NAZIM AGAYEV, SAIT HALICIOĞLU and ABDULLAH HARMANCI

On symmetric modules

Abstract. Let α be an endomorphism of an arbitrary ring R with identity and let M be a right R-module. We introduce the notion of α -symmetric modules as a generalization of α -reduced modules. A module M is called α -symmetric if, for any $m \in M$ and any $a, b \in R$, mab = 0 implies mba = 0; ma = 0 if and only if $m\alpha(a) = 0$. We show that the class of α -symmetric modules lies strictly between classes of α -reduced modules and α -semicommutative modules. We study characterizations of α -symmetric modules and their related properties including module extensions. For a rigid module M, M is α -reduced if and only if M is α -symmetric. For a module M, it is proved that $M[x]_{R[x]}$ is α -symmetric if and only if $M[x,x^{-1}]_{R[x,x^{-1}]}$ is α -symmetric.

Mathematics Subject Classification (2000): 16U80.

1 - Introduction

Throughout this paper all rings have an identity, all modules considered are unital right modules and all ring homomorphisms are unital (unless explicitly stated otherwise), 1 is the identity endomorphism. Let α be an endomorphism of an arbitrary ring R and let M be an R-module.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. Reduced rings have been studied for over forty years (see [10]), and the reduced ring $R_{red} = R/Nil(R)$ associated with a commutative ring R has been of interest to commutative algebraists. Recently the reduced ring concept was extended to modules by Lee and Zhou in [7], that is, a module M is called α -compatible if, for any $m \in M$ and any $a \in R$, ma = 0 if and only if $m\alpha(a) = 0$. An α -compatible module M is called α -reduced if, for any $m \in M$ and any $a \in R$, ma = 0 implies $mR \cap Ma = 0$.

Received: March 18, 2009; accepted in revised form: May 19, 2009.

The module M is called *reduced* if it is 1-reduced. Hence a ring R is a reduced ring if and only if the right R-module R is a reduced module.

According to Lambek [6], a ring R is called symmetric if whenever $a,b,c\in R$ satisfy abc=0, we have bac=0; it is easily seen that this is a left-right symmetric concept. In [5], for an endomorphism α of a ring R, α is said to be right symmetric if abc=0 implies $ac\alpha(b)=0$ for $a,b,c\in R$. A ring R is called right α -symmetric if α is a right symmetric endomorphism of R. A module M is called symmetric ([6] and [8]), if whenever $a,b\in R$, $m\in M$ satisfy mab=0, we have mba=0.

A ring R is called semicommutative if for any $a,b\in R, ab=0$ implies aRb=0. A module M is called α -semicommutative if, for any $m\in M$ and any $a\in R, ma=0$ implies $mR\alpha(a)=0$. The module M is called semicommutative if it is 1-semicommutative. Buhphang and Rege in [2] studied basic properties of semicommutative modules. Agayev and Harmanci continued further investigations for semicommutative rings and modules in [1] and focused on the semicommutativity of subrings of matrix rings.

In this paper, we introduce the notion of α -symmetric modules as a generalization of α -reduced modules. It is shown that the class of α -symmetric modules lies strictly between classes of α -reduced modules and α -semicommutative modules. We study characterizations of α -symmetric modules and their related properties including module extensions.

2 - α -symmetric modules

Symmetric rings and symmetric modules are introduced in [6] and [8] and continued investigating in [5]. In this section we extend symmetric module notion to α -symmetric one by emphasizing α .

Definition 2.1. A symmetric module M is called α -symmetric if M is α -compatible. A ring R is said to be right α -symmetric if the right R-module R is α -symmetric.

Note that 1-symmetric modules are exactly the symmetric modules. If the right R-module R is α -symmetric, then R is right α -symmetric ring in the sense of Kwak [5]. We now give some classes of modules which are symmetric or α -symmetric.

Example 2.1. (1) By [9, Proposition 2.2], all reduced modules are symmetric modules.

- (2) All modules over commutative rings are symmetric.
- (3) Let R denote the ring of integers \mathbb{Z} and \mathbb{Z}_{12} the ring of integers modulo 12.

