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On symmetric modules

Abstract. Let a be an endomorphism of an arbitrary ring R with identity and let
M be a right R-module. We introduce the notion of a-symmetric modules as a
generalization of a-reduced modules. A module M is called a-symmetric if, for any
m €M and any a,b € R, mab =0 implies mba =0; ma =0 if and only if
ma(a) = 0. We show that the class of a-symmetric modules lies strictly between
classes of a-reduced modules and a-semicommutative modules. We study char-
acterizations of a-symmetric modules and their related properties including module
extensions. For a rigid module M, M is a-reduced if and only if M is a-symmetric.
For a module M, it is proved that M[xlgy; is a-symmetric if and only if
Mz, 2 gy 1) is a-symmetric.

Mathematics Subject Classification (2000): 16U80.

1 - Introduction

Throughout this paper all rings have an identity, all modules considered are
unital right modules and all ring homomorphisms are unital (unless explicitly stated
otherwise), 1 is the identity endomorphism. Let a be an endomorphism of an arbi-
trary ring R and let M be an R-module.

Recall that a ring R is reduced if it has no nonzero nilpotent elements. Reduced
rings have been studied for over forty years (see [10]), and the reduced ring
R,.q = R/Nil(R) associated with a commutative ring R has been of interest to
commutative algebraists. Recently the reduced ring concept was extended to
modules by Lee and Zhou in [7], that is, a module M is called a-compatible if, for any
m € M and any a € R, ma = 0if and only if ma(a) = 0. An a-compatible module M is
called a-reduced if, for any m € M and any a € R, ma = 0 implies mRE N Ma = 0.
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The module M is called reduced if it is 1-reduced. Hence a ring R is a reduced ring if
and only if the right R-module R is a reduced module.

According to Lambek [6], a ring R is called symmetric if whenever a,b,c € R
satisfy abc = 0, we have bac = 0; it is easily seen that this is a left-right symmetric
concept. In [5], for an endomorphism « of a ring R, o is said to be right symmetric if
abe = 0 implies aca(b) = 0 for a, b, c € R. Aring R is called right a-symmetric if « is
aright symmetric endomorphism of R. A module M is called symmetric ([6] and [8]),
if whenever a,b € R, m € M satisfy mab = 0, we have mba = 0.

A ring R is called semicommutative if for any a,b € R, ab = 0 implies aRb = 0. A
module M is called a-semicommutative if, for any m € M and any a € R, ma =0
implies mRa(a) = 0. The module M is called semicommutative if it is 1-semi-
commutative. Buhphang and Rege in [2] studied basic properties of semi-
commutative modules. Agayev and Harmanei continued further investigations for
semicommutative rings and modules in [1] and focused on the semicommutativity of
subrings of matrix rings.

In this paper, we introduce the notion of a-symmetric modules as a generalization
of a-reduced modules. It is shown that the class of a-symmetric modules lies strictly
between classes of a-reduced modules and a-semicommutative modules. We study
characterizations of a-symmetric modules and their related properties including
module extensions.

2 - a-symmetric modules

Symmetric rings and symmetric modules are introduced in [6] and [8] and con-
tinued investigating in [5]. In this section we extend symmetric module notion to a-
symmetric one by emphasizing «.

Definition 2.1. A symmetric module M is called a-symmetric if M is
a-compatible. A ring R is said to be right a-symmetric if the right R-module R
is a-symmetric.

Note that 1-symmetric modules are exactly the symmetric modules. If the right
R-module R is a-symmetric, then R is right a-symmetric ring in the sense of Kwak
[5]. We now give some classes of modules which are symmetric or a-symmetric.

Example 2.1. (1) By [9, Proposition 2.2], all reduced modules are symmetric
modules.

(2) All modules over commutative rings are symmetric.

(3) Let R denote the ring of integers 7, and 715 the ring of integers modulo 12.
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Consider M = 72 as an R-module. Then M is a symmetric module. Note that M is
not reduced from [7, Example 1.3], the fact will be used in the sequel.
(4) Let 7 denote the ring of integers. Consider the ring

R:{(a b) |a,b,c€%} andtherightR—moduleM:{<0 ZZ) |m,ne7,,}

0 ¢ 0
and the homomorphism « : R — R is defined by a((% 2)) = (g Cb> where
<g Zé) € R. It is easy to check that M is a-symmetric.

We begin with a simple observation.

Lemma 2.1. Let M be a module. Then the following are equivalent:
1) M 1is a-symmetric.
(2) mab = 0 if and only if mba(a) = 0, where m € M and a,b € R.

