
Received February 10, 2020, accepted March 6, 2020, date of publication March 16, 2020, date of current version March 25, 2020.

Digital Object Identifier 10.1109/ACCESS.2020.2981141

Hyper-Parameter Selection in Convolutional
Neural Networks Using Microcanonical
Optimization Algorithm
AYLA GÜLCÜ , (Member, IEEE), AND ZEKI KUŞ
Department of Computer Science, Fatih Sultan Mehmet University, 34445 Istanbul, Turkey

Corresponding author: Ayla Gülcü (agulcu@fsm.edu.tr)

ABSTRACT The success of Convolutional Neural Networks is highly dependent on the selected architecture
and the hyper-parameters. The need for the automatic design of the networks is especially important
for complex architectures where the parameter space is so large that trying all possible combinations
is computationally infeasible. In this study, Microcanonical Optimization algorithm which is a variant
of Simulated Annealing method is used for hyper-parameter optimization and architecture selection for
Convolutional Neural Networks. To the best of our knowledge, our study provides a first attempt at applying
Microcanonical Optimization for this task. The networks generated by the proposed method is compared
to the networks generated by Simulated Annealing method in terms of both accuracy and size using six
widely-used image recognition datasets. Moreover, a performance comparison using Tree Parzen Estimator
which is a Bayesion optimization-based approach is also presented. It is shown that the proposed method is
able to achieve competitive classification results with the state-of-the-art architectures. When the size of the
networks is also taken into account, one can see that the networks generated byMicrocanonical Optimization
method contain far less parameters than the state-of-the-art architectures. Therefore, the proposed method
can be preferred for automatically tuning the networks especially in situations where fast training is as
important as the accuracy.

INDEX TERMS Convolutional neural networks, hyper-parameter optimization, microcanonical optimiza-
tion, tree Parzen estimator.

I. INTRODUCTION
Convolutional Neural Networks (CNN) belong to a special
class of artificial neural networks where convolution oper-
ation is used instead of matrix multiplication in at least
one of their layers [1]–[3]. The effectiveness of CNNs for
object recognition was demonstrated in ILSVRC (IMA-
GENET large scale visual recognition challenge) [4] after
which it was used to address various other visual recognition
tasks such as face recognition, facial expression recognition
and action recognition. However, the success of the CNNs is
highly dependent on the selection of the hyper-parameters.
Determining which hyper-parameters to tune and defining
value domains for those hyper-parameters, and then select-
ing the best set of values require meticulous design and
experiment processes which can only be conducted by the

The associate editor coordinating the review of this manuscript and
approving it for publication was Farid Boussaid.

participation of an expert from the domain. The need for
the automatic design of CNNs is especially important for
complex CNN architectures where the parameter space is so
large that trying all possible combinations is computationally
infeasible. Random Search (RS) and Grid Search (GS) are
among the most widely-used non-adaptive methods used for
tuning the hyper-parameters of small CNNs [5], [44], [53].
They are called non-adaptive in the sense that they do not
change the course of the search by considering any results
that are already available. GS trains the CNN for every
combination of hyper-parameter values in the predefined
scale. It is shown in [52] that GS suffer from the curse of
dimensionality because the number of these combinations
grows exponentially with the number of hyper-parameters.
Moreover, the allocation of too many trials to the explo-
ration of dimensions that are not important may result in
poor coverage in important dimensions. In [53], the hyper-
parameters of the neural networks are optimized byGS. Then,

52528 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/ VOLUME 8, 2020

https://orcid.org/0000-0003-3258-8681
https://orcid.org/0000-0001-8762-7233

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

Bergstra and Bengio [5] perform similar experiments using
RS by taking these experiments as a point of comparison,
and the results suggest that RS finds better models than GS in
most cases and requires less computational time. The perfor-
mance of both of these methods can be improved by making
them somewhat adaptive by the manual updates provided
by an expert. Bayesian Optimization based approaches [44],
[54], [55] and meta-heuristics based approaches are among
the adaptive methods in which the solution space is refined
by the information obtained in earlier stages. Despite the
implementational simplicity of Bayesian Optimization meth-
ods, most of the current research focuses on meta-heuristics
based approaches, especially on evolutionary algorithms due
to efficient coverage of the search space. The field of appli-
cation of evolutionary computation to evolve some aspects
of neural networks is called neuroevolution which arose by
the end of 1980s. EPNet [6] and NEAT [7] are among the
studies with huge impact in the field. Although neuroevolu-
tion is a well-established research area, recent improvements
in computational resources, in particular in the availability
of graphics processing units (GPUs) enabled optimization of
complex networks more efficiently.

