On Abelian Rings

Nazim Agayev, Abdullah Harmancı, Sait Halıcıoğlu

Abstract

Let α be an endomorphism of an arbitrary ring R with identity. In this note, we introduce the notion of α-abelian rings which generalizes abelian rings. We prove that α-reduced rings, α-symmetric rings, α-semicommutative rings and α-Armendariz rings are α-abelian. For a right principally projective ring R, we also prove that R is α-reduced if and only if R is α-symmetric if and only if R is α-semicommutative if and only if R is α-Armendariz if and only if R is α-Armendariz of power series type if and only if R is α-abelian.

Key word and phrases: α-reduced rings, α-symmetric rings, α-semicommutative rings, α-Armendariz rings, α-abelian rings.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1 and α denotes a non-zero and non-identity endomorphism of a given ring with $\alpha(1) = 1$, and 1 denotes identity endomorphism, unless specified otherwise.

We write $R[x], R[[x]], R[x, x^{-1}]$ and $R[[x, x^{-1}]]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively. Consider

\[
R[x, \alpha] = \left\{ \sum_{i=0}^{s} a_i x^i : s \geq 0, a_i \in R \right\},
\]

\[
R[[x, \alpha]] = \left\{ \sum_{i=0}^{\infty} a_i x^i : a_i \in R \right\},
\]

\[
R[x, x^{-1}, \alpha] = \left\{ \sum_{i=-s}^{t} a_i x^i : s \geq 0, t \geq 0, a_i \in R \right\},
\]

\[
R[[x, x^{-1}], \alpha]] = \left\{ \sum_{i=-s}^{\infty} a_i x^i : s \geq 0, a_i \in R \right\}.
\]
Each of these is an abelian group under an obvious addition operation. Moreover, \(R[x, \alpha] \) becomes a ring under the following product operation:

\[
\text{For } f(x) = \sum_{i=0}^{s} a_i x^i, g(x) = \sum_{i=0}^{t} b_i x^i \in R[x, \alpha]
\]

\[
f(x)g(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} a_i \alpha^i(b_j) \right) x^k.
\]

Similarly, \(R[[x, \alpha]] \) is a ring. The rings \(R[x, \alpha] \) and \(R[[x, \alpha]] \) are called the \textit{skew polynomial extension} and the \textit{skew power series extension} of \(R \), respectively. If \(\alpha \in \text{Aut}(R) \), then with a similar scalar product, \(R[[x, x^{-1}, \alpha]] \) (resp. \(R[x, x^{-1}, \alpha] \)) becomes a ring. The rings \(R[x, x^{-1}, \alpha] \) and \(R[[x, x^{-1}, \alpha]] \) are called the \textit{skew Laurent polynomial extension} and the \textit{skew Laurent power series extension} of \(R \), respectively.

In [8], \textit{Baer rings} are introduced as rings in which the right(left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [4], a ring \(R \) is said to be \textit{quasi-Baer ring} if the right annihilator of each right ideal of \(R \) is generated (as a right ideal) by an idempotent. These definitions are left-right symmetric. A ring \(R \) is called \textit{right principally quasi-Baer ring} (or simply, right p.q.-Baer ring) if the right annihilator of a principally right ideal of \(R \) is generated by an idempotent. Finally, a ring \(R \) is called \textit{right principally projective ring} (or simply, right p.p.-ring) if the right annihilator of an element of \(R \) is generated by an idempotent [2].

2. Abelian Rings

In this section the notion of an \(\alpha \)-abelian ring is introduced as a generalization of an abelian ring. We show that many results of abelian rings can be extended to \(\alpha \)-abelian rings for this general settings.

The ring \(R \) is called \textit{abelian} if every idempotent is central, that is, \(ae = ea \) for any \(e^2 = e \), \(a \in R \).

Definition 2.1 A ring \(R \) is called \(\alpha \)-abelian if, for any \(a, b \in R \) and any idempotent \(e \in R \),

(i) \(ea = ae \),

(ii) \(ab = 0 \) if and only if \(a\alpha(b) = 0 \).

So a ring \(R \) is \textit{abelian} if and only if it is \textbf{1}-abelian.

