On Reduced and Semicommutative Modules

Muhittin Başer, Nazim Agayev

Abstract

In this paper, various results of reduced and semicommutative rings are extended to reduced and semicommutative modules. In particular, we show: (1) For a principally quasi-Baer module, M_R is semicommutative if and only if M_R is reduced. (2) If M_R is a p.p.-module then M_R is nonsingular.

Key words and phrases: Reduced Rings (Modules), Baer, quasi-Baer and Rings (Modules).

1. Introduction

Throughout this paper all rings R are associative with unity and all modules M are unital right R-modules. For a nonempty subset X of a ring R, we write $r_R(X) = \{r \in R \mid Xr = 0\}$ and $l_R(X) = \{r \in R \mid rX = 0\}$, which are called the right annihilator of X in R and the left annihilator of X in R, respectively. Recall that a ring R is reduced if R has no nonzero nilpotent elements. Observe that reduced rings are abelian (i.e., all idempotents are central).

In [7] Kaplansky introduced Baer rings as rings in which the right (left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [6], a ring R is said to be quasi-Baer if the right annihilator of each right ideal of R is generated (as a right ideal) by an idempotent. These definitions are left-right symmetric. Recently, Birkenmeier et al. [4] called a ring R a right (resp. left) principally quasi-Baer (or simply, right (resp. left) p.q.-Baer) ring if the right (resp. left) annihilator of a principally right
(resp. left) ideal of R is generated by an idempotent. R is called a $p.q.$-Baer ring if it is both right and left $p.q.$-Baer.

Another generalization of Baer rings is a $p.p.$-ring. A ring R is called a right (resp. left) $p.p.$-ring if the right (resp. left) annihilator of an element of R is generated by an idempotent. R is called a $p.p.$-ring if it is both a right and left $p.p.$-ring.

A ring R is called semicommutative if for every $a \in R$, $r_R(a)$ is an ideal of R. (equivalently, for any $a, b \in R$, $ab = 0$ implies $aRb = 0$). Recall from [1] that R is said to satisfy the IFP (insertion of factors property) if R is semicommutative. An idempotent $e \in R$ is called left (resp. right) semicentral if $xe = exe$ (resp. $ex = exe$), for all $x \in R$ ([see, [2]].

According to Lee-Zhou [10], a module M over R is said to be reduced if, for any $m \in M$ and any $a \in R$, $ma = 0$ implies $mR \cap Ma = 0$. It is clear that R is a reduced ring if and only if R is a reduced module.

Lemma [10, Lemma 1.2] The following are equivalent for a module M_R:

1. M_R is α-reduced.
2. The following three conditions hold: For any $m \in M$ and $a \in R$

 (a) $ma = 0$ implies $mRa = mR(a) = 0$.
 (b) $mao(a) = 0$ implies $ma = 0$.
 (c) $ma^2 = 0$ implies $ma = 0$.

In [10] Lee-Zhou introduced Baer, quasi-Baer and the $p.p.$-module as follows:

1. M_R is called Baer if, for any subset X of M, $r_R(X) = eR$ where $e^2 = e \in R$.
2. M_R is called quasi-Baer if, for any submodule N of M, $r_R(N) = eR$ where $e^2 = e \in R$.
3. M_R is called $p.p.$ if, for any $m \in M$, $r_R(m) = eR$ where $e^2 = e \in R$.

In [8] the module M_R is called principally quasi-Baer ($p.q.$-Baer for short) if, for any $m \in M$, $r_R(mR) = eR$ where $e^2 = e \in R$.

It is clear that R is a right $p.q.$-Baer ring iff R is a $p.q.$-Baer module. If R is a $p.q.$-Baer ring, then for any right ideal I of R, I_R is a $p.q.$-Baer module. Every submodule of a $p.q.$-Baer module is a $p.q.$-Baer module. Moreover, every quasi-Baer module is a $p.q.$-Baer, and every Baer module is quasi-Baer. If R is commutative then M_R is $p.p.$-module iff M_R is a $p.q.$-Baer module.
2. Reduced Rings and Modules

We start with the following definition which is defined in [5].

Definition 2.1 A module M_R is called semicommutative if $rR(m)$ is an ideal of R for all $m \in M$. (i.e. for any $m \in M$ and $a \in R$, $ma = 0$ implies $mRa = 0$.)

