ON PRINCIPALLY QUASI-BAER MODULES

BURCU UNGOR
Department of Mathematics
Ankara University, Ankara, Turkey
Email: burcuungor@gmail.com

NAZIM AGAYEV
Department of Computer Engineering
European University of Lefke, Cyprus
Email: agayev@eul.edu.tr

SAIT HALICI OG LU
Department of Mathematics
Ankara University, Ankara, Turkey
Email: halici@ankara.edu.tr

ABDULLAH HARM ANCI
Maths Department
Hacettepe University, Ankara, Turkey
Email: harmanci@hacettepe.edu.tr

Abstract. Let R be an arbitrary ring with identity and M a right R-module with $S = \text{End}_R(M)$. In this paper, we introduce a class of modules that is a generalization of principally quasi-Baer rings and Baer modules. The module SM is called principally quasi-Baer if for any $m \in M$, $l_S(Sm) = Se$ for some $e^2 = e \in S$. It is proved that (1) if SM is regular and semicommutative module or (2) if MR is principally semisimple and SM is abelian, then SM is a principally quasi-Baer module. The connection between a principally quasi-Baer module SM and polynomial extension, power series extension, Laurent polynomial extension, Laurent power series extension of SM is investigated.

1. Introduction

Throughout this paper R denotes an associative ring with identity, and modules will be unitary right R-modules. For a module M, $S = \text{End}_R(M)$ denotes the ring of right R-module endomorphisms of M. Then M is a left S-module, right R-module and (S, R)-bimodule. In this work, for any rings S and R and any (S, R)-bimodule M, $r_M(\cdot)$ and $l_M(\cdot)$ denote the right annihilator of a subset of M in R.

1991 Mathematics Subject Classification. 13C99, 16D80, 16U80.
Key words and phrases. Baer modules, quasi-Baer modules, principally quasi-Baer modules.
and the left annihilator of a subset of R in M, respectively. Similarly, $l_S(.)$ and $r_M(.)$ will be the left annihilator of a subset of M in S and the right annihilator of a subset of S in M, respectively. A ring R is reduced if it has no nonzero nilpotent elements. Recently the reduced ring concept was extended to modules by Lee and Zhou in [9], that is, a module M is called reduced if for any $m \in M$ and any $a \in R$, $ma = 0$ implies $mR \cap Ma = 0$. A ring R is called semicommutative if for any $a, b \in R$, $ab = 0$ implies $aRb = 0$. The module $S M$ is called semicommutative if for any $f \in S$ and $m \in M$, $fm = 0$ implies $f Sm = 0$ (see [3] for details). Baer rings [7] are introduced as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. A ring R is said to be right quasi-Baer [5] if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. A ring R is called right principally quasi-Baer [4] if the right annihilator of a principal right ideal of R is generated by an idempotent. An R-module $S M$ is called Baer [12] if for all R-submodules N of M, $l_S(N) = Se$ with $e^2 = e \in S$. The module $S M$ is said to be quasi-Baer if for all fully invariant R-submodules N of M, $l_S(N) = Se$ with $e^2 = e \in S$. A ring R is called abelian if every idempotent element is central, that is, $ae = ea$ for any $e^2 = e$, $a \in R$. Abelian modules are introduced in the context by Roos in [14] and studied by Goodearl and Boyle [6], Rizvi and Roman [13]. A module $S M$ is called abelian if for any $f \in S$, $e^2 = e \in S$, $m \in M$, we have $fem = efm$. Note that $S M$ is an abelian module if and only if S is an abelian ring. In what follows, by Z, Q, Z_n and Z/nZ we denote integers, rational numbers, the ring of integers modulo n and the Z-module of integers modulo n, respectively.

2. Principally Quasi-Baer Modules

Some properties of R-modules do not characterize the ring R, namely there are reduced R-modules but R need not be reduced and there are abelian R-modules but R is not an abelian ring. Because of that the investigation of some classes of modules in terms of their endomorphism rings are done by the present authors (see [2] for details). In this section we introduce a class of modules that is a generalization of principally quasi-Baer rings and Baer modules. We prove that some results of principally quasi-Baer rings can be extended to this general setting.

Definition 2.1. Let M be an R-module with $S = \text{End}_R(M)$. The module $S M$ is called principally quasi-Baer if for any $m \in M$, $l_S(Sm) = Se$ for some $e^2 = e \in S$.