Example 2.2 Let \(\mathbb{Z}_4 \) be the ring of integers modulo 4. Consider the ring \(R = \{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{Z}_4 \} \) with the usual matrix operations. Let \(\alpha : R \to R \) be defined by \(\alpha(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}) = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix} \). It is easy to check that \(\alpha \) is a homomorphism of \(R \). We show that \(R \) is an \(\alpha \)-abelian ring. Since \(R \) is commutative, \(R \) is abelian. To complete the proof we check that for any \(r, s \in R \), \(rs = 0 \) if and only if \(r\alpha(s) = 0 \). We prove one way implication. The other way is similar. So let \(r = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \), \(s = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \in R \). Assume that \(rs = 0 \) and
r and s are nonzero. Then we have \(ax = 0 \) and \(ay + bx = 0 \). If \(a = 0 \), then easy calculation shows that \(r\alpha(s) = 0 \). So we suppose \(a \neq 0 \). If \(x = 0 \) then \(r\alpha(s) = 0 \). Assume \(x \neq 0 \). Then \(a = 2 \) and \(x = 2 \). It implies \(r\alpha(s) = 0 \). Therefore \(R \) is \(\alpha \)-abelian.

Lemma 2.3 Let \(R \) be a ring such that for any \(a, b \in R \), \(ab = 0 \) implies \(a\alpha(b) = 0 \), then \(\alpha(e) = e \) for every idempotent \(e \in R \).

Proof. Since \(e(1-e) = 0 \) and \(\alpha(1) = 1 \), then \(0 = e\alpha(1-e) = e-e\alpha(e) \). So \(e = e\alpha(e) \). Further, \((1-e)e = 0 \). Then \((1-e)\alpha(e) = 0 \). Therefore, \(\alpha(e) = e\alpha(e) \). So, we have \(e = e\alpha(e) \) and \(\alpha(e) = e\alpha(e) \). Hence, \(e = \alpha(e) \).

Example 2.4 shows that there exists an abelian ring, but it is not \(\alpha \)-abelian.

Example 2.4 Let \(R \) be the ring \(\mathbb{Z} \oplus \mathbb{Z} \) with the usual componentwise operations. It is clear that \(R \) is an abelian ring. Let \(\alpha : R \to R \) be defined by \(\alpha(a, b) = (b, a) \). Then \((1, 0)(0, 1) = 0 \), but \((1, 0)\alpha(0, 1) \neq 0 \). Hence \(R \) is not \(\alpha \)-abelian.

The ring \(R \) is called \emph{semicommutative} if \(ab = 0 \) implies \(aRb = 0 \), for any \(a, b \in R \). A ring \(R \) is called \(\alpha \)-\emph{semicommutative} if \(ab = 0 \) implies \(a\alpha(b) = 0 \), for any \(a, b \in R \). Agayev and Harmanci studied basic properties of \(\alpha \)-semicommutative rings and focused on the semicommutativity of subrings of matrix rings (see [1]). In this note, the ring \(R \) is said to be \(\alpha \)-\emph{semicommutative} if, for any \(a, b \in R \),

(i) \(ab = 0 \) implies \(aRb = 0 \),

(ii) \(ab = 0 \) if and only if \(a\alpha(b) = 0 \).

It is clear that a ring \(R \) is semicommutative if and only if it is \emph{1}-semicommutative. The first part of Lemma 2.5 is proved in [7]. We give the proof for the sake of completeness.

Lemma 2.5 If the ring \(R \) is \(\alpha \)-semicommutative, then \(R \) is \(\alpha \)-abelian. The converse holds if \(R \) is a right p.p.-ring.

Proof. If \(e \) is an idempotent in \(R \), then \(e(1-e) = 0 \). Since \(R \) is \(\alpha \)-semicommutative, we have \(e\alpha(1-e) = 0 \) for any \(a \in R \) and so \(ea = eae \). On the other hand, \((1-e)e = 0 \) implies that \((1-e)ae = 0 \), so we have \(ae = eae \). Therefore, \(ae = ea \). Suppose now \(R \) is an \(\alpha \)-abelian and right p.p.-ring. Let \(a, b \in R \) with \(ab = 0 \). Then \(a \in r(b) = eR \) for some \(e^2 = e \in R \) and so \(be = 0 \) and \(a = ea \). Since \(R \) is \(\alpha \)-abelian, we have \(arb = earb = arbe = 0 \) for any \(r \in R \), that is, \(aRb = 0 \). Therefore \(R \) is \(\alpha \)-semicommutative.

Corollary 2.6 If the ring \(R \) is semicommutative, then \(R \) is abelian. The converse holds if \(R \) is a right p.p.-ring.