Consider $M = \mathbb{Z}_{12}$ as an R-module. Then M is a symmetric module. Note that M is not reduced from [7, Example 1.3], the fact will be used in the sequel.

(4) Let \mathbb{Z} denote the ring of integers. Consider the ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a,b,c \in \mathbb{Z} \right\}$ and the right R-module $M = \left\{ \begin{pmatrix} 0 & m \\ 0 & n \end{pmatrix} \mid m,n \in \mathbb{Z} \right\}$ and the homomorphism $\alpha:R \to R$ is defined by $\alpha \begin{pmatrix} \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & c \end{pmatrix}$ where $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \in R$. It is easy to check that M is α -symmetric.

We begin with a simple observation.

Lemma 2.1. Let M be a module. Then the following are equivalent:

- (1) M is α -symmetric.
- (2) mab = 0 if and only if $mb\alpha(a) = 0$, where $m \in M$ and $a, b \in R$.

Proof. (1) Clear from definitions. (2) The stated condition implies that for any $m \in M$ and $a,b \in R$, mab = 0 if and only if mba = 0. The rest is clear.

By Definition 2.1, it is clear that α -symmetric modules are symmetric. Example 2.2 reveals that not all symmetric modules are α -symmetric for some α .

Example 2.2. Let \mathbb{Z} denote the ring of integers. Consider the ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a,b \in \mathbb{Z} \right\}$ and the right R-module $M = \left\{ \begin{pmatrix} 0 & m \\ n & k \end{pmatrix} \mid m,n,k \in \mathbb{Z} \right\}$ and α an homomorphism defined on R by $\alpha \begin{pmatrix} \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \end{pmatrix} = \begin{pmatrix} 0 & b \\ 0 & 0 \end{pmatrix}$ where $\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \in R$. R is commutative and so M is a symmetric module. For $m = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix} \in M$, $r = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix}$, $s = \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \in R$, we have $mrs = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 1 & 3 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \neq 0$. But $ms\alpha(r) = \begin{pmatrix} 0 & 0 \\ 1 & 1 \end{pmatrix}$ $\begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} 0 & 2 \\ 0 & 0 \end{pmatrix} = 0$. Therefore M is not α -symmetric.

Proposition 2.1. Let R be a ring and α an endomorphism of R. The class of α -symmetric modules is closed under submodules, direct products and so direct sums.

Recall that a module M is called *cogenerated* by R if it is embedded in a direct product of copies of R, and M is *faithful* if the only $a \in R$ such that Ma = 0 is a = 0.

Proposition 2.2. The following conditions are equivalent:

- (1) R is an α -symmetric ring.
- (2) Every cogenerated R-module is α -symmetric.
- (3) Every submodule of a free R-module is α -symmetric.
- (4) There exists a faithful α -symmetric R-module.

Proof. It is a direct result of definitions and Proposition 2.1.

A ring R is called α -rigid if $a\alpha(a)=0$ implies a=0 for any $a\in R$ (see [3]). A module M is called α -rigid if $ma\alpha(a)=0$ implies ma=0 for any $m\in M$ and $a\in R$. The module M is called rigid if it is 1-rigid (see [4]). Hence M is rigid if and only if for any $m\in M$ and $a\in R$ $ma^2=0$ implies ma=0. The fact that a ring R is α -rigid if and only if the right R-module R is α -rigid is just mentioned and proved implicitly in [4]. But we use this result in this note and so we prove it explicitly.

Lemma 2.2. Let α be a homomorphism of a ring R. Then the right R-module R is α -rigid if and only if R is α -rigid.

Proof. Necessity: let $a, b \in R$ with $a\alpha(b) = 0$. Then $1a\alpha(b) = 0$ implies 1ab = ab = 0, where 1 is the identity of R. Sufficiency: let R be an α -rigid ring. We first show that R is a reduced ring. For if $a^2 = 0$ for $a \in R$, then $a\alpha(a)(\alpha(a\alpha(a)) = a\alpha(a^2)\alpha^2(a) = 0$ implies $a\alpha(a) = 0$ and so a = 0. To complete the proof we show that $ab\alpha(b) = 0$ for $a, b \in R$ implies ab = 0. Since R is reduced, from $ab\alpha(b) = 0$ we have $bab\alpha(bab) = 0$. Hence bab = 0 and $(ab)^2 = 0$. Thus ab = 0.