Proof. (1) Clear from definitions. (2) The stated condition implies that for any
m € M and a,b € R, mab = 0 if and only if mba = 0. The rest is clear. O

By Definition 2.1, it is clear that a-symmetric modules are symmetric. Example
2.2 reveals that not all symmetric modules are a-symmetric for some a.

Example 2.2. Let Z denote the ring of integers. Consider the ring

rR={(¢ b | a,b € 7 ¢ and the right R-module M = 0 m | m,n, k€7
0 @ n k

0 b

00

and o an homomorphism defined on R by a((% 2)) :<

) where

0

00 1 2 0 2 0 0
m:<1 1>EM, r:(o 1), s:<0 O)GR, we have mrs:<1 1)

(0 2)(6 5)=( 5)(6 §) = (5 2) 70 mwman=(3 1)

0 23 (0 2 0 0)(0 2 . .
(O 0)(0 0):(0 2)(0 0):0.ThereforeMlsnota-symmetmc,

Proposition 2.1. Let R be a ring and o an endomorphism of R. The class
of a-symmetric modules is closed under submodules, direct products and so
direct sums.

<a 3) € R. R is commutative and so M is a symmetric module. For

Recall that a module M is called cogenerated by R if it is embedded in a direct
product of copies of R, and M is faithful if the only a € R such that Ma = 0is a = 0.
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Proposition 2.2. The following conditions are equivalent:
1) R s an a-symmetric ring.

(2) Every cogenerated R-module is a-symmetric.

(3) Every submodule of a free R-module is a-symmetric.

(4) There exists a faithful a-symmetric R-module.

Proof. Itis a direct result of definitions and Proposition 2.1. O

A ring R is called a-rigid if aa(a) = 0 implies a = 0 for any a € R (see [3]). A
module M is called a-rigid if maa(a) = 0 implies ma = 0 for any m € M and a € R.
anym € M and a € Rma? = 0implies ma = 0. The fact that aring R is a-rigid if and
only if the right R-module R is a-rigid is just mentioned and proved implicitly in [4].
But we use this result in this note and so we prove it explicitly.

Lemma 2.2. Let « be a homomorphism of a ring R. Then the right R-module
R is a-rigid if and only if R is a-rigid.

Proof. Necessity : let a, b € R with aa(b) =0. Then laa(b) =0 implies
lab = ab = 0, where 1 is the identity of R. Sufficiency : let R be an a-rigid ring.
We first show that R is a reduced ring. For if a®> =0 for a € R, then
aa(a)(oan(a)) = aa(a®)o?(a) = 0 implies aa(a) = 0 and so a = 0. To complete the
proof we show that aba(b) = 0 for a, b € R implies ab = 0. Since R is reduced, from
aba(b) = 0 we have baba(bab) = 0. Hence bab = 0 and (ab)®> = 0. Thus ab =0. O

Theorem 2.1. For a module M we have the following:

1) If M is a-reduced, then M is a-symmetric. The converse holds if M 1is rigid.

(2) If M is a-symmetric, then M is a-semicommutative. The converse holds if M
18 a-rigid.

Proof. (1) Let mab =0 where m € M,a,b € R. By [7, Lemma 1.2 (2)(a)]
any a-reduced module is a-semicommutative, then mRa(ab) =0 and by the
condition (2) of a-reduced module, mRab = 0. Hence mbab = 0 and so m(ba)® = 0.
By [7, Lemma 1.2 (2)(c)], we have mba = 0. So M is a-symmetric. For the con-
verse, assume that M is a-symmetric and rigid module and ma = 0 for m € M and
a € R. Let mr; = mya € mR N Ma where r; € R, m; € M. Being M a-symmetric
we have 0 = mar, = mria = mia?. Since M is rigid, mia = 0. The rest is clear.

(2) Necessity: let ma = 0. Then for any r € R, mar = 0. Since M is a-symmetric,
mra = 0. By the definition of a-symmetriec module, mra(a) = 0. Then mRa(a) = 0.
Therefore M is a-semicommutative.
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Sufficiency: note first that for any m € M and a € R with ma = 0, by hypothesis
mRa(a) = 0, and ma = 0 if and only if maa(a) = 0. Let m € M and a, b € R with
mab = 0, we prove mba(a) = 0. We apply these facts to mab = 0 in turn to have
0 = mab = maa(b) = ma(b)ac(b)a = m(a(d)a)ala(b)a) = ma(b)a = ma(b)alala))
= ma(ba(a)) = mba(a). Hence M is a-symmetric. O

The next example shows that the converse implication of the first statement in
Theorem 2.1(1) is not true in general.