Corollary 2.7 Let \(R \) be an \(\alpha \)-abelian and right p.p.-ring. Then \(r(a) = r(aR) \), for any \(a \in R \).

Corollary 2.8 Let \(R \) be an \(\alpha \)-abelian and right p.p.-ring. Then \(R \) is a right p.q.-Baer ring.

Proof. It follows from Corollary 2.7.
For a right R-module M, consider $M[x, \alpha] = \{ \sum_{i=0}^{s} m_{i}x^{i} : s \geq 0, m_{i} \in M \}$. $M[x, \alpha]$ is an abelian group under an obvious addition operation and becomes a right module over $R[x, \alpha]$ under the following scalar product operation:

For $m(x) = \sum_{i=0}^{s} m_{i}x^{i} \in M[x, \alpha]$ and $f(x) = \sum_{i=0}^{t} a_{i}x^{i} \in R[x, \alpha]$

$$m(x)f(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} m_{i}a^{j}(a_{j}) \right) x^{k}.$$

In [12], the ring R is called Armendariz if for any $f(x) = \sum_{i=0}^{s} a_{i}x^{i}, g(x) = \sum_{j=0}^{s} b_{j}x^{j} \in R[x]$, $f(x)g(x) = 0$ implies $a_{i}b_{j} = 0$ for all i and j. This definition of Armendariz ring is extended to modules in [11]. A module M is called α-Armendariz if the following conditions (1) and (2) are satisfied, and the module M is called α-Armendariz of power series type if the following conditions (1) and (3) are satisfied:

(1) For $m \in M$ and $a \in R$, $ma = 0$ if and only if $m\alpha(a) = 0$.

(2) For any $m(x) = \sum_{i=0}^{s} m_{i}x^{i} \in M[x, \alpha]$, $f(x) = \sum_{j=0}^{s} a_{j}x^{j} \in R[x, \alpha]$, $m(x)f(x) = 0$ implies $m_{i}\alpha^{i}(a_{j}) = 0$ for all i and j.

(3) For any $m(x) = \sum_{i=0}^{s} m_{i}x^{i} \in M[[x, \alpha]]$, $f(x) = \sum_{i=0}^{\infty} a_{j}x^{j} \in R[[x, \alpha]]$, $m(x)f(x) = 0$ implies $m_{i}\alpha^{i}(a_{j}) = 0$ for all i and j.

In this note, the ring R is called α-Armendariz (\alpha-Armendariz of power series type) if R_{R} is α-Armendariz (\alpha-Armendariz of power series type) module. Hence R is an Armendariz (Armendariz of power series type) ring if and only if R_{R} is an $\textbf{1}$-Armendariz (\textbf{1}-Armendariz of power series type) module.

Theorem 2.9 If the ring R is α-Armendariz, then R is α-abelian. The converse holds if R is a right p.p.-ring.

Proof. Let $f_{1}(x) = e - ea(1 - e)x$, $f_{2}(x) = (1 - e) - (1 - e)ax$, $g_{1}(x) = 1 - e + ea(1 - e)x$, $g_{2}(x) = e + (1 - e)ax \in R[x, \alpha]$, where e is an idempotent in R and $a \in R$. Then $f_{1}(x)g_{1}(x) = 0$ and $f_{2}(x)g_{2}(x) = 0$. Since R is α-Armendariz, we have $ea(1 - e)\alpha(1 - e) = 0$. By Lemma 2.3, $\alpha(1 - e) = 1 - e$ and so $ea(1 - e) = 0$. Similarly, $f_{2}(x)g_{2}(x) = 0$ implies that $(1 - e)ae = 0$. Then $ae = eae = ea$, so R is α-abelian.

Suppose now R is an α-abelian and right p.p.-ring. Then R is abelian, and so every idempotent is central. By Lemma 2.3, $\alpha(e) = e$ for every idempotent $e \in R$. From Lemma 2.5, R is α-semicommutative, i.e., $ab = 0$ implies $aRb = 0$ for any $a, b \in R$. Let $f(x) = \sum_{i=0}^{s} a_{i}x^{i}$, $g(x) = \sum_{j=0}^{t} b_{j}x^{j} \in R[x, \alpha]$. Assume $f(x)g(x) = 0$. Then we have:

1. $a_{0}b_{0} = 0$
2. $a_{0}b_{1} + a_{1}\alpha(b_{0}) = 0$
3. $a_{0}b_{2} + a_{1}\alpha(b_{1}) + a_{2}\alpha^{2}(b_{0}) = 0$

...
Corollary 2.10 If the ring R is Armendariz, then R is abelian. The converse holds if R is a right p.p.-ring.