It is straightforward that all Baer, quasi-Baer, semisimple modules are principally quasi-Baer. But a submodule of principally quasi-Baer module may not be principally quasi-Baer. If e is an idempotent element in the ring R and $ere = re$ ($ere = er$) for all $r \in R$, then e is called left (right) semicentral. In the following proposition we prove that idempotents in the definition of principally quasi-Baer modules are right semicentral.

Proposition 2.2. Let M be an R-module with $S = \text{End}_R(M)$. If $S M$ is a principally quasi-Baer module, then there exists a right semicentral idempotent $e \in S$ such that $l_S(Sm) = Se$ for each $m \in M$.

Proof. Let $m \in M$ and $S M$ be a principally quasi-Baer module. By hypothesis, there exists $e^2 = e \in S$ with $l_S(Sm) = Se$. Since $Sef Sm \subseteq SeSm = 0$, we have $Sef Sm = 0$ for all $f \in S$. Hence, $Se \subseteq l_S(Sm) = Se$. Thus, $ef = efe$ for all $f \in S$. □
Theorem 2.3. Let M be an R-module with $S = \text{End}_R(M)$. The following are equivalent.

(1) sM is principally quasi-Baer.
(2) The left annihilator of every finitely generated S-submodule of sM in S is generated (as a left ideal) by an idempotent.

Proof. (1) \Rightarrow (2) Let $N = \sum_{i=1}^{n} Sm_i$ ($n \in \mathbb{N}$) be a finitely generated S-submodule of M. Then, $l_S(N) = \bigcap_{i=1}^{n} l_S(Sm_i)$. Since M is principally quasi-Baer, there exist $e_i \in S$ such that $l_S(Sm_i) = Se_i$ for $i = 1, 2, \ldots, n$. So $l_S(N) = \bigcap_{i=1}^{n} Se_i$ with each e_i a right semicentral idempotent of S by Proposition 2.2. Now we show that $Se_1 \cap Se_2 = Se_1e_2$. Since $Se_1e_2 = Se_1e_1$, then $Se_1e_2 \subseteq Se_1 \cap Se_2$. In order to see other inclusion, let $f = f_1e_1 = f_2e_2 \in Se_1 \cap Se_2$ for some $f_1, f_2 \in S$. Then, $f_2 = f_1e_1e_2 = f_2e_2 = f \in Se_1e_2$. Thus, $Se_1 \cap Se_2 \subseteq Se_1e_2$. On the other hand $(e_1e_2)^2 = e_1e_2$, because e_1 is right semicentral. In a similar way, we have $l_S(N) = \bigcap_{i=1}^{n} Se_i = S(e_1e_2 \ldots e_n)$ with $(e_1e_2 \ldots e_n)^2 = e_1e_2 \ldots e_n$.

(2) \Rightarrow (1) It is obvious from (2) since every cyclic S-submodule of sM is finitely generated. \hfill \square

Corollary 2.4. Let M be an R-module with $S = \text{End}_R(M)$. If sM is a finitely generated module and S is a principal ideal domain (or a Noetherian ring), then the following are equivalent.

(1) sM is Baer.
(2) sM is quasi-Baer.
(3) sM is principally quasi-Baer.

Proposition 2.5. Let M be an R-module with $S = \text{End}_R(M)$. If sM is a principally quasi-Baer module and N a direct summand of M, then TN is principally quasi-Baer, where $T = \text{End}_R(N)$.

Proof. Let N be a direct summand of M. There exists $e^2 = e \in S$ such that $N = eM$. So the endomorphism ring T of N is eSe. Let $n \in N$. Since sM is a principally quasi-Baer module, there exists a right semicentral idempotent f in S such that $l_S(Sn) = Sf$. Hence, efe is an idempotent of eSe. We claim that $l_{eSe}(Sn) = (eSe)(efe)$. For any $g \in S$, $gefeTn = 0$, and so $(eSe)(efe) \leq l_{eSe}(Tn)$. On the other hand, let $x \in Sf \cap eSe$. Then, $xTn = xeSn = xeSn \leq xSn = 0$. Hence we have $x \in l_{eSe}(Tn)$. This implies that $Sf \cap eSe \leq l_{eSe}(Tn)$. Now let $yef \in l_{eSe}(Tn)$ with $y \in S$. Since $yefTn = yeSen = yeSn = 0$, we have $yef \in Sf$. It follows that $l_{eSe}(Tn) \leq Sf \cap eSe$. Thus, $l_{eSe}(Tn) = Sf \cap eSe$. In order to see $l_{eSe}(Tn) \leq (eSe)(efe)$, let $x \in l_{eSe}(Tn)$. Then, $x = s_1f = es_2e$ for some $s_1, s_2 \in S$. Notice that $x = xf = s_1f = es_2ef$ and $x = xe = s_1fe = es_2ef$. Hence, $x = xe = xef = s_1fe = es_2ef \in (eSe)(efe)$. Thus, $l_{eSe}(Tn) \leq (eSe)(efe)$. This completes the proof. \hfill \square

