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On Abelian Rings

Nazim Agayev, Abdullah Harmanci, Sait Halicroglu

Abstract

Let a be an endomorphism of an arbitrary ring R with identity. In this note, we introduce the notion
of «a-abelian rings which generalizes abelian rings. We prove that «a-reduced rings, a-symmetric rings,
a-semicommutative rings and a-Armendariz rings are a-abelian. For a right principally projective ring R,
we also prove that R is a-reduced if and only if R is a-symmetric if and only if R is a-semicommutative
if and only if R is a-Armendariz if and only if R is a-Armendariz of power series type if and only if R is

a-abelian.

Key word and phrases: a-reduced rings, a-symmetric rings, a-semicommutative rings, a-Armendariz

rings, a-abelian rings.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1 and o denotes a non-zero and non-
identity endomorphism of a given ring with a(1) = 1, and 1 denotes identity endomorphism, unless specified
otherwise.

We write R[z], R[[z]], R[z,7~1] and R[[z,2~}]] for the polynomial ring, the power series ring, the Laurent

polynomial ring and the Laurent power series ring over R, respectively. Consider

Rlz,a] = {Zaixi : §>0,a; € R} ,
i=0
Rz, a]] = {Zaixi a; € R} ,
i=0

t
R[x,x_l,a]:{Zaixi : sZO,tZO,aiER},

i=—35

R[[z,z7 1 a]] = { i axt : s>0,a; € R} )

1=—S
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Each of these is an abelian group under an obvious addition operation. Moreover, R[z,a] becomes a ring

under the following product operation:

s t
For f(z) = Zaixi, g(x) = Zbixi € Rz, a]
i=0 i=0

s+t
f@gx) = | Y aa'(yy) | .
k=0 \i+j=k

Similarly, R[[z,«]] is a ring. The rings R[z,«| and R[[z,a]] are called the skew polynomial extension
and the skew power series extension of R, respectively. If o € Aut(R), then with a similar scalar product,
R[[z,27 ', a]] (resp. R[z,2~% «a]) becomes a ring. The rings R[z,z ™!, a] and R[[z,z~ 1, a]] are called the skew
Laurent polynomial extension and the skew Laurent power series extension of R, respectively.

In [8], Baer rings are introduced as rings in which the right(left) annihilator of every nonempty subset
is generated by an idempotent. According to Clark [4], a ring R is said to be quasi-Baer ring if the right
annihilator of each right ideal of R is generated(as a right ideal) by an idempotent. These definitions are
left-right symmetric. A ring R is called right principally quasi-Baer ring (or simply, right p.q.-Baer ring) if the
right annihilator of a principally right ideal of R is generated by an idempotent. Finally, a ring R is called right
principally projective ring (or simply, right p.p.-ring) if the right annihilator of an element of R is generated

by an idempotent [2].

2. Abelian Rings

In this section the notion of an «-abelian ring is introduced as a generalization of an abelian ring. We

show that many results of abelian rings can be extended to a-abelian rings for this general settings.

The ring R is called abelian if every idempotent is central, that is, ae = ea for any €2 =¢, a € R.

Definition 2.1 A ring R is called «-abelian if, for any a,b € R and any idempotent e € R,
(i) ea = ae,
(it) ab =0 if and only if ac(b) =0.

So aring R is abelian if and only if it is 1-abelian.

Example 2.2 Let Z4 be the ring of integers modulo 4. Consider the ring R = {( 8 2 > | a,b € Z4} with

the usual matrix operations. Let o : R — R be defined by a(( 8 Z >) = ( 8

that « is a homomorphism of R. We show that R is an «-abelian ring. Since R is commutative, R is abelian.

_ab > . It is easy to check

To complete the proof we check that for any r,s € R, rs = 0 if and only if ra(s) = 0. We prove one way

implication. The other way is similar. So let r = ( 8 2 > , 8§ = ( gé gyC > € R. Assume that rs = 0 and
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r and s are nonzero. Then we have ax = 0 and ay + bz = 0. If a = 0, then easy calculation shows that
ra(s) = 0. So we suppose a # 0. If z =0 then ra(s) =0. Assume z # 0. Then a =2 and = = 2. It implies

ra(s) = 0. Therefore R is a-abelian.