Theorem 2.1. For a module M we have the following:

- (1) If M is α -reduced, then M is α -symmetric. The converse holds if M is rigid.
- (2) If M is α -symmetric, then M is α -semicommutative. The converse holds if M is α -rigid.
- Proof. (1) Let mab=0 where $m \in M, a, b \in R$. By [7, Lemma 1.2 (2)(a)] any α -reduced module is α -semicommutative, then $mR\alpha(ab)=0$ and by the condition (2) of α -reduced module, mRab=0. Hence mbab=0 and so $m(ba)^2=0$. By [7, Lemma 1.2 (2)(c)], we have mba=0. So M is α -symmetric. For the converse, assume that M is α -symmetric and rigid module and ma=0 for $m \in M$ and $a \in R$. Let $mr_1=m_1a \in mR\cap Ma$ where $r_1 \in R$, $m_1 \in M$. Being M α -symmetric we have $0=mar_1=mr_1a=m_1a^2$. Since M is rigid, $m_1a=0$. The rest is clear.
- (2) Necessity: let ma=0. Then for any $r\in R$, mar=0. Since M is α -symmetric, mra=0. By the definition of α -symmetric module, $mr\alpha(a)=0$. Then $mR\alpha(a)=0$. Therefore M is α -semicommutative.

Sufficiency: note first that for any $m \in M$ and $a \in R$ with ma = 0, by hypothesis $mR\alpha(a) = 0$, and ma = 0 if and only if $ma\alpha(a) = 0$. Let $m \in M$ and $a, b \in R$ with mab = 0, we prove $mb\alpha(a) = 0$. We apply these facts to mab = 0 in turn to have $0 = mab = ma\alpha(b) = m\alpha(b)a\alpha(b)a = m(\alpha(b)a)\alpha(\alpha(b)a) = m\alpha(b)a = m\alpha(b)\alpha(\alpha(a)) = m\alpha(b)\alpha(a)$. Hence M is α -symmetric.

The next example shows that the converse implication of the first statement in Theorem 2.1(1) is not true in general.

Example 2.3. Let \mathbb{Z}_4 denote the ring of integers modulo 4. Consider the ring $R=\left\{\begin{pmatrix} a & b \\ 0 & a \end{pmatrix} | a,b \in \mathbb{Z}_4 \right\}$ and the right R-module $M=\left\{\begin{pmatrix} 0 & m \\ n & k \end{pmatrix} | m,n,k \in \mathbb{Z}_4 \right\}$ and a homomorphism $\alpha:R\to R$ is defined by $\alpha\left(\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\right)=\begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}$. We prove that M is an α -symmetric module but not α -reduced. For if $m=\begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix} \in M$ and $r=\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix} \in R$. Then mr=0 but $\begin{pmatrix} 0 & 0 \\ 0 & 2 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 2 & 1 \end{pmatrix}\begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}=\begin{pmatrix} 0 & 0 \\ 2 & 0 \end{pmatrix}$ $\begin{pmatrix} 2 & 3 \\ 0 & 2 \end{pmatrix}\in mR\cap Mr$. Hence M is not an α -reduced module. We show M is α -symmetric. Since R is commutative for any $m\in M$ and $r,s\in R$, mrs=0 implies msr=0. To complete the proof we check, for any $m\in M$ and $r\in R$, mr=0 if and only if $m\alpha(r)=0$. We prove one way implication. The other way is similar. So let $m=\begin{pmatrix} 0 & x \\ y & z \end{pmatrix}\in M$, $r=\begin{pmatrix} a & b \\ 0 & a \end{pmatrix}\in R$. Assume that mr=0 and m and r are non-zero. Then we have the equalities

(*)
$$xa = 0, ya = 0, yb + za = 0.$$

If y=0, then an easy calculation reveals that $m\alpha(r)=0$. Suppose $y\neq 0$. If a=0 then $m\alpha(r)=0$. Assume $a\neq 0$. In this case the only solution in \mathbb{Z}_4 of this equality ya=0 in (*) is that y=2 and a=2. Hence $m\alpha(r)=0$.