The direct sum of principally quasi-Baer modules is not principally quasi-Baer as the following example shows.

Example 2.6. Consider $M = \mathbb{Z} \oplus \mathbb{Z}_2$ as a \mathbb{Z}-module. Since \mathbb{Z} is a domain and \mathbb{Z}_2 is simple, \mathbb{Z} and \mathbb{Z}_2 are Baer and so principally quasi-Baer \mathbb{Z}-modules. It can
be easily determined that $S = \text{End}_R(M)$ is $\begin{bmatrix} \mathbb{Z} & 0 \\ \mathbb{Z}_2 & \mathbb{Z}_2 \end{bmatrix}$. For $m = (2, \overline{1}) \in M$, $l_S(Sm) = \begin{bmatrix} 0 & 0 \\ \mathbb{Z}_2 & 0 \end{bmatrix}$ and $l_S(Sm)$ is not a direct summand of S. This implies that $S \mathcal{M}$ is not principally quasi-Baer.

Theorem 2.7. Let $M = M_1 \oplus M_2$ be an R-module with $S = \text{End}_R(M)$. If S_i, M_1 and S_2, M_2 are principally quasi-Baer, where $S_1 = \text{End}_R(M_1)$, $S_2 = \text{End}_R(M_2)$ and $\text{Hom}(M_i, M_j) = 0$ for $i \neq j$, $i = j = 1, 2$, then $S \mathcal{M}$ is also principally quasi-Baer.

Proof. By hypothesis, $\text{Hom}(M_i, M_j) = 0$ for $i \neq j$, $i = j = 1, 2$, we have $S = S_1 \oplus S_2$. Let $m = (m_1, m_2) \in M$ for some $m_1 \in M_1$ and $m_2 \in M_2$. Since S, M_i is principally quasi-Baer, there exists an idempotent $e_i \in S_i$ with $l_S(S_i m_i) = S_i e_i$ for $i = 1, 2$. On the other hand, we have $l_S(Sm) = l_S(S_1 m_1) \oplus l_S(S_2 m_2)$, and so $l_S(Sm)$ is a direct summand of S. □

Let M be an R-module with $S = \text{End}_R(M)$. Recall that the submodule N of M is called **fully invariant** if $f(N) \leq N$ for all $f \in S$.

Proposition 2.8. Let M be an R-module with $S = \text{End}_R(M)$. If $S \mathcal{M}$ is a principally quasi-Baer module, then every principal fully invariant submodule of M is not essential in M.

Proof. Let mR be a fully invariant submodule of M. Since $S \mathcal{M}$ is a principally quasi-Baer module, there exists $e^2 = e \in S$ with $l_S(Sm) = Se$. Then we have $Sm \subseteq r_M(l_S(Sm)) = r_M(Se) = (1-e)M$. Hence, mR is not essential in M. □

A module M is said to be **principally semisimple** if every principal submodule is a direct summand of M.

Proposition 2.9. Let M be an R-module with $S = \text{End}_R(M)$. If M_R is principally semisimple and $S \mathcal{M}$ is abelian, then $S \mathcal{M}$ is a principally quasi-Baer module.

Proof. If $m \in M$, then by hypothesis $M = mR \oplus K$ for some submodule K of M. Let e denote the projection of M onto mR. It is routine to show that $l_S(Sm) \leq S(1-e)$. Since $m = em$ and $S \mathcal{M}$ is abelian, we have $S(1-e)Sm = S(1-e)Sem = S(1-e)Sm = 0$. Thus, $S(1-e) \leq l_S(Sm)$. This completes the proof. □

A left T-module M is called **regular** (in the sense Zelmanowitz [15]) if for any $m \in M$ there exists a left T-homomorphism $M \xrightarrow{\phi} T$ such that $m = \phi(m)m$.