Proposition 2.11 If the ring R is α-Armendariz of power series type, then R is α-abelian. The converse holds if R is a right p.p.-ring.

Proof. Similar to the proof of Theorem 2.9.

Recall that a ring is reduced if it has no nonzero nilpotent elements. In [11], Lee and Zhou introduced α-reduced module. A module M is called α-reduced if, for any $m \in M$ and any $a \in R$,

1. $ma = 0$ implies $mR \cap Ma = 0$
2. $ma = 0$ if and only if $ma(a) = 0$.

In this work, we call the ring R α-reduced if R_R is an α-reduced module. Hence R is a reduced ring if and only if R_R is an 1-reduced module.

In [5], Hong et al. studied α-rigid rings. For an endomorphism α of a ring R, R is called α-rigid if $a\alpha(a) = 0$ implies $a = 0$ for any a in R. The relationship between α-rigid rings and α-skew Armendariz rings was studied in [6]. In fact, R is an α-Armendariz ring if and only if (1) R is an α-skew Armendariz ring and (2) $ab = 0$ if and only if $a\alpha(b) = 0$ for any a, b in R. Note that α-reduced ring is α-rigid. Really, let R be an α-reduced ring and $a\alpha(a) = 0$ for some a in R. Then $a^2 = 0$. Since R is reduced, we have $a = 0$. Further, by [5, Proposition 6], any α-reduced ring R is α-Armendariz. By Theorem 2.9, R is α-abelian. So, the first statement of Lemma 2.12 is a direct corollary of [5, Proposition 6].

Lemma 2.12 If R is an α-reduced ring, then R is α-abelian. The converse holds if R is a right p.p.-ring.

Proof. Let R be an α-abelian and right p.p.-ring. Suppose $ab = 0$ for $a, b \in R$. If $x \in aR \cap Rb$, then there exist $r_1, r_2 \in R$ such that $x = ar_1 = r_2b$. Since R is right p.p.-ring, $ab = 0$ implies that $b \in r(a) = eR$ for some idempotent $e^2 = e \in R$. Then $b = eb$ and $xe = ar_1e = r_2be$. Since R is α-abelian and $ae = 0$, we have $ar_1e = aer_1 = r_2be = r_2be = r_2b = 0$. Hence $aR \cap Rb = 0$, that is, R is α-reduced.

Corollary 2.13 If R is a reduced ring, then R is abelian. The converse holds if R is a right p.p.-ring.

According to Lambek [10], a ring R is called symmetric if whenever $a, b, c \in R$ satisfy $abc = 0$, we have $bac = 0$; it is easily seen that this is a left-right symmetric concept. We now introduce α-symmetric rings as a generalization of symmetric rings.
Definition 2.14 The ring R is called α-symmetric if, for any $a, b, c \in R$,
(i) $abc = 0$ implies $acb = 0$,
(ii) $ab = 0$ if and only if $a\alpha(b) = 0$.

It is clear that a ring R is symmetric if and only if it is 1-symmetric.

Theorem 2.15 Let R be a right p.p-ring. Then the following are equivalent:
(1) R is α-reduced.
(2) R is α-symmetric.
(3) R is α-semicommutative.
(4) R is α-Armendariz.
(5) R is α-Armendariz of power series type.
(6) R is α-abelian.

Proof. (1) \Leftrightarrow (6) From Lemma 2.12.
(4) \Leftrightarrow (6) Clear from Theorem 2.9.
(3) \Leftrightarrow (6) From Lemma 2.5.
(5) \Leftrightarrow (6) From Proposition 2.11.
(2) \Rightarrow (3) Let $a, b \in R$ with $ab = 0$. By hypothesis, $abc = 0$ implies $acb = 0$ for all $c \in R$. Hence $aRb = 0$ and so R is α-semicommutative.
(3) \Rightarrow (2) Assume that $abc = 0$, for any $a, b, c \in R$. Since R is right p.p-ring, $c \in r(ab) = eR$ for some idempotent $e \in R$. Then $c = ec$ and $abe = 0$, so $acbe = 0$. We have already proved that semicommutativity implied being abelian, then $acbe = aecb$. Now $acb = aecb = acbe = 0$. It completes the proof. \(\square\)

Corollary 2.16 Let R be a Baer ring. Then the following are equivalent:
(1) R is α-reduced.
(2) R is α-symmetric.
(3) R is α-semicommutative.
(4) R is α-Armendariz.
(5) R is α-Armendariz of power series type.
(6) R is α-abelian.