Example 2.3. Let Z; denote the ring of integers modulo 4. Consider the ring

R:{<g 2>|a,beZ4}andtherightR-moduleM:{(2 Tl?)lm,n,ke&}

a —b
0 a

0 0
9 1)EMzmd

2 3 0 0 0 0\/2 O 0 0
(2 8) e men w0 o (30 (8 0)(2 D)= (2 )

<g g) e mRNMr. Hence M is not an a-reduced module. We show M is

a-symmetric. Since R is commutative for any m € M and r, s € R, mrs = 0 implies
msr = 0. To complete the proof we check, for any m € M and r € R, mr = 0 if and
only if ma(r) = 0. We prove one way implication. The other way is similar. So let

and a homomorphism o : R — R is defined by o (( a 2)) _ (

0 ) . We prove

that M is an a-symmetric module but not a-reduced. For if m = <

m= (2 Z) eEM,r= (g Z) € R. Assume that m» = 0 and m and r are non-

zero. Then we have the equalities
(%) xa=0, ya=0, yb+za=0.

If y = 0, then an easy calculation reveals that ma(r) = 0. Suppose y #0. If a =0
then ma(r) = 0. Assume a # 0. In this case the only solution in Z; of this equality
ya = 0in (*) is that y = 2 and @ = 2. Hence ma(r) = 0.

Similarly, the converse implication of the first statement in Theorem 2.1(2) is
not true in general, that is, there are a-semicommutative modules which are not
a-symmetric.

Example 2.4. Let F be any field and consider the ring R and the module M as

a b c 0 0 F
R = 0 a 0] ]abcelF and M=[(0 F F|.
0 0 a F F F
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a b c a 0 0 0 0 x
Definea:R—R,a|l 0 a 0] =10 a O0].Letm=|0 y 2z | €Mand

0 0 a 0 0 a k1l u

a b c
r= (0 a 0) € R with mr = 0. Then it is easy to check that if @ =0 then
0 0 a

a(r) =0, and if a # 0, then m = 0. Hence mRa(r) = 0. Let ¢; denote the 3 x 3
matrix units having alone 1 asits (¢, 7)-entry and all other entries 0, and m = eg; € M,
a = e3,b = e12 + e13 + es3 € R. Then mab = 0. But mba = es3 is a nonzero element
of M. Let m = e3; € M and a = e;3 € R. Then ma # 0 but a(a) = 0 and ma(a) = 0.
So M does satisfy neither first condition nor the second condition of the definition of
a-symmetric module.

Recall that singular submodule Z(M) of a module M consists of all elements
having right annihilator in R essential as a right ideal. A module M is called non-
singular if Z(M) = 0.

Theorem 2.2. Let M be a nonsingular module. Then M is a-reduced if and
only if M is a-symmetric.

Proof. Necessity is clear from Theorem 2.1(1). Sufficiency follows from
[9, Theorem 4.2]. O

Theorem 2.3. A ring R is a-symmetric if and only if every flat module Mg is
a-symmetric.

Proof. Necessity: let M be a flat module over the a-symmetric ring R and
0—-K—F—M— 0 a short exact sequence with F' free right R-module. By
Lemma 2.1 F' is an a-symmetric module and we write M = F'/K and any element
y=y+KeMforyecF.Letyab =0and yc =0, wherey € M and a,b,c € R. We
want to show yba = 0 and ya(c) = 0. Since yab = 0 and ¢ = 0, yab € K and yc € K.
Since M is flat, there exists a homomorphism 0:F — K with 0(yab) = yab,
O0(yc) = ye. Setu = O(y) — y € F. Then uab = 0 and uc = 0. Since F' is a-symmetric,
uba = 0 and ua(c) = 0. Then O(yba) = yba and O(yalc)) = yalc). Since O(y) € K, we
have yba € K and ya(c) € K. Therefore, yba = 0 and yalc) = 0. We use this same
method to prove other implication. So assume that ya(a) = 0 for some ¥ € M and
a € R. Then yala)€ K. There exists a homomorphism y:F — K with
yya(a)) = yala). Let v = y(y) —y. Then v € F and va(a) = 0. Since F' is a-sym-
metric, va = 0. Hence y(ya) = ya € K. Thus ya = 0. Sufficiency is clear. O

A regular element of a ring R means a nonzero element which is not zero divisor.
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Let S be a multiplicatively closed subset of R consisting of regular central ele-
ments. We may localize B and M at S and we may seek when the localization
S 'Mg-1p is a-symmetric. If a : R — R is a homomorphism of the ring R, then
S7la: STIR — S7!R defined by S~'a(a/s) = a(a)/s is a homomorphism of the
ring S!R. Clearly this map extends o and we shall also denote this map by o

Proposition 2.3. Let S be a multiplicatively closed subset of R consisting of
reqular central elements. A module My is a-symmetric if and only if S~'Mg-1p is
a-symmetric.