Similarly, the converse implication of the first statement in Theorem 2.1(2) is not true in general, that is, there are α -semicommutative modules which are not α -symmetric.

Example 2.4. Let F be any field and consider the ring R and the module M as

$$R=\left\{egin{pmatrix} a&b&c\0&a&0\0&0&a \end{pmatrix}\mid a,b,c\in F
ight\} \quad ext{and}\quad M=egin{pmatrix} 0&0&F\0&F&F\F&F&F \end{pmatrix}.$$

Define
$$\alpha:R\to R$$
, $\alpha\begin{pmatrix}a&b&c\\0&a&0\\0&0&a\end{pmatrix}=\begin{pmatrix}a&0&0\\0&a&0\\0&0&a\end{pmatrix}$. Let $m=\begin{pmatrix}0&0&x\\0&y&z\\k&l&u\end{pmatrix}\in M$ and $r=\begin{pmatrix}a&b&c\\0&a&0\\0&0&a\end{pmatrix}\in R$ with $mr=0$. Then it is easy to check that if $a=0$ then

 $\alpha(r)=0$, and if $a\neq 0$, then m=0. Hence $mR\alpha(r)=0$. Let e_{ij} denote the 3×3 matrix units having a lone 1 as its (i,j)-entry and all other entries 0, and $m=e_{31}\in M$, $a=e_{23},\,b=e_{12}+e_{13}+e_{23}\in R$. Then mab=0. But $mba=e_{33}$ is a nonzero element of M. Let $m=e_{31}\in M$ and $a=e_{13}\in R$. Then $ma\neq 0$ but $\alpha(a)=0$ and $m\alpha(a)=0$. So M does satisfy neither first condition nor the second condition of the definition of α -symmetric module.

Recall that $singular\ submodule\ Z(M)$ of a module M consists of all elements having right annihilator in R essential as a right ideal. A module M is called non-singular if Z(M)=0.

Theorem 2.2. Let M be a nonsingular module. Then M is α -reduced if and only if M is α -symmetric.

Proof. Necessity is clear from Theorem 2.1(1). Sufficiency follows from [9, Theorem 4.2].

Theorem 2.3. A ring R is α -symmetric if and only if every flat module M_R is α -symmetric.

Proof. Necessity: let M be a flat module over the α -symmetric ring R and $0 \to K \to F \to M \to 0$ a short exact sequence with F free right R-module. By Lemma 2.1 F is an α -symmetric module and we write M = F/K and any element $\overline{y} = y + K \in M$ for $y \in F$. Let $\overline{y}ab = 0$ and $\overline{y}c = 0$, where $\overline{y} \in M$ and $a,b,c \in R$. We want to show $\overline{y}ba = 0$ and $\overline{y}\alpha(c) = 0$. Since $\overline{y}ab = 0$ and $\overline{y}c = 0$, $yab \in K$ and $yc \in K$. Since M is flat, there exists a homomorphism $\theta: F \to K$ with $\theta(yab) = yab$, $\theta(yc) = yc$. Set $u = \theta(y) - y \in F$. Then uab = 0 and uc = 0. Since F is α -symmetric, uba = 0 and $u\alpha(c) = 0$. Then $\theta(yba) = yba$ and $\theta(y\alpha(c)) = y\alpha(c)$. Since $\theta(y) \in K$, we have $yba \in K$ and $y\alpha(c) \in K$. Therefore, $\overline{y}ba = 0$ and $\overline{y}\alpha(c) = 0$. We use this same method to prove other implication. So assume that $\overline{y}\alpha(a) = 0$ for some $\overline{y} \in M$ and $a \in R$. Then $y\alpha(a) \in K$. There exists a homomorphism $y: F \to K$ with $y(y\alpha(a)) = y\alpha(a)$. Let v = y(y) - y. Then $v \in F$ and $v\alpha(a) = 0$. Since F is α -symmetric, va = 0. Hence $v(ya) = ya \in K$. Thus $\overline{y}a = 0$. Sufficiency is clear.

A regular element of a ring R means a nonzero element which is not zero divisor.