One may suspect that if R is an abelian ring, then $R[x, \alpha]$ is abelian also. But this is not the case.

Example 2.17 Let F be any field, $R = \{ \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u \end{pmatrix} | a, b, u, v \in F \}$ and $\alpha : R \to R$ be defined by
$$\alpha \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u \end{pmatrix} = \begin{pmatrix} u & v & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}, \text{ where } \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u \end{pmatrix} \in R$$
Since R is commutative, R is abelian. We claim that $R[x, \alpha]$ is not an abelian ring. Let e_{ij} denote the 4×4 matrix units having alone 1 as its (i, j)-entry and all other entries 0. Consider $e = e_{11} + e_{22}$ and $f = e_{33} + e_{44} \in R$ and $e(x) = e + fx \in R[x; \alpha]$. Then $e(x)^2 = e(x)$, $ef = fe = 0$, $e^2 = e$, $f^2 = f$, $\alpha(e) = f$, $\alpha(f) = e$. An easy calculation reveals that $e(x)e_{12} = e_{12} + e_{34}x$, but $e_{12}e(x) = e_{12}$. Hence $R[x, \alpha]$ is not an abelian ring.

Lemma 2.18 If R is an α-abelian ring, then the idempotents of $R[x, \alpha]$ belong to R, therefore $R[x, \alpha]$ is an abelian ring.

Proof. Let R be α-abelian and $e(x) = \sum_{i=0}^t e_i x^i$ be an idempotent in $R[x, \alpha]$. Since $e(x)^2 = e(x)$, we have

\[
\begin{align*}
e_0^2 &= e_0 \quad (1) \\
e_0 e_1 + e_1 \alpha(e_0) &= e_1 \quad (2) \\
e_0 e_2 + e_1 \alpha(e_1) + e_2 \alpha^2(e_0) &= e_2 \quad (3) \\
&\quad \vdots
\end{align*}
\]

Since R is α-abelian, R is abelian, and so every idempotent is central. By Lemma 2.3, $\alpha(e) = e$ for every idempotent $e \in R$. Then (2) becomes $e_0 e_1 + e_1 e_0 = e_1$ and so $e_1 = 0$. Since e_0 is central idempotent, (3) becomes $e_0 e_2 + e_2 e_0 = e_2$ and so $e_2 = 0$. Similarly, it can be shown that $e_i = 0$ for $i = 1, 2, \ldots, t$. This completes the proof.

Lemma 2.19 If $R[x, \alpha]$ is an abelian ring, then $\alpha(e) = e$ for every idempotent $e \in R$.

Proof. Since $R[x, \alpha]$ is abelian, we have $f(x)e(x) = e(x)f(x)$ for any $f(x), e(x) \in R[x, \alpha]$. In particular, $xe = ex$ for every idempotent $e \in R$. Hence $xe = ex = \alpha(e)x$ and so $\alpha(e) = e$.

Lemma 2.20 If $R[x, \alpha]$ is an abelian ring, then the idempotents of $R[x, \alpha]$ belong to R.

Proof. Similar to the proof of Lemma 2.18.

Theorem 2.21 If R is an α-abelian ring, then $R[x, \alpha]$ is abelian. The converse holds if $R[x, \alpha]$ is a right p.p.-ring.

Proof. If R is α-abelian, by Lemma 2.18, $R[x, \alpha]$ is abelian. Suppose that $R[x, \alpha]$ be an abelian and right p.p.-ring. It is clear that $ae = ea$ for any $a, e \in R$. Suppose $ab = 0$ for any $a, b \in R$. Since R is right p.p.-ring, we have $b \in r(a) = eR$, $b = eb$. So $\alpha(a)(b) = \alpha(a)(eb) = ace(b) = 0$. Conversely, let $\alpha(a)(b) = 0$. Then $axb = 0$. Since $R[x, \alpha]$ is right p.p.-ring, we have $b \in r_{R[x, \alpha]}(ax) = eR[x, \alpha]$ for some idempotent $e \in R[x, \alpha]$. So $b = eb$, $axe = 0$. By Lemma 2.20, $e \in R$. Hence $ae = 0$ and $ab = ae b = 0$. Therefore R is α-abelian.
Lemma 2.22 Let R be an α-abelian ring. If for any countable subset X of R, $r(X) = eR$, where $e^2 = e \in R$, then
(1) $R[[x, \alpha]]$ is a right p.p.-ring.
(2) If α is an automorphism of R, then $R[[x, x^{-1}, \alpha]]$ is a right p.p.-ring.