Lemma 2.3 Let R be a ring such that for any a,b € R, ab =0 implies aa(b) =0, then a(e) = e for every
idempotent e € R.

Proof. Since e(1—e) =0 and (1) = 1, then 0 = ea(l—e) = e—ea(e). So e = ea(e). Further, (1—e)e = 0.
Then (1 —e)a(e) = 0. Therefore, a(e) = ea(e). So, we have e = ea(e) and a(e) = ea(e). Hence, e = a(e).
a

Example 2.4 shows that there exists an abelian ring, but it is not a-abelian.

Example 2.4 Let R be the ring Z & Z with the usual componentwise operations. It is clear that R is an
abelian ring. Let a : R — R be defined by «a(a,b) = (b,a). Then (1,0)(0,1) =0, but (1,0)a(0,1) # 0. Hence

R is not a-abelian.

The ring R is called semicommutative if ab = 0 implies aRb = 0, for any a,b € R. A ring R is
called a-semicommutative if ab =0 implies aRa(b) = 0, for any a,b € R. Agayev and Harmanci studied basic
properties of a-semicommutative rings and focused on the semicommutativity of subrings of matrix rings (see
[1]). In this note, the ring R is said to be a-semicommutative if, for any a,b € R,

(i) ab =0 implies aRb =0,
(ii) ab =0 if and only if aa(b) =0.
It is clear that a ring R is semicommutative if and only if it is 1-semicommutative. The first part of

Lemma 2.5 is proved in [7]. We give the proof for the sake of completeness.

Lemma 2.5 If the ring R is a-semicommutative, then R is «-abelian. The converse holds if R is a right
D.p.-Ting.

Proof. If e is an idempotent in R, then e(1 —e) = 0. Since R is a-semicommutative, we have ea(l—e) =0
for any @ € R and so ea = eae. On the other hand, (1 —e)e = 0 implies that (1 — e)ae = 0, so we have
ae = eae. Therefore, ae = ea. Suppose now R is an «-abelian and right p.p.-ring. Let a,b € R with ab=0.

2

Then a € r(b) = eR for some e = e € R and so be = 0 and a = ea. Since R is a-abelian, we have

arb = earb = arbe = 0 for any r € R, that is, aRb = 0. Therefore R is a-semicommutative. O

Corollary 2.6 If the ring R is semicommutative, then R is abelian. The converse holds if R is a right
D.p.-Ting.

Corollary 2.7 Let R be an «-abelian and right p.p-ring. Then r(a) = r(aR), for any a € R.

Corollary 2.8 Let R be an «-abelian and right p.p-ring. Then R is a right p.q.-Baer ring.
Proof. It follows from Corollary 2.7. O
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For a right R-module M, consider M[z,a] = {}.7_(mz’ : s>0,m; € M}. M[z,a] is an abelian
group under an obvious addition operation and becomes a right module over R[xz; ] under the following scalar

product operation:

For m(z Zmzx € M[z,a] and f(z Zazx € Rz, a]
1=0

s+t
m(z)f(z) = Z Z miat(a;) | =F.
k=0 \i+j=k

In [12], the ring R is called Armendariz if for any f(z) = Y., a;z%, g(z) = > i—0 bjz! € R[z],
f(z)g(xz) = 0 implies a;b; = 0 for all ¢ and j. This definition of Armendariz ring is extended to modules
n [11]. A module M is called «-Armendariz if the following conditions (1) and (2) are satisfied, and the
module M is called «-Armendariz of power series type if the following conditions (1) and (3) are satisfied:

(1) For m € M and a € R, ma =0 if and only if ma(a) = 0.

(2) For any m(z) = 3" yma’ € M[z,a], f(x) = >.°_ja;a’ € Rz,a], m(x)f(z) = 0 implies m;a’(a;) = 0
for all ¢ and j.