Let S be a multiplicatively closed subset of R consisting of regular central elements. We may localize R and M at S and we may seek when the localization $S^{-1}M_{S^{-1}R}$ is α -symmetric. If $\alpha:R\to R$ is a homomorphism of the ring R, then $S^{-1}\alpha:S^{-1}R\to S^{-1}R$ defined by $S^{-1}\alpha(a/s)=\alpha(a)/s$ is a homomorphism of the ring $S^{-1}R$. Clearly this map extends α and we shall also denote this map by α .

Proposition 2.3. Let S be a multiplicatively closed subset of R consisting of regular central elements. A module M_R is α -symmetric if and only if $S^{-1}M_{S^{-1}R}$ is α -symmetric.

Proof. Assume that M_R is α -symmetric and (m/s)(a/t)(b/r)=0 in $S^{-1}M$ where $m/s \in S^{-1}M$, a/t, $b/r \in S^{-1}R$. Then mab=0 and by the assumption mba=0 and $mb\alpha(a)=0$. Therefore (m/s)(b/r)(a/t)=0 and $(m/s)(b/r)\alpha(a/t)=(m/s)(b/r)(\alpha(a)/t)=0$. The rest is clear.

In [7] Lee and Zhou introduced the following notation. For a module M, we consider $M[x] = \left\{\sum_{i=0}^s m_i x^i : s \geq 0, m_i \in M\right\}$, M[x] is an Abelian group under an obvious addition operation. Moreover M[x] becomes a right R[x]-module under the following scalar product operation:

For
$$m(x) = \sum_{i=0}^{s} m_i x^i \in M[x]$$
 and $f(x) = \sum_{i=0}^{t} a_i x^i \in R[x]$,
$$m(x)f(x) = \sum_{i=0}^{s+t} \left(\sum_{i=1}^{s} m_i a_i\right) x^k.$$

By these operations M[x] becomes a right module over R[x]. In the same way, the Laurent polynomial extension $M[x,x^{-1}]$ becomes a right module over $R[x,x^{-1}]$ with a similar scalar product.

Corollary 2.1. For a module M, $M[x]_{R[x]}$ is α -symmetric if and only if $M[x,x^{-1}]_{R[x,x^{-1}]}$ is α -symmetric.

Proof. Let $S = \{1, x, x^2, ...\}$. Then S is a multiplicatively closed subset of R[x] consisting of regular central elements of R[x]. Since $S^{-1}M[x] = M[x, x^{-1}]$ and $S^{-1}R[x] = R[x, x^{-1}]$, the result is clear from Proposition 2.3.

Proposition 2.4. Let M be an α -symmetric module and $m \in M, a_i \in R$. Then we have the following:

(1) $ma_1 \ldots a_n = 0$ if and only if $ma_{\sigma(1)} \ldots a_{\sigma(n)} = 0$, where $n \in \mathbb{N}$ and $\sigma \in S_n$,

(2) $ma_1a_2...a_n = 0$ if and only if $m\alpha^{i_1}(a_1)\alpha^{i_2}(a_2)...\alpha^{i_n}(a_n) = 0$ for any $i_1,...,i_n \in \mathbb{N}$.

Proof. (1) For n=1 the claim is evident. The case n=2 follows from M being α -symmetric. Let n=3 and $ma_1a_2a_3=0$. Since M is α -symmetric, $ma_1a_2a_3=m(a_1)(a_2a_3)=0$ implies $m(a_2a_3)a_1=0$. Also, using α -symmetry of M, $(ma_2)(a_3)(a_1)=0$ implies $(ma_2)(a_1)(a_3)=0$. Therefore, our claim holds for $\sigma_1=(123)$ and $\sigma_2=(12)$. Any other element of S_3 is a composition of cycles σ_1 and σ_2 , so the case n=3 is completed. For n>3 it is enough to note that $S_n=\langle (12), (12\dots n)\rangle$ and to apply associativity of multiplication in R.

(2) It is sufficient to prove that $ma_1 \ldots a_{i-1}a_ia_{i+1} \ldots a_n = 0$ if and only if $ma_1 \ldots a_{i-1}\alpha(a_i)a_{i+1} \ldots a_n = 0$ for any i. Since M is an α -symmetric module, using (1), it can be easily proved.