Proof. Let $a \in R$. Since $\{a\}$ is countable subset of R, $r(a) = eR$, i.e., R is a right p.p.-ring. Then from Theorem 2.15, R is Armendariz of power series type. By [11, Theorem 2.11.1(c), Theorem 2.11.2(c)], $R[[x, \alpha]]$ and $R[[x, x^{-1}, \alpha]]$ are right p.p.-rings.

\[\square \]

Theorem 2.23 Let R be an α-abelian ring. Then we have:
(1) R is a right p.p.-ring if and only if $R[x, \alpha]$ is a right p.p.-ring.
(2) R is a Baer ring if and only if $R[x, \alpha]$ is a Baer ring.
(3) R is a right p.q.-Baer ring if and only if $R[x, \alpha]$ is a right p.q.-Baer ring.
(4) R is a Baer ring if and only if $R[[x, \alpha]]$ is a Baer ring.
(5) R is a Baer ring if and only if $R[[x, x^{-1}, \alpha]]$ is a Baer ring.
(6) R is a right p.p.-ring if and only if $R[[x, x^{-1}, \alpha]]$ is a right p.p.-ring.
(7) R is a Baer ring if and only if $R[[x, x^{-1}, \alpha]]$ is a Baer ring.

Proof. (1) \Rightarrow Let $f(x) = a_0 + a_1x + ... + ax^t \in R[x, \alpha]$. We claim that $r_{R[x, \alpha]}(f(x)) = eR[x, \alpha]$, where $e = e_0e_1...e_t$, $e_i^2 = e_i$ and $r_{R(a_i)} = e_R$, $i = 0, 1, ..., t$. By hypothesis and Lemma 2.3, $f(x)e = a_0e_0e_1...e_t + a_1e_1e_0e_2...e_tx + ... + a_r(e_0e_1...e_{r-1}x^r) = 0$. Then $e \mathcal{R}(x) \subseteq r_{R[x, \alpha]}(f(x))$. Let $g(x) = b_0 + b_1x + ... + b_nx^n \in r_{R[x, \alpha]}(f(x))$. Then $f(x)g(x) = 0$. Since R is an abelian and right p.p.-ring, by Theorem 2.9, R is Armendariz. So $a_ib_j = 0$ and this implies $b_i \in r_{R(a_i)} = e_iR$, and then $b_i = e_i b_i$ for any i. Therefore $g(x) = eg(x) \in eR[x, \alpha]$. This completes the proof of (1) \Rightarrow.

\Leftarrow: Let $a \in R$. Then there exists $e(x)^2 = e(x) \in R[x, \alpha]$ such that $r_{R(x, \alpha)}(a) = e(x)R[x, \alpha]$. Then the constant term, e_0, say, of $e(x)$ is non-zero, and e_0 is an idempotent in R. So $a_0R \subset r_{R(a)}$. Now let $b \in r_{R(a)}$. Since $r_{R(a)} \subseteq r_{R[x, \alpha]}(a)$, $ab = 0$ implies that $b = e(x)b$ and $b \in e_0b$. Hence $r_{R(a)} \subseteq e_0R$, that is, $r_{R(a)} = e_0R$. Therefore R is a right p.p.-ring.

(2) \Rightarrow: Since R is Baer, R is a right p.p.-ring. By Lemma 2.5, R is Armendariz. Then from [11, Theorem 2.5.1(c)], $R[x, \alpha]$ is Baer.

\Leftarrow: Let $R[x, \alpha]$ be a Baer ring and X be a subset of R. There exists $e(x)^2 = e(x) = e_0 + e_1x + ... + e_nx^n \in R[x, \alpha]$ such that $r_{R[x, \alpha]}(X) = e(x)R[x, \alpha]$. We claim that $r_{R(X)}(x) = e_0R$. If $a \in r_{R}(X)$, then $a = e(x)a$ and so $a = e_0a$. Hence $r_{R(X)} \subseteq e_0R$. Since $Xe(x) = 0$, we have $Xe_0 = 0$, that is, $e_0R \subseteq r_{R}(X)$. Then R is a Baer ring.