Proof. Assume that Mp is a-symmetric and (m/s)(a/t)(b/r) =0 in S 1M
wherem/s € S7IM,a/t,b/r € ST'R. Then mab = 0 and by the assumption mba = 0
and mba(a) =0. Therefore (m/s)(b/r)a/t)=0 and (m/s)(b/r)ala/t) =
(m/s)(b/r)(a(a)/t) = 0. The rest is clear. O

In [7] Lee and Zhou introduced the following notation. For a module M, we
S

consider M[x] = {Zmixi : §>0,m; € M 3, M[x] is an Abelian group under an
i=0

obvious addition operation. Moreover M[x] becomes a right R[x]-module under the
following scalar product operation:
S

t
For m(x) = z:wwcZ eMx] and f(x)= Zaixi € R[x],

par i=0
S+t
m@)f ) = ( > mia]) k.
=0 \i-+j—k

By these operations M[x] becomes a right module over R[x]. In the same way, the
Laurent polynomial extension M[x, x~!] becomes a right module over R[x, x~'] with
a similar scalar product.

Corollary 2.1. For a module M, M[xlg ts a-symmetric if and only if
Mx, 2 g 1y 18 a-symmetric.

Proof. LetS = {1,x,4?, ...}. Then S is a multiplicatively closed subset of R[x]
consisting of regular central elements of R[x]. Since S~'M[x] = M[x,x '] and
S71R[x] = R[x,x~!], the result is clear from Proposition 2.3. O

Proposition 2.4. Let M be an a-symmetric module and m € M, a; € R.
Then we have the following:
@) may ...a, = 01if and only if masq) . . . Gsm) = 0, where n € N and o € S,
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Q) mayag...a, =0 if and only if mai(a))o(ag)...aM(a,) =0 for any
il,...,in e N.

Proof. (1) For n = 1the claim is evident. The case n = 2 follows from M being
a-symmetric. Let n=3 and maja2a3 =0. Since M is «a-symmetric,
mayazag = miay)(azas) = 0 implies m(agaz)a; = 0. Also, using a-symmetry of M,
(mag)(ag)(a;) = 0 implies (mag)(a;)(ag) = 0. Therefore, our claim holds for
o1 = (123) and g2 = (12). Any other element of S5 is a composition of cycles g; and ag,
so the case n» =3 is completed. For n >3 it is enough to note that
S, = ((12),(12...n)) and to apply associativity of multiplication in E.

(2) It is sufficient to prove that ma;...a;_10;0;11...a, =0 if and only if
may . .. a;_10(a;)a;y1 - . - ayp = 0 for any 7. Since M is an a-symmetric module, using
(1), it can be easily proved. O

Let T(M) denote the set of all torsion elements of a module M, that is,
TM) = {m € M | ma = 0 for some nonzero a € R}.

Theorem 2.4. Let R be a ring with no zero-divisors. Then we have the fol-
lowing:

1) If M is an a-symmetric module, then T(M) is an a-symmetric submodule of M.

(2) M is an a-symmetric module if and only if T(M)is an a-symmetric module.

Proof. (1) First we show that T'(M) is a submodule of M. For if mq, mg € T(M)
and 7 € R, then we prove that m; — mg and myr belong to T(M). There exist ¢,
ts € R with myt; = 0 and mgty = 0. Since any symmetric module is semicommuta-
tive, we have m1Rt; = 0 and mgRt; = 0. In particular mtet; = 0 and metat; = 0.
Then (m; — mo)tet; =0 and so my —me € T(M). Assume that mqt; = 0. Then
my Rty = 0. Hence myr € T(M) for all € R. By Proposition 2.1, a-symmetric modules
are closed under submodules, T(M) is also an a-symmetric module.

(2) One way is clear from (1). For the other way, let 0 #m € M and 0 # a,b € R
with mab = 0. Since m € T(M) and T(M) is a-symmetric and R has no zero-divisors,
we have mba = 0. It completes the proof. O

Theorem 2.5. Let R be a ring with no nonzero zero-divisors. If M is an a-
symmetric module, then M /TM) is an a-symmetric module.

Proof. Letm be any element of M /T(M) with m € M. Suppose mab = 0, for
anya,b € Randm € M. So there exist » € R such that mabr = 0. By hypothesis and
Lemma 2.4, we have marb = mbar = 0. Hence mba = 0. Now the proof of the rest is
clear since to prove for any m € M and a € R, ma = 0 if and only if ma(a) = 0 is
routin. So M /T(M) is an a-symmetric module. O
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