It is clear that R is semicommutative if and only if R_M is a semicommutative module. Every reduced module is a semicommutative module by [10, Lemma 1.2].

Proposition 2.2 Let $\phi : R \rightarrow S$ be a ring homomorphism and let M be a right S-module. Regard M as a right R-module via ϕ. Then we have:

(1) If M_S is a reduced module then M_R is a reduced module.

(2) If ϕ is onto, then the converse of the statements in (1) hold.

(3) If S is a reduced ring, then S_M is a reduced as a right R-module.

Proof. Straightforward.

Lemma 2.3 If M_R is a semicommutative module, then for any $e^2 = e \in R$, $mea = mae$ for all $m \in M$ and all $a \in R$.

Proof. For $e^2 = e \in R$, $e(1-e) = (1-e)e = 0$. Then for all $m \in M$, $me(1-e) = 0$ and $m(1-e)e = 0$. Since M_R is semicommutative, we have $meR(1-e) = 0$ and $m(1-e)Re = 0$.

Thus for all $a \in R$, $mea(1-e) = 0$ and $m(1-e)ae = 0$. So, $mea = mae$ and $mae = meae$. Hence, $mea = mae$ for all $a \in R$. □

Proposition 2.4 Let M_R be a p.q.-Baer module, then M_R is semicommutative if and only if M_R is reduced.

Proof. Assume M_R is reduced. Then M_R is a semicommutative module by [10, Lemma 1.2].

Conversely, assume M_R is semicommutative. Let $ma = 0$ for $m \in M$ and $a \in R$. Since M_R is p.q.-Baer, $a \in rR(m) = rR(mR) = eR$ where $e^2 = e \in R$. Let $x \in mR \cap Ma$.

Write $x = mr = m'a$ for some $r \in R$ and $m' \in M$. Since $a \in rR(m)$, $a = ea$. Then $x = m'a = m'ea = m'ae$ by Lemma 2.3. So $x = mre = mer = 0$ since $er \in rR(m)$.

Therefore $mR \cap Ma = 0$. Consequently M_R is a reduced module. □
Corollary 2.5 [3, Proposition 1.14.(iv)] If R is a right p.q.-Baer ring, then R satisfies the IFP if and only if R is reduced.

Corollary 2.6 [3, Corollary 1.15] The following are equivalent.

(1) R is a p.q.-Baer ring which satisfies the IFP.

(2) R is a reduced p.q.-Baer ring.

Proposition 2.7 If M_R is a semicommutative module, then

(1) M_R is a Baer module if and only if M_R is a quasi-Baer module.

(2) M_R is a p.p.-module if and only if M_R is a p.q.-Baer module.

Proof. (1) "$\Rightarrow"$ It is clear.

"\Leftarrow": Assume M_R is a quasi-Baer module. Let X be any subset of M_R. Then $r_R(X) = \bigcap_{x \in X} r_R(x)$. Since M_R is semicommutative, $\bigcap_{x \in X} r_R(x) = \bigcap_{x \in X} r_R(xR)$.

But M_R is quasi-Baer module then $r_R(X) = \bigcap_{x \in X} r_R(xR) = r_R(\sum_{x \in X} xR) = eR$, where $e^2 = e \in R$. Consequently $r_R(X) = eR$, where $e^2 = e \in R$ and hence M_R is a Baer module.

(2) Since M_R is semicommutative, $r_R(m) = r_R(mR)$ for all $m \in M$. Hence proof is clear.

Corollary 2.8 If R is a semicommutative ring, then

(1) R is a Baer ring if and only if R is a quasi-Baer ring.

(2) R is a p.p.-ring if and only if R is a p.q.-Baer ring.

Proposition 2.9 The following conditions are equivalent:

(1) M_R is a p.q.-Baer module.

(2) The right annihilator of every finitely generated submodule is generated (as a right ideal) by an idempotent.

Proof. "(2)\Rightarrow(1)" Clear.

"(1)\Rightarrow(2)" Assume that M_R is p.q.-Baer and $N = \sum_{i=1}^{k} n_i R$ is a finitely generated submodule of M_R. Then $r_R(N) = \bigcap_{i=1}^{k} e_i R$ where $r_R(n_i R) = e_i R$ and $e_i^2 = e_i$. Let $e = e_1 e_2 \ldots e_k$. Then e is a left semicentral idempotent and $\bigcap_{i=1}^{k} e_i R = eR$ since each e_i is a left semicentral idempotent. Therefore, $r_R(N) = eR$.