Proposition 2.10. Let M be an R-module with $S = \text{End}_R(M)$. If $S \mathcal{M}$ is regular and semicommutative, then $S \mathcal{M}$ is a principally quasi-Baer module.

Proof. If $m \in M$, then by hypothesis there exists a left S-homomorphism $M \xrightarrow{\phi} S$ such that $m = \phi(m)m$. Note that $\phi(m)$ is an idempotent of S. We prove $l_S(Sm) = S(1-\phi(m))$. Since $(1-\phi(m))m = 0$ and $S \mathcal{M}$ is semicommutative, we have $(1-\phi(m))Sm = 0$. Then, $S(1-\phi(m)) \leq l_S(Sm)$. Now let $f \in l_S(Sm)$. Hence, $fm = 0$ and so $\phi(fm) = f\phi(m) = 0$. Thus, $f = f - f\phi(m) = f(1-\phi(m)) \in S(1-\phi(m))$. Therefore, $l_S(Sm) \leq S(1-\phi(m))$, and this completes the proof. □

Lemma 2.11. Let M be an R-module with $S = \text{End}_R(M)$. If $S \mathcal{M}$ is a semicommutative module, then $l_S(Sm) = l_S(m)$ for any $m \in M$.
Proof. We always have \(l_S(Sm) \subseteq l_S(m) \). Conversely, let \(f \in l_S(m) \). Since \(S \) is a semicommutative module, \(fm \) satisfy \(abc \). Let \(\text{Def} \ 2.12 \). The following are also studied by the present authors in \([1]\) and \([11]\). In our case, we have the following.

\textbf{Definition 2.12.} Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). The module \(S \) is called \textit{symmetric} if for any \(m \in M \) and \(f, g \in S \), \(fgm = 0 \) implies \(gfm = 0 \).

\textbf{Example 2.13.} Let \(M \) be a finite generated torsion \(\mathbb{Z} \)-module. Then \(M \) is isomorphic to the \(\mathbb{Z} \)-module \((\mathbb{Z}/p_1^{n_1}) \oplus (\mathbb{Z}/p_2^{n_2}) \oplus \cdots \oplus (\mathbb{Z}/p_t^{n_t}) \) where \(p_i (i = 1, \ldots, t) \) are distinct prime numbers and \(n_i (i = 1, \ldots, t) \) are positive integers. \(\text{End}_\mathbb{Z}(M) \) is isomorphic to the commutative ring \((\mathbb{Z}/p_1^{n_1}) \oplus (\mathbb{Z}/p_2^{n_2}) \oplus \cdots \oplus (\mathbb{Z}/p_t^{n_t}) \). So \(S \) is a symmetric module.

\textbf{Lemma 2.14.} Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). If \(S \) is symmetric, then \(S \) is semicommutative. Converse is true if \(S \) is a principally quasi-Baer module.

\textbf{Proof.} Let \(f \in S \) and \(m \in M \) with \(fm = 0 \). Then for all \(g \in S \), \(gfm = 0 \) implies \(fgm = 0 \). So \(fg = 0 \). Conversely, let \(f, g \in S \) and \(m \in M \) with \(fgm = 0 \). By Lemma 2.11, \(f \in l_S(gm) = l_S(Sgm) = Se \) for some \(e^2 = e \in S \). So \(f = fe \) and \(egm = 0 \). Therefore, \(gfm = gfm = efgm = egf = 0 \) because \(e \) is central.

The proof of Proposition 2.15 is straightforward.

\textbf{Proposition 2.15.} Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). Consider the following conditions for \(f \in S \).

1. \(\text{Ker}f \cap \text{Im}f = 0 \).
2. Whenever \(m \in M \), \(fm = 0 \) if and only if \(\text{Im}f \cap Sm = 0 \).

Then (1) \(\Rightarrow \) (2). If \(S \) is a semicommutative module, then (2) \(\Rightarrow \) (1).

A module \(S \) is called \textit{reduced} if condition (2) of Proposition 2.15 holds for each \(f \in S \).