(3) For any m(z) = X272, miz* € M([x,al], f(z) = X272 a;27 € R[[z,a]], m(z)f(z) = 0 implies m;a’(a;) = 0
for all ¢ and j.

In this note, the ring R is called «-Armendariz (a-Armendariz of power series type ) if R is «-
Armendariz (a-Armendariz of power series type) module. Hence R is an Armendariz (Armendariz of power

series type) ring if and only if Rpg is an 1-Armendariz (1-Armendariz of power series type) module.

Theorem 2.9 If the ring R is a-Armendariz, then R is «-abelian. The converse holds if R is a right p.p.-
ring.
Proof. Let fi(z) = e—ea(l —e)z, folr) = (1 —e€) — (1 —e)aex, gi(x) =1 —e+ea(l —e)z, g2(z) =
e+ (1 —e)aex € R[z,a], where e is an idempotent in R and a € R. Then fi(z)g1(x) =0 and fa(z)g2(x) =0.
Since R is a-Armendariz, we have ea(l—e)a(l —e) = 0. By Lemma 2.3, a(l —e) = 1—e¢ and so ea(l —e) = 0.
Similarly, fa(z)g2(x) =0 implies that (1 — e)ae = 0. Then ae = eae = ea, so R is a-abelian.

Suppose now R is an «-abelian and right p.p.-ring. Then R is abelian, and so every idempotent is

central. By Lemma 2.3, a(e) = e for every idempotent e € R. From Lemma 2.5, R is a-semicommutative,

¢
i.e,, ab = 0 implies aRb = 0 for any a,b € R. Let f(x Zaz , g(x) = ijxj € R[z,a]. Assume
3=0
f(z)g(z) = 0. Then we have:
apgbg =0 (1)
apbt + ala(bo) =0 (2)

agbo + ala(bl) + a2a2(b0) =0 (3)
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By hypothesis there exist idempotents e; € R such that r(a;) = e; R forall i. So by = epby and agep = 0. Multi-
ply (2) from the right by eq, we have 0 = agbieg+aia(by)eg = agegbi+aia(by)a(ey) = ara(by). By (2) agby =0
and so by = epby. Again, multiply (3) from the right by eg, we have 0 = agbaeg + a1a(by)eg + aza’(bg)eg =
ara(by) + aza?(bg). Multiply this equation from right by e, we have 0 = aja(by)er + aza®(bg)er = aza®(bg).
Continuing in this way, we may conclude that aiai(bj) =0forall 1 <i<sand 1 <j <t. Hence R is

a-Armendariz. This completes the proof. O

Corollary 2.10 If the ring R is Armendariz, then R is abelian. The converse holds if R is a right p.p.-ring.

Proposition 2.11 If the ring R is a-Armendariz of power series type, then R is «-abelian. The converse

holds if R is a right p.p.-ring.
Proof. Similar to the proof of Theorem 2.9. O

Recall that a ring is reduced if it has no nonzero nilpotent elements. In [11], Lee and Zhou introduced
a -reduced module. A module M is called a-reduced if, for any m € M and any a € R,

(1) ma =0 implies mRN Ma =0
(2) ma = 0 if and only if ma(a) = 0.

In this work, we call the ring R a-reduced if Rp is an a-reduced module. Hence R is a reduced ring if
and only if Rg is an 1-reduced module.

In [5], Hong et al. studied a-rigid rings. For an endomorphism « of a ring R, R is called a-rigid if
aa(a) = 0 implies a = 0 for any a in R. The relationship between «-rigid rings and «-skew Armendariz rings
was studied in [6]. In fact, R is an a-Armendariz ring if and only if (1) R is an «-skew Armendariz ring and
(2) ab =0 if and only if aa(b) = 0 for any a,b in R. Note that a-reduced ring is «a-rigid. Really, let R be an
a-reduced ring and aa(a) = 0 for some a in R. Then a? = 0. Since R is reduced, we have a = 0. Further,
by [5, Proposition 6], any a-reduced ring R is a-Armendariz. By Theorem 2.9, R is a-abelian. So, the first

statement of Lemma 2.12 is a direct corollary of [5, Proposition 6.

