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On Abelian Rings

Nazim Agayev, Abdullah Harmancı, Sait Halıcıoğlu

Abstract

Let α be an endomorphism of an arbitrary ring R with identity. In this note, we introduce the notion

of α -abelian rings which generalizes abelian rings. We prove that α -reduced rings, α -symmetric rings,

α -semicommutative rings and α -Armendariz rings are α -abelian. For a right principally projective ring R ,

we also prove that R is α -reduced if and only if R is α -symmetric if and only if R is α -semicommutative

if and only if R is α -Armendariz if and only if R is α -Armendariz of power series type if and only if R is

α -abelian.

Key word and phrases: α -reduced rings, α -symmetric rings, α -semicommutative rings, α -Armendariz

rings, α -abelian rings.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1 and α denotes a non-zero and non-
identity endomorphism of a given ring with α(1) = 1, and 1 denotes identity endomorphism, unless specified
otherwise.

We write R[x], R[[x]], R[x, x−1] and R[[x, x−1]] for the polynomial ring, the power series ring, the Laurent
polynomial ring and the Laurent power series ring over R , respectively. Consider

R[x, α] =

{
s∑

i=0

aix
i : s ≥ 0, ai ∈ R

}
,

R[[x, α]] =

{ ∞∑
i=0

aix
i : ai ∈ R

}
,

R[x, x−1, α] =

{
t∑

i=−s

aix
i : s ≥ 0, t ≥ 0, ai ∈ R

}
,

R[[x, x−1, α]] =

{ ∞∑
i=−s

aix
i : s ≥ 0, ai ∈ R

}
.
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Each of these is an abelian group under an obvious addition operation. Moreover, R[x, α] becomes a ring
under the following product operation:

For f(x) =
s∑

i=0

aix
i, g(x) =

t∑
i=0

bix
i ∈ R[x, α]

f(x)g(x) =
s+t∑
k=0

⎛
⎝ ∑

i+j=k

aiα
i(bj)

⎞
⎠xk.

Similarly, R[[x, α]] is a ring. The rings R[x, α] and R[[x, α]] are called the skew polynomial extension

and the skew power series extension of R , respectively. If α ∈ Aut(R), then with a similar scalar product,

R[[x, x−1, α]] (resp. R[x, x−1, α] ) becomes a ring. The rings R[x, x−1, α] and R[[x, x−1, α]] are called the skew
Laurent polynomial extension and the skew Laurent power series extension of R , respectively.

In [8], Baer rings are introduced as rings in which the right(left) annihilator of every nonempty subset

is generated by an idempotent. According to Clark [4], a ring R is said to be quasi-Baer ring if the right

annihilator of each right ideal of R is generated(as a right ideal) by an idempotent. These definitions are

left-right symmetric. A ring R is called right principally quasi-Baer ring (or simply, right p.q.-Baer ring) if the
right annihilator of a principally right ideal of R is generated by an idempotent. Finally, a ring R is called right
principally projective ring (or simply, right p.p.-ring) if the right annihilator of an element of R is generated

by an idempotent [2].

2. Abelian Rings

In this section the notion of an α -abelian ring is introduced as a generalization of an abelian ring. We
show that many results of abelian rings can be extended to α -abelian rings for this general settings.

The ring R is called abelian if every idempotent is central, that is, ae = ea for any e2 = e , a ∈ R .

Definition 2.1 A ring R is called α-abelian if, for any a, b ∈ R and any idempotent e ∈ R ,
(i) ea = ae,

(ii) ab = 0 if and only if aα(b) = 0 .

So a ring R is abelian if and only if it is 1-abelian.

Example 2.2 Let Z4 be the ring of integers modulo 4. Consider the ring R = {
(

a b
0 a

)
| a, b ∈ Z4} with

the usual matrix operations. Let α : R → R be defined by α(
(

a b
0 a

)
) =

(
a −b
0 a

)
. It is easy to check

that α is a homomorphism of R . We show that R is an α -abelian ring. Since R is commutative, R is abelian.
To complete the proof we check that for any r, s ∈ R , rs = 0 if and only if rα(s) = 0. We prove one way

implication. The other way is similar. So let r =
(

a b
0 a

)
, s =

(
x y
0 x

)
∈ R . Assume that rs = 0 and
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r and s are nonzero. Then we have ax = 0 and ay + bx = 0. If a = 0, then easy calculation shows that
rα(s) = 0. So we suppose a �= 0. If x = 0 then rα(s) = 0. Assume x �= 0. Then a = 2 and x = 2. It implies

rα(s) = 0. Therefore R is α -abelian.