\textbf{Example 2.16.} Let \(p \) be any prime integer and \(M \) the \(\mathbb{Z} \)-module \((\mathbb{Z}/p\mathbb{Z}) \oplus \mathbb{Q} \). Then \(S = \text{End}_\mathbb{R}(M) \) is isomorphic to the matrix ring \(\left\{ \begin{bmatrix} a & 0 \\ 0 & b \end{bmatrix} \mid a \in \mathbb{Z}_p, b \in \mathbb{Q} \right\} \).

It is evident that \(S \) is a reduced module.

\textbf{Proposition 2.17.} Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). Then the following are equivalent.

1. \(S \) is a reduced module.
2. For any \(f \in S \) and \(m \in M \), \(f^2m = 0 \) implies \(fSm = 0 \).

\textbf{Proof.} It follows from \([9, \text{Lemma 1.2}]\).

\textbf{Lemma 2.18.} Let \(M \) be an \(R \)-module with \(S = \text{End}_R(M) \). If \(S \) is a reduced module, then \(S \) is symmetric. The converse holds if \(S \) is a principally quasi-Baer module.
Proof. For any $f, g \in S$ and $m \in M$ suppose that $fgm = 0$. Then, $(fg)^2(m) = 0$ and by hypothesis $fgSm = 0$. So $fgfm = 0$ and $(gf)^2m = 0$. Then, $gfSm = 0$ implies $gfm = 0$. Therefore, SM is symmetric. Conversely, let $f \in S$ and $m \in M$ with $f^2m = 0$. By Lemma 2.14, SM is semicommutative and from Lemma 2.11, $f \in l_S(fm) = l_S(SSm) = Se$ for some $e^2 = e \in S$. So $f = fe$ and $efm = 0$. Since SM is semicommutative, $efSm = 0$. Then, $fgm = fegm = ef gm = 0$ for any $g \in S$. Therefore, $fSm = 0$ and so SM is a reduced module.

Next example shows that the reverse implication of the first statement in Lemma 2.18 is not true in general, i.e., there exists a symmetric module which is neither reduced nor principally quasi-Baer.

Example 2.19. Consider the ring

$$R = \left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}$$

and the right R-module

$$M = \left\{ \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \mid a, b \in \mathbb{Z} \right\}.$$

Let $f \in S$ and $f \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c \\ c & d \end{bmatrix}$. Multiplying the latter by $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$ we have $f \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & c \\ 0 & 0 \end{bmatrix}$. For any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$, $f \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & ac \\ ac & ad + bc \end{bmatrix}$. Similarly, let $g \in S$ and $g \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} 0 & c' \\ c' & d' \end{bmatrix}$. Then, $g \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & c' \\ 0 & c' \end{bmatrix}$. For any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$, $g \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & ac' \\ ac' & ad' + bc' \end{bmatrix}$. Then it is easy to check that for any $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$,

$$fg \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = f \begin{bmatrix} 0 & ac' \\ ac' & ad' + bc' \end{bmatrix} = \begin{bmatrix} 0 & ac'c \\ ac'c & ad'c + ad'c + bc'c \end{bmatrix}$$

and

$$gf \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = g \begin{bmatrix} 0 & ac \\ ac & ad + bc \end{bmatrix} = \begin{bmatrix} 0 & ac' \\ ac' & ad' + ac'd + bc' \end{bmatrix}$$

Hence, $fg = gf$ for all $f, g \in S$. Therefore, S is commutative and so SM is symmetric. Define $f \in S$ by $f \begin{bmatrix} 0 & a \\ a & b \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & a \end{bmatrix}$ where $\begin{bmatrix} 0 & a \\ a & b \end{bmatrix} \in M$. Then, $f \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$ and $f^2 \begin{bmatrix} 0 & 1 \\ 1 & 1 \end{bmatrix} = 0$. Hence, SM is not reduced. Let $m = \begin{bmatrix} 0 & 0 \\ 0 & 1 \end{bmatrix}$. By Lemma 2.14, SM is semicommutative and so by Lemma 2.11, $l_S(Sm) = l_S(m) \neq 0$ since the endomorphism f defined preceding belongs to the $l_S(m)$. The module M is indecomposable as a right R-module, therefore S does not have any idempotents other than zero and identity. Hence, $l_S(Sm)$ can not be generated by an idempotent as a left ideal of S.

We can summarize the relations between reduced modules, symmetric modules and semicommutative modules by using principally quasi-Baer modules.
Theorem 2.20. Let M be an R-module with $S = \text{End}_R(M)$. If $S M$ is a principally quasi-Baer module, then the following conditions are equivalent.