Lemma 2.12 If R is an «-reduced ring, then R is a-abelian. The converse holds if R is a right p.p.-ring.

Proof. Let R be an «-abelian and right p.p-ring. Suppose ab =0 for a,b € R. If z € aR N Rb, then there
exist 71,72 € R such that © = ar; = rqob. Since R is right p.p-ring, ab = 0 implies that b € r(a) = eR for
some idempotent e2=e € R. Then b= eb and ze = arje = rybe. Since R is a-abelian and ae = 0, we have

arie = aery = robe = roeb = rob = 0. Hence aR N Rb = 0, that is, R is a-reduced. O

Corollary 2.13 If R is a reduced ring, then R is abelian. The converse holds if R is a right p.p.-ring.

According to Lambek [10], a ring R is called symmetric if whenever a,b,c € R satisfy abc = 0, we have
bac = 0; it is easily seen that this is a left-right symmetric concept. We now introduce a-symmetric rings as a

generalization of symmetric rings.
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Definition 2.14 The ring R is called o -symmetric if, for any a,b,c € R,
(i) abc =0 implies acb =0,
(it) ab =0 if and only if ac(b) =0.

It is clear that a ring R is symmetric if and only if it is 1-symmetric.

Theorem 2.15 Let R be a right p.p-ring. Then the following are equivalent:
(1) R is a-reduced.
(2) R is a-symmetric.
(3) R is «-semicommutative.
(4) R is a-Armendariz.
(5) R is a-Armendariz of power series type.
(6) R is «-abelian.
Proof. (1)& (6) From Lemma 2.12.
(1) (6
(3)% (6
(5)< (6) From Proposition 2.11.
)= (
is

) Clear from Theorem 2.9.
)
)
(2)= (3) Let a,b € R with ab= 0. By hypothesis, abc = 0 implies acb =0 for all c € R. Hence aRb =0 and
Q-
)

& From Lemma 2.5.

-semicommutative.
Assume that abc = 0, for any a,b,c € R. Since R is right p.p.-ring, ¢ € r(ab) = eR for some

so R
(3)= (2

idempotent e € R. Then ¢ = ec and abe = 0, so acbe = 0. We have already proved that semicommutativity

implied being abelian, then acbe = aechb. Now ach = aechb = acbe = 0. It completes the proof. O

Corollary 2.16 Let R be a Baer ring. Then the following are equivalent:
(1) R is a-reduced.

(2) R is a-symmetric.

(8) R is «-semicommutative.

(4) R is a-Armendariz.

(5) R is a-Armendariz of power series type.

(6) R is «-abelian.

One may suspect that if R is an abelian ring, then R[z, «] is abelian also. But this is not the case.

a b 0 0
Example 2.17 Let F be any field, R = { 8 8 2 S | a,b,u,v € F} and a: R — R be defined by
0 0 0 wu
a b 0 0 u v 0 0 a b 0 0
0O a 0 O . 0O o 0 O b 0 a 0 O cR
“Toowowl|"looab """ 00 uw
0 0 0 wu 0 0 0 a 0 0 0 u
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Since R is commutative, R is abelian. We claim that R[z,«] is not an abelian ring. Let e;; denote
the 4 x 4 matrix units having alone 1 as its (i, j)-entry and all other entries 0. Consider e = ej; + e22 and
f=e33+ess €R and e(x) =e+ fr € R[r;a]. Then e(z)? =e(z), ef = fe=0,e2=e, f2=f, ale) = f,
a(f) = e. An easy calculation reveals that e(z)ejs = e12 + esax, but ejge(x) = e12. Hence R[z,a] is not an

abelian ring.

Lemma 2.18 If R is an «-abelian ring, then the idempotents of R[xz,a] belong to R, therefore R[x,a] is an
abelian ring.