Lemma 2.3 Let R be a ring such that for any a, b ∈ R , ab = 0 implies aα(b) = 0 , then α(e) = e for every
idempotent e ∈ R .

Proof. Since e(1−e) = 0 and α(1) = 1, then 0 = eα(1−e) = e−eα(e). So e = eα(e). Further, (1−e)e = 0.

Then (1 − e)α(e) = 0. Therefore, α(e) = eα(e). So, we have e = eα(e) and α(e) = eα(e). Hence, e = α(e).
�

Example 2.4 shows that there exists an abelian ring, but it is not α -abelian.

Example 2.4 Let R be the ring Z ⊕ Z with the usual componentwise operations. It is clear that R is an
abelian ring. Let α : R → R be defined by α(a, b) = (b, a). Then (1, 0)(0, 1) = 0, but (1, 0)α(0, 1) �= 0. Hence
R is not α -abelian.

The ring R is called semicommutative if ab = 0 implies aRb = 0, for any a, b ∈ R . A ring R is
called α -semicommutative if ab = 0 implies aRα(b) = 0, for any a, b ∈ R . Agayev and Harmanci studied basic

properties of α -semicommutative rings and focused on the semicommutativity of subrings of matrix rings (see

[1]). In this note, the ring R is said to be α -semicommutative if, for any a, b ∈ R ,

(i) ab = 0 implies aRb = 0,

(ii) ab = 0 if and only if aα(b) = 0.

It is clear that a ring R is semicommutative if and only if it is 1-semicommutative. The first part of
Lemma 2.5 is proved in [7]. We give the proof for the sake of completeness.

Lemma 2.5 If the ring R is α-semicommutative, then R is α-abelian. The converse holds if R is a right
p.p.-ring.

Proof. If e is an idempotent in R , then e(1−e) = 0. Since R is α -semicommutative, we have ea(1−e) = 0

for any a ∈ R and so ea = eae . On the other hand, (1 − e)e = 0 implies that (1 − e)ae = 0, so we have
ae = eae . Therefore, ae = ea . Suppose now R is an α -abelian and right p.p.-ring. Let a, b ∈ R with ab = 0.

Then a ∈ r(b) = eR for some e2 = e ∈ R and so be = 0 and a = ea . Since R is α -abelian, we have
arb = earb = arbe = 0 for any r ∈ R , that is, aRb = 0. Therefore R is α -semicommutative. �

Corollary 2.6 If the ring R is semicommutative, then R is abelian. The converse holds if R is a right
p.p.-ring.

Corollary 2.7 Let R be an α-abelian and right p.p-ring. Then r(a) = r(aR) , for any a ∈ R .

Corollary 2.8 Let R be an α-abelian and right p.p-ring. Then R is a right p.q.-Baer ring.

Proof. It follows from Corollary 2.7. �
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For a right R -module M , consider M [x, α] =
{∑s

i=0 mix
i : s ≥ 0, mi ∈ M

}
. M [x, α] is an abelian

group under an obvious addition operation and becomes a right module over R[x; α] under the following scalar
product operation:

For m(x) =
s∑

i=0

mix
i ∈ M [x, α] and f(x) =

t∑
i=0

aix
i ∈ R[x, α]

m(x)f(x) =
s+t∑
k=0

⎛
⎝ ∑

i+j=k

miα
i(aj)

⎞
⎠xk.

In [12], the ring R is called Armendariz if for any f(x) =
∑n

i=0 aix
i, g(x) =

∑s
j=0 bjx

j ∈ R[x] ,

f(x)g(x) = 0 implies aibj = 0 for all i and j . This definition of Armendariz ring is extended to modules

in [11]. A module M is called α-Armendariz if the following conditions (1) and (2) are satisfied, and the

module M is called α-Armendariz of power series type if the following conditions (1) and (3) are satisfied:

(1) For m ∈ M and a ∈ R , ma = 0 if and only if mα(a) = 0.

(2) For any m(x) =
∑n

i=0 mix
i ∈ M [x, α] , f(x) =

∑s
j=0 ajx

j ∈ R[x, α] , m(x)f(x) = 0 implies miα
i(aj) = 0

for all i and j .