1. $S M$ is a reduced module.
2. $S M$ is a symmetric module.
3. $S M$ is a semicommutative module.

Proof. It follows from Lemma 2.18 and Lemma 2.14. \hfill \Box

In the sequel we investigate extensions of principally quasi-Baer modules. We show that there is a strong connection between principally quasi-Baer modules and polynomial extension, power series extension, Laurent polynomial extension, Laurent power series extension of M.

Let $R[x], R[[x]], R[x, x^{-1}]$ and $R[[x, x^{-1}]]$ be the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively and M an R-module with $S = \text{End}_R(M)$. Lee and Zhou [9] introduced the following notations. Consider

$$M[x] = \left\{ \sum_{i=0}^{s} m_i x^i : s \geq 0, m_i \in M \right\},$$

$$M[[x]] = \left\{ \sum_{i=0}^{\infty} m_i x^i : m_i \in M \right\},$$

$$M[x, x^{-1}] = \left\{ \sum_{i=-s}^{t} m_i x^i : s \geq 0, t \geq 0, m_i \in M \right\},$$

$$M[[x, x^{-1}]] = \left\{ \sum_{i=-s}^{\infty} m_i x^i : s \geq 0, m_i \in M \right\}.$$

Each of these is an abelian group under an obvious addition operation. For a module M, $M[x]$ is a left $S[x]$-module by the scalar product:

$$m(x) = \sum_{j=0}^{s} m_j x^j \in M[x], \quad \alpha(x) = \sum_{i=0}^{t} f_i x^i \in S[x]$$

$$\alpha(x)m(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} f_i m_j \right) x^k.$$

With a similar scalar product, $M[[x]], M[x, x^{-1}]$ and $M[[x, x^{-1}]]$ become left modules over $S[[x]], S[x, x^{-1}]$ and $S[[x, x^{-1}]]$, respectively. The modules $M[x]$, $M[[x]], M[x, x^{-1}]$ and $M[[x, x^{-1}]]$ are called the polynomial extension, the power series extension, Laurent polynomial extension and the Laurent power series extension of M, respectively. The module $M[x]$ is called a principally quasi-Baer if for any $m(x) \in M[x]$, there exists $e^2 = e \in S[x]$ such that $l_{S[x]}(S[x]m(x)) = S[x]e$. Also $M[[x]], M[x, x^{-1}]$ and $M[[x, x^{-1}]]$ may be defined in a similar way.

Theorem 2.21. Let M be an R-module with $S = \text{End}_R(M)$. Then

1. $M[x]$ is a principally quasi-Baer module if and only if $S M$ is a principally quasi-Baer module.
2. If $M[[x]]$ is a principally quasi-Baer module, then $S M$ is a principally quasi-Baer module.
If \(M[x, x^{-1}] \) is a principally quasi-Baer module, then \(sM \) is a principally quasi-Baer module.

(4) If \(M[[x, x^{-1}]] \) is a principally quasi-Baer module, then \(sM \) is a principally quasi-Baer module.

Proof. (1) Assume that \(M[x] \) is a principally quasi-Baer module and \(m \in M \). There exists \(e(x)^2 = e(x) \in S[x] \) such that \(l_{S[x]}(S[x]m) = S[x]e(x) \). Thus, \(S[x]e(x) \subseteq l_{S[x]}(Sm) = l_{S}(Sm[x]). \) For \(f(x) = \sum_{i=0}^{n} f_{i}x^{i} \in l_{S}(Sm)[x], f_{i}Sm = 0 \) for all \(i \geq 0 \). For any \(g(x) = \sum_{j=0}^{k} g_{j}x^{j} \in S[x]m, f(x)g(x) = \sum_{i,j} f_{i}g_{j}x^{i+j} = 0. \) So \(f(x) \in l_{S[x]}(S[x]m) \). Thus, \(l_{S}(Sm[x]) = S[x]e(x) \). Write \(e(x) = \sum_{i=0}^{l} e_{i}x^{i} \), where all \(e_{i} \in l_{S}(Sm) \). Then for any \(h \in l_{S}(Sm) \), we have \(h = h_{1}(x)e(x) \) for some \(h_{1}(x) \in S[x] \). So \(he(x) = h_{1}(x)e(x)e(x) = h_{1}(x)e(x) = h \). It follows that \(h = he_{0} \) for all \(h \in l_{S}(Sm) \). Thus, \(l_{S}(Sm) = S_{e_{0}} \) with \(e_{0}^{2} = e_{0} \). It means that \(S \) is principally quasi-Baer. Conversely, assume \(sM \) is a principally quasi-Baer module. Let \(m(x) = m_{0} + m_{1}x + ... + m_{n}x^{n} \in M[x] \). Then, \(l_{S}(Sm) = S_{e_{i}} \) where \(e_{i} \)'s are right semicentral idempotents for all \(i = 0, 1, ..., n \). Let \(e = e_{0}e_{1}...e_{n} \). Then \(e \) is also a right semicentral in \(S \) and \(Se = \bigcap_{i=0}^{n} l_{S}(Sm_{i}) \). Hence, \(S[x]e \subseteq l_{S[x]}(S[x]m(x)) \).