¢
Proof. Let R be a-abelian and e(x) = Zeixi be an idempotent in R[z,a]. Since e(z)? = e(z), we have

i=0
€5 = eo (1)
eoer +erafeg) = er (2)
eoea + erafer) + eaa®(ep) = eo (3)

Since R is a-abelian, R is abelian, and so every idempotent is central. By Lemma 2.3, a(e) = e for
every idempotent e € R. Then (2) becomes ege; + e1eg = e3 and so e; = 0. Since eq is central idempotent,
(3) becomes epea + ezep = ez and so ez = 0. Similarly, it can be shown that e; = 0 for ¢ = 1,2,...,¢. This

completes the proof. O

Lemma 2.19 If R[x,q] is an abelian ring, then a(e) = e for every idempotent e € R.

Proof. Since R[z,qa] is abelian, we have f(x)e(r) = e(z)f(x) for any f(z),e(z)? = e(z) € Rlz,a]. In

particular, ze = ex for every idempotent e € R. Hence ze = ex = a(e)z and so a(e) =e. O

Lemma 2.20 If R[x,q] is an abelian ring, then the idempotents of R|x,«] belong to R.

Proof. Similar to the proof of Lemma 2.18. g

Theorem 2.21 If R is an a-abelian ring, then R[z,a] is abelian. The converse holds if R[x,a] is a right
D.p.-TINg.

Proof. If R is a-abelian, by Lemma 2.18, R|x, ] is abelian. Suppose that R[z,«] be an abelian and right
p.p.-ring. It is clear that ae = ea for any a,e? = e € R. Suppose ab = 0 for any a,b € R. Since R is right
p.p.-ring, we have b € r(a) = eR, b =eb. So aa(b) = aa(eb) = aea(b) = 0. Conversely, let aa(b) = 0. Then
axb = 0. Since Rz, ] is right p.p.-ring, we have b € g, o](ax) = eR[z, a] for some idempotent e € R[z,a].

So b=eb, are =0. By Lemma 2.20, e € R. Hence ae = 0 and ab = aeb = 0. Therefore R is «-abelian. O
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Lemma 2.22 Let R be an a-abelian ring. If for any countable subset X of R, r(X) = eR, where ¢ = e € R,
then

(1) R[z,q]] is a right p.p.-ring.

(2) If « is an automorphism of R, then R[[z,z~ %, a]] is a right p.p.-ring.

Proof. Let a € R. Since {a} is countable subset of R, r(a) = eR, i.e., R is a right p.p.-ring. Then from
Theorem 2.15, R is a-Armendariz of power series type. By [11, Theorem 2.11.(1)(c), Theorem 2.11.(2)(c) ],
R[[x,a]] and R|[[z,z~!, a]] are right p.p.-rings. 0

Theorem 2.23 Let R be an «-abelian ring. Then we have:

(1) R is a right p.p.-ring if and only if R[x, ] is a right p.p.-ring.

(2) R is a Baer ring if and only if R[x,a] is a Baer ring.

(3) R is a right p.q.-Baer ring if and only if R[x, ] is a right p.q.-Baer ring.

(4) R is a Baer ring if and only if R[[z,«]] is a Baer ring.

Let o € Aut(R).

(5) R is a Baer ring if and only if Rlx,z~1, a] is a Baer ring.

(6) R is a right p.p.-ring if and only if R[x,x~, ] is a right p.p.-ring.

(7) R is a Baer ring if and only if R[[z,x~, a]] is a Baer ring.

Proof. (1) “=7: Let f(x) = ap + a1z + ... + ey’ € R[z,a]. We claim that rgp o) (f(z)) = eR[z, o],
where e = epey...e;, €7 = e; and rr(a;) = e;R, i = 0,1,...,t. By hypothesis and Lemma 2.3, f(z)e =
A0€0e1...€1 + A1€1€0€3...6,T + ... + azereper...eq—1xt = 0. Then eR[x] C TRz,a)(f(7)). Let g(x) = bo + b1z +
o+ bpx™ € TR (f(x)). Then f(x)g(z) = 0. Since R is an abelian and right p.p.-ring, by Theorem 2.9,
R is Armendariz. So a;b; = 0 and this implies b; € rr(a;) = €;R, and then b; = e;b; for any i. Therefore
g(x) = eg(z) € eR[z, a]. This completes the proof of (1) “=".