288
Corollary 2.10 [3, Proposition 1.7.] The following conditions are equivalent for a ring R:
(1) R is a right p.q.-Baer ring.
(2) The right annihilator of every finitely generated ideal of R is generated (as a right ideal) by an idempotent.

Lemma 2.11 Let M_R be a p.p.-module. Then M_R is a reduced module if and only if M_R is a semicommutative module.

Proof. "⇒": It is clear by [10, Lemma 1.2]
"⇐": It follows from Proposition 2.7 and Proposition 2.4

Corollary 2.12 Let R be a right p.p.-ring. Then R is a reduced ring if and only if R is a semicommutative ring.

Proposition 2.13 Let R be an abelian ring. If M_R is a p.p.-module then M_R is a reduced module.

Proof. Let $ma = 0$ for some $m \in M$ and $a \in R$. Then $a \in r_R(m)$. Since M_R is a p.p.-module, $r_R(m) = eR$ where $e^2 = e \in R$. Thus $a = ea$ and $me = 0$. Let $x \in mR \cap Ma$. Write $x = mr = m'a$ for some $r \in R$ and $m' \in M$. Then $x = m'ea = m'e = mre = mer = 0$ since $er \in r_R(m)$. Consequently M_R is a reduced module.

Corollary 2.14 Let R be an abelian ring. If R is a right p.p.-ring then R is a reduced ring.

Proposition 2.15 Let R be an abelian ring and M_R be a p.p.-module. Then M_R is a p.q.-Baer module.

Proof. Let $m \in M$. Since M_R is a p.p.-module, there exists $e^2 = e \in R$ such that $r_R(m) = eR$. It is clear that $r_R(mR) \subseteq r_R(m)$. Let $x \in r_R(m)$. Then $x = ex$ and $me = 0$. For all $r \in R$, $mr = mre = mer = 0$ since R is abelian. Hence, $x \in r_R(mR)$. Consequently $r_R(mR) = r_R(m) = eR$. Therefore M_R is a p.q.-Baer module.

Corollary 2.16 Abelian right p.p.-rings are right p.q.-Baer.

Let M be a module. A submodule K of M is essential in M, in case for every submodule $L \leq M$, $K \cap L = 0$ implies $L = 0$. 289
Let M be a right module over a ring R. An element $m \in M$ is said to be a *singular element* of M if the right ideal $r_R(m)$ is essential in R_R. The set of all singular elements of M is denoted by $Z(M)$. $Z(M)$ is a submodule, called the *singular submodule* of M. We say that M_R is a *singular* (resp. *nonsingular*) module if $Z(M) = M$ (resp. $Z(M) = 0$). In particular, we say that R is a *right nonsingular ring* if $Z(R_R) = 0$.

Proposition 2.17 Every p.p.-module is nonsingular.
Proof. Let M_R be a p.p.-module and $m \in Z(M)$. Then $r_R(m)$ is essential in R_R and there exists $e^2 = e \in R$ such that $r_R(m) = eR$. So eR is essential in R_R. But $eR \cap (1-e)R = 0$ for right ideal $(1-e)R$ of R. so $(1-e)R = 0$ and hence $e = 1$. Thus $r_R(m) = R$ and so $m = 0$. Therefore M_R is a nonsingular module. \(\square\)

Corollary 2.18 [9, (7.50)] A right p.p.-ring is right nonsingular.
The following Lemma given by Lam [9, (7.8) Lemma].

Lemma Let R be reduced ring. Then R is right nonsingular.
Based on this Lemma, one may suspect that, this result true for module case. But the following example eliminates the possibility.

Example 2.19 The module $(\mathbb{Z}_2)_\mathbb{Z}$ is reduced but not right nonsingular.

Acknowledgement

We would like to thank the referee for valuable suggestions which improved the paper considerable.

References

BASER, AGAYEV

Muhittin BAŞER
Department of Mathematics, Faculty of Sciences and Arts, Kocatepe University, A.N. Sezer Campus, Afyon-TURKEY
e-mail: mbaser@aku.edu.tr

Nazim AGAYEV
Graduate School of Natural and Applied Sciences, Gazi University, Maltepe, Ankara-TURKEY

Received 11.02.2005