Note that \(l_{S[x]}(S[x]m(x)) = l_{S[x]}(Sm(x)) \). So, \(S[x]e \subseteq l_{S[x]}(Sm(x)) \). Now, let \(h(x) = h_{0} + h_{1}x + ... + h_{k}x^{k} \in l_{S[x]}(Sm(x)) \). Then, \((h_{0} + h_{1}x + ... + h_{k}x^{k})S(m_{0} + m_{1}x + ... + m_{n}x^{n}) = 0 \). Hence for any \(\alpha \in S \), we have

\[
\begin{align*}
 h_{0}\alpha m_{0} &= 0 \\
 h_{0}\alpha m_{1} + h_{1}\alpha m_{0} &= 0 \\
 h_{0}\alpha m_{2} + h_{1}\alpha m_{1} + h_{2}\alpha m_{0} &= 0 \\
 &\vdots
\end{align*}
\]

By the first equation, \(h_{0} \in l_{S}(Sm_{0}) = S_{e_{0}} \). It means that \(h_{0} = h_{0}e_{0} \) and \(S_{e_{0}}Sm_{0} = 0 \). For \(f \in S \) consider \(e_{0}f \) instead of \(\alpha \) in (2). Then, \(h_{0}e_{0}f m_{1} + h_{1}e_{0}f m_{0} = h_{0}e_{0}f m_{1} = h_{0}f m_{1} = 0 \). So \(h_{0} \in l_{S}(Sm_{1}) = S_{e_{1}} \). Thus, \(h_{0} \in S_{e_{0}e_{1}} \). Since \(h_{0}Sm_{1} = 0, \) (2) yields \(h_{1}Sm_{0} = 0 \). Hence, \(h_{1} \in l_{S}(Sm_{0}) = S_{e_{0}} \). Now we take \(\alpha = e_{0}e_{1}f \in S \) and apply in (3). Then, \(h_{0}e_{0}e_{1}f m_{2} + h_{1}e_{0}e_{1}f m_{1} + h_{2}e_{0}e_{1}f m_{0} = 0 \). But \(h_{1}e_{0}e_{1}f m_{1} = h_{2}e_{0}e_{1}f m_{0} = 0 \). Hence, \(h_{0}e_{0}e_{1}f m_{2} = h_{2}e_{0}e_{1}f m_{0} = 0 \). So \(h_{0} \in l_{S}(\bigcap_{i=0}^{2} l_{S}(Sm_{i})) = S_{e_{0}e_{1}e_{2}} \). By (3), we have \(h_{1}Sm_{1} + h_{2}Sm_{0} = 0 \). Then we have \(h_{1}e_{0}f m_{1} + h_{2}e_{0}f m_{0} = 0 \). But \(h_{2}e_{0}f m_{0} = 0 \), so \(h_{1}e_{0}f m_{1} = h_{1}f m_{1} = 0 \). Thus, \(h_{1} \in l_{S}(\bigcap_{i=0}^{2} l_{S}(Sm_{i})) = S_{e_{0}e_{1}} \) and \(h_{2}Sm_{0} = 0 \). Hence, \(h_{2} \in l_{S}(Sm_{0}) = S_{e_{0}} \). Continuing this procedure, yields \(h_{i} \in Se \) for all \(i = 1, 2, ..., k \). Hence, \(h(x) \in S[x]e \). Consequently \(S[x]e = l_{S[x]}(S[x]m(x)) \).

(2), (3) and (4) are proved similarly.

References