Let T(M) denote the set of all torsion elements of a module M, that is, $T(M) = \{m \in M \mid ma = 0 \text{ for some nonzero } a \in R\}.$

Theorem 2.4. Let R be a ring with no zero-divisors. Then we have the following:

- (1) If M is an α -symmetric module, then T(M) is an α -symmetric submodule of M.
- (2) M is an α -symmetric module if and only if T(M) is an α -symmetric module.

Proof. (1) First we show that T(M) is a submodule of M. For if $m_1, m_2 \in T(M)$ and $r \in R$, then we prove that $m_1 - m_2$ and $m_1 r$ belong to T(M). There exist $t_1, t_2 \in R$ with $m_1 t_1 = 0$ and $m_2 t_2 = 0$. Since any symmetric module is semicommutative, we have $m_1 R t_1 = 0$ and $m_2 R t_2 = 0$. In particular $m_1 t_2 t_1 = 0$ and $m_2 t_2 t_1 = 0$. Then $(m_1 - m_2)t_2 t_1 = 0$ and so $m_1 - m_2 \in T(M)$. Assume that $m_1 t_1 = 0$. Then $m_1 R t_1 = 0$. Hence $m_1 r \in T(M)$ for all $\in R$. By Proposition 2.1, α -symmetric modules are closed under submodules, T(M) is also an α -symmetric module.

(2) One way is clear from (1). For the other way, let $0 \neq m \in M$ and $0 \neq a, b \in R$ with mab = 0. Since $m \in T(M)$ and T(M) is α -symmetric and R has no zero-divisors, we have mba = 0. It completes the proof.

Theorem 2.5. Let R be a ring with no nonzero zero-divisors. If M is an α -symmetric module, then M/T(M) is an α -symmetric module.

Proof. Let \overline{m} be any element of M/T(M) with $m \in M$. Suppose $\overline{m}ab = 0$, for any $a,b \in R$ and $m \in M$. So there exist $r \in R$ such that mabr = 0. By hypothesis and Lemma 2.4, we have marb = mbar = 0. Hence $\overline{m}ba = 0$. Now the proof of the rest is clear since to prove for any $\overline{m} \in M$ and $a \in R$, $\overline{m}a = 0$ if and only if $\overline{m}\alpha(a) = 0$ is routin. So M/T(M) is an α -symmetric module.

References

- [1] N. AGAYEV and A. HARMANCI, On semicommutative modules and rings, Kyungpook Math. J. 47 (2007), 21-30.
- [2] A. M. Buhphang and M. B. Rege, Semi-commutative modules and Armendariz modules, Arab J. Math. Sci. 8 (2002), 53-65.
- [3] C. Y. Hong, N. K. Kim and T. K. Kwak, Ore extensions of Baer and p.p.-rings, J. Pure Appl. Algebra 151 (2000), 215-226.
- [4] H. Y. Kose, S. Halicioğlu and A. Harmanci, *Rigid modules and semicommutative modules*, preprint.
- [5] T. K. KWAK, Extensions of extended symmetric rings, Bull. Korean Math. Soc. 44 (2007), 777-788.
- [6] J. Lambek, On the representation of modules by sheaves of factor modules, Canad. Math. Bull. 14 (1971), 359-368.
- [7] T.-K. Lee and Y. Zhou, *Reduced modules*, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York 2004.
- [8] R. Raphael, Some remarks on regular and strongly regular rings, Canad. Math. Bull. 17 (1974/75), 709-712.
- [9] M. B. Rege and A. M. Buhphang, On reduced modules and rings, Int. Electron. J. Algebra 3 (2008), 58-74.
- [10] G. Renault, Anneaux réduits non commutatifs, J. Math. Pures Appl. 46 (1967), 203-214.

NAZIM AGAYEV Qafqaz University Department of Pedagogy Baku, Azerbaijan e-mail: nazimagayev@qafqaz.edu.az

Sait Halicioğlu Ankara University Department of Mathematics Ankara, Turkey e-mail: halici@science.ankara.edu.tr

ABDULLAH HARMANCI Hacettepe University Department of Mathematics Ankara, Turkey e-mail: harmanci@hacettepe.edu.tr