(3) For any m(x) =
∑∞

i=0 mix
i ∈ M [[x, α]] , f(x) =

∑∞
j=0 ajx

j ∈ R[[x, α]] , m(x)f(x) = 0 implies miα
i(aj) = 0

for all i and j .

In this note, the ring R is called α-Armendariz (α-Armendariz of power series type ) if RR is α-

Armendariz (α-Armendariz of power series type) module. Hence R is an Armendariz (Armendariz of power

series type) ring if and only if RR is an 1-Armendariz (1-Armendariz of power series type) module.

Theorem 2.9 If the ring R is α-Armendariz, then R is α-abelian. The converse holds if R is a right p.p.-
ring.

Proof. Let f1(x) = e − ea(1 − e)x , f2(x) = (1 − e) − (1 − e)aex , g1(x) = 1 − e + ea(1 − e)x , g2(x) =

e+ (1− e)aex ∈ R[x, α] , where e is an idempotent in R and a ∈ R . Then f1(x)g1(x) = 0 and f2(x)g2(x) = 0.

Since R is α -Armendariz, we have ea(1−e)α(1−e) = 0. By Lemma 2.3, α(1−e) = 1−e and so ea(1−e) = 0.

Similarly, f2(x)g2(x) = 0 implies that (1 − e)ae = 0. Then ae = eae = ea , so R is α -abelian.

Suppose now R is an α -abelian and right p.p.-ring. Then R is abelian, and so every idempotent is
central. By Lemma 2.3, α(e) = e for every idempotent e ∈ R . From Lemma 2.5, R is α -semicommutative,

i.e., ab = 0 implies aRb = 0 for any a, b ∈ R . Let f(x) =
s∑

i=0

aix
i , g(x) =

t∑
j=0

bjx
j ∈ R[x, α] . Assume

f(x)g(x) = 0. Then we have:

a0b0 = 0

a0b1 + a1α(b0) = 0

a0b2 + a1α(b1) + a2α
2(b0) = 0

...

(1)

(2)

(3)
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By hypothesis there exist idempotents ei ∈ R such that r(ai) = eiR for all i . So b0 = e0b0 and a0e0 = 0. Multi-

ply (2) from the right by e0 , we have 0 = a0b1e0+a1α(b0)e0 = a0e0b1+a1α(b0)α(e0) = a1α(b0). By (2) a0b1 = 0

and so b1 = e0b1 . Again, multiply (3) from the right by e0 , we have 0 = a0b2e0 + a1α(b1)e0 + a2α
2(b0)e0 =

a1α(b1) + a2α
2(b0). Multiply this equation from right by e1 , we have 0 = a1α(b1)e1 + a2α

2(b0)e1 = a2α
2(b0).

Continuing in this way, we may conclude that aiα
i(bj) = 0 for all 1 ≤ i ≤ s and 1 ≤ j ≤ t . Hence R is

α -Armendariz. This completes the proof. �

Corollary 2.10 If the ring R is Armendariz, then R is abelian. The converse holds if R is a right p.p.-ring.

Proposition 2.11 If the ring R is α-Armendariz of power series type, then R is α-abelian. The converse
holds if R is a right p.p.-ring.

Proof. Similar to the proof of Theorem 2.9. �

Recall that a ring is reduced if it has no nonzero nilpotent elements. In [11], Lee and Zhou introduced
α-reduced module. A module M is called α -reduced if, for any m ∈ M and any a ∈ R ,
(1) ma = 0 implies mR ∩ Ma = 0

(2) ma = 0 if and only if mα(a) = 0.

In this work, we call the ring R α-reduced if RR is an α -reduced module. Hence R is a reduced ring if
and only if RR is an 1-reduced module.

In [5], Hong et al. studied α -rigid rings. For an endomorphism α of a ring R , R is called α -rigid if

aα(a) = 0 implies a = 0 for any a in R . The relationship between α -rigid rings and α -skew Armendariz rings

was studied in [6]. In fact, R is an α -Armendariz ring if and only if (1) R is an α -skew Armendariz ring and

(2) ab = 0 if and only if aα(b) = 0 for any a, b in R . Note that α -reduced ring is α -rigid. Really, let R be an

α -reduced ring and aα(a) = 0 for some a in R . Then a2 = 0. Since R is reduced, we have a = 0. Further,

by [5, Proposition 6], any α -reduced ring R is α -Armendariz. By Theorem 2.9, R is α -abelian. So, the first

statement of Lemma 2.12 is a direct corollary of [5, Proposition 6].

