 since xy = y2x ∈ S. Let

r =


(

y 0
0 y

) (
0 0
0 0

)
(

0 0
0 0

) (
y 0
0 y

)
 . Since y2xy = y4x ∈ S,
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we have arb =


(

0 0
0 0

) (
0 (−y3 + y4)x
0 0

)
(

0 0
0 0

) (
0 0
0 0

)


which is not in C(R). So R is not a central semicommutative ring.
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