? < 7: Let a € R. Then there exists e(x)? = e(x) € Rz, o] such that 7y j(a) = e(x)R[z,o]. Then
the constant term, ey say, of e(z) is non-zero, and ey is an idempotent in R. So egR C rgr(a). Now let
b€ rr(a). Since rr(a) C rgrz,q)(a), ab= 0 implies that b = e(x)b and so b = egb. Hence rr(a) C egR, that
is, rr(a) = egR. Therefore R is a right p.p.-ring.

(2) 7 = 7: Since R is Baer, R is a right p.p.-ring. By Lemma 2.5, R is Armendariz. Then from [11, Theorem
2.5.1(a)], R[z, a] is Baer.

” &7 Let R[x,a] be a Baer ring and X be a subset of R. There exists e(x)? = e(x) = eg+e12 +... +e, 2" €
R[z,a] such that 7g[;.q0)(X) = e(z)R[z, a]. We claim that rp(X) = eoR. If a € rp(X), then a = e(x)a and
so a = epa. Hence rr(X) C egR. Since Xe(x) = 0, we have Xey = 0, that is, egR C rg(X). Then R is a
Baer ring.

(3) 7 = 7: Let f(x) = ap + a1z + ... + a;a’ € Rlz,a]. We prove rpp o (f(z)R[z,0]) = e(x)R[z,q],
where e(x) = epey...er, rr(a;R) = e;R. Since R is abelian, for any h(z) € Rlz,a] f(z)h(x)e(x) = 0.
Then e(x)R[x,a] C rgpo(f(z)Rz,a]). Let g(x) = by + b1z + ... + bp2™ € TRz (f(x)R[z,a]). Then
f(@)R[z,alg(x) = 0 and so, f(z)Rg(xz) = 0. From last equality we have agRby = 0. Hence by € rr(agR) =
eoR. It follows that by = egbg. Also for any r € R, the coefficient of z is equal to agrb; + aja(rby).
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Hence agrby + a1a(rby) = 0. Multiplying the equation agrb; + a1a(rby) = 0 from the right by eg, we have
ara(rboeg) = 0, that is, a1a(rby) = 0. Since R is a-abelian, a17bp = 0. This implies a1 Rby = 0. Then
bp € "r(a1R) = e1R and by € rr(apR) = epR. So, by = e1by and by = epby. Again for any r € R,
aorbs + a171b1 + aorbg = 0. Multiplying this equality from right by ege; and using previous results, we have
asrbg = 0. Then by € rr(azR) = eaR. So by = eaby. Continuing this process we have b; = e;b; for any i, j.
This implies g(z) = eges...etg(x). So, Rz, ] is a right p.q.-Baer ring,.

7 < 7: Let a € R. Then rgp o (aR[z,a]) = e(@)R[z, o], where e(z)? = e(z) € R[z,o]. By Lemma
2.18, e(x) = ep € R. Since aR[z,ale(x) = 0, aR[zx,alep = 0 and aRey = 0. So, egR C rr(aR). Let
r € rr(aR) = rr(aR[r,a]) C TRy o) (aR[r,a]) = e(x)R[z,a]. Then e(z)r = r. This implies egr = 7 and so
r € egR. Therefore rr(aR[z,a]) = eoR, i.e., R is a right p.q.-Baer ring.

(4) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, so the proof follows from
[11, Theorem 2.5 (1)(b)].

(5) By Corollary 2.16, R is a-Armendariz, then proof follows from [11, Theorem 2.5 (2)(a)].

(6) Since every a-abelian and right p.p.-ring is a-Armendariz by Theorem 2.9, the proof follows from [11,
Theorem 2.11 (2)(a)].

(7) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, it follows from [11,
Theorem 2.5 (2)(b)]. O
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