Lemma 2.12 If R is an α-reduced ring, then R is α-abelian. The converse holds if R is a right p.p.-ring.

Proof. Let R be an α -abelian and right p.p-ring. Suppose ab = 0 for a, b ∈ R . If x ∈ aR ∩Rb , then there
exist r1, r2 ∈ R such that x = ar1 = r2b . Since R is right p.p-ring, ab = 0 implies that b ∈ r(a) = eR for

some idempotent e2 = e ∈ R . Then b = eb and xe = ar1e = r2be . Since R is α -abelian and ae = 0, we have
ar1e = aer1 = r2be = r2eb = r2b = 0. Hence aR ∩Rb = 0, that is, R is α -reduced. �

Corollary 2.13 If R is a reduced ring, then R is abelian. The converse holds if R is a right p.p.-ring.

According to Lambek [10], a ring R is called symmetric if whenever a, b, c ∈ R satisfy abc = 0, we have
bac = 0; it is easily seen that this is a left-right symmetric concept. We now introduce α -symmetric rings as a
generalization of symmetric rings.
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Definition 2.14 The ring R is called α-symmetric if, for any a, b, c ∈ R ,
(i) abc = 0 implies acb = 0 ,

(ii) ab = 0 if and only if aα(b) = 0 .

It is clear that a ring R is symmetric if and only if it is 1-symmetric.

Theorem 2.15 Let R be a right p.p-ring. Then the following are equivalent:
(1) R is α-reduced.

(2) R is α-symmetric.

(3) R is α-semicommutative.

(4) R is α-Armendariz.

(5) R is α-Armendariz of power series type.

(6) R is α-abelian.

Proof. (1)⇔ (6) From Lemma 2.12.

(4)⇔ (6) Clear from Theorem 2.9.

(3)⇔ (6) From Lemma 2.5.

(5)⇔ (6) From Proposition 2.11.

(2)⇒ (3) Let a, b ∈ R with ab = 0. By hypothesis, abc = 0 implies acb = 0 for all c ∈ R . Hence aRb = 0 and
so R is α -semicommutative.
(3)⇒ (2) Assume that abc = 0, for any a, b, c ∈ R . Since R is right p.p.-ring, c ∈ r(ab) = eR for some
idempotent e ∈ R . Then c = ec and abe = 0, so acbe = 0. We have already proved that semicommutativity
implied being abelian, then acbe = aecb . Now acb = aecb = acbe = 0. It completes the proof. �

Corollary 2.16 Let R be a Baer ring. Then the following are equivalent:
(1) R is α-reduced.

(2) R is α-symmetric.

(3) R is α-semicommutative.

(4) R is α-Armendariz.

(5) R is α-Armendariz of power series type.

(6) R is α-abelian.

One may suspect that if R is an abelian ring, then R[x, α] is abelian also. But this is not the case.

Example 2.17 Let F be any field, R = {

⎛
⎜⎜⎝

a b 0 0
0 a 0 0
0 0 u v
0 0 0 u

⎞
⎟⎟⎠ | a, b, u, v ∈ F } and α : R → R be defined by

α

⎛
⎜⎜⎝

a b 0 0
0 a 0 0
0 0 u v
0 0 0 u

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

u v 0 0
0 u 0 0
0 0 a b
0 0 0 a

⎞
⎟⎟⎠ , where

⎛
⎜⎜⎝

a b 0 0
0 a 0 0
0 0 u v
0 0 0 u

⎞
⎟⎟⎠ ∈ R
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Since R is commutative, R is abelian. We claim that R[x, α] is not an abelian ring. Let eij denote

the 4 × 4 matrix units having alone 1 as its (i, j)-entry and all other entries 0. Consider e = e11 + e22 and

f = e33 + e44 ∈ R and e(x) = e + fx ∈ R[x; α] . Then e(x)2 = e(x), ef = fe = 0, e2 = e , f2 = f , α(e) = f ,

α(f) = e . An easy calculation reveals that e(x)e12 = e12 + e34x , but e12e(x) = e12 . Hence R[x, α] is not an
abelian ring.

Lemma 2.18 If R is an α-abelian ring, then the idempotents of R[x, α] belong to R , therefore R[x, α] is an
abelian ring.