(3) \Rightarrow: Let $f(x) = a_0 + a_1x + ... + a_nx^n \in R[x, \alpha]$. We prove $r_{R[x, \alpha]}(f(x)R[x, \alpha]) = e(x)R[x, \alpha]$, where $e(x) = e_0e_1...e_t$, $r_{R(a,R)} = e_R$. Since R is abelian, for any $h(x) \in R[x, \alpha]$ $f(x)h(x)e(x) = 0$. Then $e(x)R[x, \alpha] \subseteq r_{R[x, \alpha]}(f(x)R[x, \alpha])$. Let $g(x) = b_0 + b_1x + ... + b_nx^n \in r_{R[x, \alpha]}(f(x)R[x, \alpha])$. Then $f(x)g(x)(x) = 0$ and so, $f(x)Rg(x) = 0$. From last equality we have $a_0Rb_0 = 0$. Hence $b_0 \in r_{R(a_0R)} = e_0R$. It follows that $b_0 = e_0b_0$. Also for any $r \in R$, the coefficient of x is equal to $a_0b_1 + a_1\alpha(rb_0)$.

472
Hence $a_0 rb_1 + a_1 \alpha(rb_0) = 0$. Multiplying the equation $a_0 rb_1 + a_1 \alpha(rb_0) = 0$ from the right by e_0, we have $a_1 \alpha(rb_0 e_0) = 0$, that is, $a_1 \alpha(rb_0) = 0$. Since R is α-abelian, $a_1 rb_0 = 0$. This implies $a_1 Rb_0 = 0$. Then $b_0 \in r_R(a_1 R) = e_1 R$ and $b_1 \in r_R(a_0 R) = e_0 R$. So, $b_0 = e_1 b_0$ and $b_1 = e_0 b_1$. Again for any $r \in R$, $a_0 rb_2 + a_1 rb_1 + a_2 rb_0 = 0$. Multiplying this equality from right by $e_0 e_1$ and using previous results, we have $a_2 rb_0 = 0$. Then $b_1 \in r_R(a_2 R) = e_2 R$. So $b_0 = e_2 b_0$. Continuing this process we have $b_i = e_j b_i$ for any i, j. This implies $g(x) = e_0 e_1 \ldots e_j g(x)$. So, $R[x, \alpha]$ is a right p.q.-Baer ring.

"\Leftarrow": Let $a \in R$. Then $r_{R[x, \alpha]}(aR[x, \alpha]) = e(x)R[x, \alpha]$, where $e(x)^2 = e(x) \in R[x, \alpha]$. By Lemma 2.18, $e(x) = e_0 \in R$. Since $aR[x, \alpha]e(x) = 0$, $aR[x, \alpha]e_0 = 0$ and $aRe_0 = 0$. So, $e_0 R \subset r_R(aR)$. Let $r \in r_R(aR) = r_{R[aR[x, \alpha]]} \subset r_{R[x, \alpha]}(aR[x, \alpha]) = e(x)R[x, \alpha]$. Then $e(x)r = r$. This implies $e_0 r = r$ and so $r \in e_0 R$. Therefore $r_{R[aR[x, \alpha]]} = e_0 R$, i.e., R is a right p.q.-Baer ring.

(4) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, so the proof follows from [11, Theorem 2.5 (1)(b)].

(5) By Corollary 2.16, R is α-Armendariz, then proof follows from [11, Theorem 2.5 (2)(a)].

(6) Since every α-abelian and right p.p.-ring is α-Armendariz by Theorem 2.9, the proof follows from [11, Theorem 2.11 (2)(a)].

(7) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, it follows from [11, Theorem 2.5 (2)(b)].

\[\Box\]

\textbf{Acknowledgment} The authors express their gratitudes to the referee for (his/her) valuable suggestions.

\textbf{References}

Nazim AGAYEV
Department of Computer Engineering,
European University of Lefke,
Gemikonagi-Lefke, Mersin 10, Cyprus
e-mail: nagayev@eul.edu.tr

Abdullah HARMANCI
Mathematics Department
Hacettepe University
06550 Ankara, Turkey
e-mail: harmanci@hacettepe.edu.tr

Sait HALICIOĞLU
Department of Mathematics
Ankara University
06100 Ankara, Turkey
e-mail: halici@science.ankara.edu.tr

Received 05.11.2007