Proof. Let R be α -abelian and e(x) =
t∑

i=0

eix
i be an idempotent in R[x, α] . Since e(x)2 = e(x), we have

e2
0 = e0

e0e1 + e1α(e0) = e1

e0e2 + e1α(e1) + e2α
2(e0) = e2

...

(1)

(2)

(3)

Since R is α -abelian, R is abelian, and so every idempotent is central. By Lemma 2.3, α(e) = e for

every idempotent e ∈ R . Then (2) becomes e0e1 + e1e0 = e1 and so e1 = 0. Since e0 is central idempotent,

(3) becomes e0e2 + e2e0 = e2 and so e2 = 0. Similarly, it can be shown that ei = 0 for i = 1, 2, ..., t . This
completes the proof. �

Lemma 2.19 If R[x, α] is an abelian ring, then α(e) = e for every idempotent e ∈ R .

Proof. Since R[x, α] is abelian, we have f(x)e(x) = e(x)f(x) for any f(x), e(x)2 = e(x) ∈ R[x, α] . In

particular, xe = ex for every idempotent e ∈ R . Hence xe = ex = α(e)x and so α(e) = e . �

Lemma 2.20 If R[x, α] is an abelian ring, then the idempotents of R[x, α] belong to R .

Proof. Similar to the proof of Lemma 2.18. �

Theorem 2.21 If R is an α-abelian ring, then R[x, α] is abelian. The converse holds if R[x, α] is a right
p.p.-ring.

Proof. If R is α -abelian, by Lemma 2.18, R[x, α] is abelian. Suppose that R[x, α] be an abelian and right

p.p.-ring. It is clear that ae = ea for any a, e2 = e ∈ R . Suppose ab = 0 for any a, b ∈ R . Since R is right
p.p.-ring, we have b ∈ r(a) = eR , b = eb . So aα(b) = aα(eb) = aeα(b) = 0. Conversely, let aα(b) = 0. Then

axb = 0. Since R[x, α] is right p.p.-ring, we have b ∈ rR[x,α](ax) = eR[x, α] for some idempotent e ∈ R[x, α] .

So b = eb , axe = 0. By Lemma 2.20, e ∈ R . Hence ae = 0 and ab = aeb = 0. Therefore R is α -abelian. �
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Lemma 2.22 Let R be an α-abelian ring. If for any countable subset X of R , r(X) = eR , where e2 = e ∈ R ,
then
(1) R[[x, α]] is a right p.p.-ring.

(2) If α is an automorphism of R , then R[[x, x−1, α]] is a right p.p.-ring.

Proof. Let a ∈ R . Since {a} is countable subset of R , r(a) = eR , i.e., R is a right p.p.-ring. Then from

Theorem 2.15, R is α -Armendariz of power series type. By [11, Theorem 2.11.(1)(c), Theorem 2.11.(2)(c) ],

R[[x, α]] and R[[x, x−1, α]] are right p.p.-rings. �

Theorem 2.23 Let R be an α-abelian ring. Then we have:
(1) R is a right p.p.-ring if and only if R[x, α] is a right p.p.-ring.

(2) R is a Baer ring if and only if R[x, α] is a Baer ring.

(3) R is a right p.q.-Baer ring if and only if R[x, α] is a right p.q.-Baer ring.

(4) R is a Baer ring if and only if R[[x, α]] is a Baer ring.

Let α ∈ Aut(R) .

(5) R is a Baer ring if and only if R[x, x−1, α] is a Baer ring.

(6) R is a right p.p.-ring if and only if R[x, x−1, α] is a right p.p.-ring.

(7) R is a Baer ring if and only if R[[x, x−1, α]] is a Baer ring.

Proof. (1) “⇒”: Let f(x) = a0 + a1x + ... + atx
t ∈ R[x, α] . We claim that rR[x,α](f(x)) = eR[x, α] ,

where e = e0e1...et , e2
i = ei and rR(ai) = eiR , i = 0, 1, ..., t . By hypothesis and Lemma 2.3, f(x)e =

a0e0e1...et + a1e1e0e2...etx + ... + atete0e1...et−1x
t = 0. Then eR[x] ⊆ rR[x,α](f(x)). Let g(x) = b0 + b1x +

... + bnxn ∈ rR[x,α](f(x)). Then f(x)g(x) = 0. Since R is an abelian and right p.p.-ring, by Theorem 2.9,

R is Armendariz. So aibj = 0 and this implies bj ∈ rR(ai) = eiR , and then bj = eibj for any i . Therefore

g(x) = eg(x) ∈ eR[x, α] . This completes the proof of (1) “⇒”.

” ⇐ ”: Let a ∈ R . Then there exists e(x)2 = e(x) ∈ R[x, α] such that rR[x,α](a) = e(x)R[x, α] . Then

the constant term, e0 say, of e(x) is non-zero, and e0 is an idempotent in R . So e0R ⊂ rR(a). Now let

b ∈ rR(a). Since rR(a) ⊂ rR[x,α](a), ab = 0 implies that b = e(x)b and so b = e0b . Hence rR(a) ⊂ e0R , that

is, rR(a) = e0R . Therefore R is a right p.p.-ring.

(2) ” ⇒ ”: Since R is Baer, R is a right p.p.-ring. By Lemma 2.5, R is Armendariz. Then from [11, Theorem

2.5.1(a)], R[x, α] is Baer.

” ⇐ ”: Let R[x, α] be a Baer ring and X be a subset of R . There exists e(x)2 = e(x) = e0 +e1x+ ...+enxn ∈
R[x, α] such that rR[x;α](X) = e(x)R[x, α] . We claim that rR(X) = e0R . If a ∈ rR(X), then a = e(x)a and

so a = e0a . Hence rR(X) ⊂ e0R . Since Xe(x) = 0, we have Xe0 = 0, that is, e0R ⊂ rR(X). Then R is a
Baer ring.

(3) ” ⇒ ”: Let f(x) = a0 + a1x + ... + atx
t ∈ R[x, α] . We prove rR[x,α](f(x)R[x, α]) = e(x)R[x, α] ,

where e(x) = e0e1...et , rR(aiR) = eiR . Since R is abelian, for any h(x) ∈ R[x, α] f(x)h(x)e(x) = 0.

Then e(x)R[x, α] ⊂ rR[x,α](f(x)R[x, α]) . Let g(x) = b0 + b1x + ... + bnxn ∈ rR[x,α](f(x)R[x, α]) . Then

f(x)R[x, α]g(x) = 0 and so, f(x)Rg(x) = 0. From last equality we have a0Rb0 = 0. Hence b0 ∈ rR(a0R) =

e0R . It follows that b0 = e0b0 . Also for any r ∈ R , the coefficient of x is equal to a0rb1 + a1α(rb0).
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Hence a0rb1 + a1α(rb0) = 0. Multiplying the equation a0rb1 + a1α(rb0) = 0 from the right by e0 , we have

a1α(rb0e0) = 0, that is, a1α(rb0) = 0. Since R is α -abelian, a1rb0 = 0. This implies a1Rb0 = 0. Then

b0 ∈ rR(a1R) = e1R and b1 ∈ rR(a0R) = e0R . So, b0 = e1b0 and b1 = e0b1 . Again for any r ∈ R ,
a0rb2 + a1rb1 + a2rb0 = 0. Multiplying this equality from right by e0e1 and using previous results, we have
a2rb0 = 0. Then b0 ∈ rR(a2R) = e2R . So b0 = e2b0 . Continuing this process we have bi = ejbi for any i, j .

This implies g(x) = e0e1...etg(x). So, R[x, α] is a right p.q.-Baer ring.

” ⇐ ”: Let a ∈ R . Then rR[x,α](aR[x, α]) = e(x)R[x, α] , where e(x)2 = e(x) ∈ R[x, α] . By Lemma

2.18, e(x) = e0 ∈ R . Since aR[x, α]e(x) = 0, aR[x, α]e0 = 0 and aRe0 = 0. So, e0R ⊂ rR(aR). Let

r ∈ rR(aR) = rR(aR[x, α]) ⊂ rR[x,α](aR[x, α]) = e(x)R[x, α] . Then e(x)r = r . This implies e0r = r and so

r ∈ e0R . Therefore rR(aR[x, α]) = e0R , i.e., R is a right p.q.-Baer ring.

(4) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, so the proof follows from

[11, Theorem 2.5 (1)(b)].

(5) By Corollary 2.16, R is α -Armendariz, then proof follows from [11, Theorem 2.5 (2)(a)].

(6) Since every α -abelian and right p.p.-ring is α -Armendariz by Theorem 2.9, the proof follows from [11,

Theorem 2.11 (2)(a)].

(7) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, it follows from [11,

Theorem 2.5 (2)(b)]. �
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