In the study proposed by Sun et al. [8] evolutionary
approach which is called EvoCNN is used to automati-
cally generate CNN architectures and the initial weights.
The network model produced by the proposed approach
achieved competitive results against more complex architec-
tures. Ma et al. [9] propose another study based on the evo-
lutionary algorithms which is tested on well-known datasets
and achieved successful results against state-of-the-art archi-
tectures. Baldominos et al. [33] use genetic algorithms (GA)
and grammatical evolution for the automatic generation of
CNN architectures.

Particle Swarm Optimization (PSO) is among the meta-
heuristics that has been successfully applied for the optimiza-
tion of CNN hyper-parameters. In [10] PSO-based method is
tested using well-known datasets and competitive results with
state-of-the-art architectures are obtained. It is also shown in
[11] that the PSO algorithm is a strong competitor to the state-
of-the-art algorithms in terms of the classification error.

Differential Evolution (DE) and Harmonic Search (HS)
are among the other meta-heuristics that have been used for
optimizing CNN hyper-parameters (see [12], [13]). In addi-
tion, reinforcement learning (RL) [14], [15] method is also
being used for finding the optimal architecture and hyper-
parameters of CNNs (see [16], [17]).

In this study, Microcanonical Optimization (µO) algorithm
which is a variant of Simulated Annealing (SA) algorithm is
used for the hyper-parameter optimization in CNNs. To the
best of our knowledge, this is the first study in which µO is
used for optimizing CNN architecture and hyper-parameters.
There is only one study proposed by Ayumi et al. [26] related
to using µO in CNNs, but the proposed approach is used for
optimizing the weights of a simple CNN rather than optimiz-
ing the network’s architecture and hyper-parameters. In some
of the meta-heuristics-based studies mentioned above, some

TABLE 1. Brief comparison of the hyper-parameters optimized in our
study with the related studies. The studies are compared according to the
criteria including whether the proposed approach uses variable number
of layers (Dyn.), and whether it optimizes Convolution layer (Conv.),
Pooling layer (Pool.) and Fully Connected Layer (FC) hyper-parameters,
whether it optimizes Regularization (Reg.), Learning Process (LR.) and the
way the initial weights (W) are defined.

hyper-parameters are excluded from the optimization pro-
cess. A fixed CNN architecture where the number of layers
is kept constant is adopted, and only some of the hyper-
parameters within a fixed architecture is optimized. In this
study, an architecture that is allowed to extend or shrink
dynamically is adopted and a wide range of hyper-parameters
are selected for optimization. The hyper-parameters consid-
ered for optimization in this study and in other studies are
summarized in Table 1. One of our motivation for selecting
µO is to demonstrate the ability of this method to reach
acceptable solutions within a small number of iterations.
This is especially important for training CNNs where the
computational cost of a single iteration can be very high.
Another advantage of this method is that there are only a few
parameters that need to be tuned. The networks generated by
the µOmethod is compared to the networks generated by SA
method in terms of both accuracy and size using six widely-
known image recognition datasets. Additionally, a perfor-
mance comparison using Tree Parzen Estimator (TPE) which
is a Bayesion optimization-based approach is also presented.
The amount of time spent on training a CNN depend very
much on the size of that CNN which is defined as the total
number of weights and biases. In both µO and SA, the size
is considered as the second objective whereas the accuracy is
the first objective. Whenever two network models generated
by the same algorithm yield in the same accuracy, the one
with smaller size is selected. The CNN architectures whose
hyper-parameters are optimized by µO are able to achieve
competitive classification results when compared to the state-
of-the-art architectures. When the architectures generated by
µO algorithm are compared to the state-of-the-art architec-
tures in terms of the size of those models, it is observed that
the CNNs produced by the proposed method by conforming

VOLUME 8, 2020 52529

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

FIGURE 1. An example CNN architecture.

to the predefined constraints and design rules contain far less
parameters than the state-of-the-art architectures.

II. CONVOLUTIONAL NEURAL NETWORKS
In this section, we aim to remind some key concepts of CNNs
for better understanding the paper rather than to present an
exhaustive study about the CNNs (for more detailed infor-
mation refer to [3]). CNNs are deep neural networks in
which convolution operation (navigating filters over inputs) is
applied in at least one of the layers with the aim of extracting
useful features.

Architecture of a simple convolutional neural network
(CNN) consists of the following layers: Input Layer, Con-
volution Layer, Pooling Layer, Fully Connected Layer and
Output Layer. The images are fed into the CNN through the
input layer. Then, in the convolution layer, different features
of the input (feature maps) are extracted by using filters
(kernels). The number of feature maps, the size of the filters,
and other parameters such as stride and padding define the
structure of a convolutional layer. Moreover, the number of
convolution layers changes from one CNN to another. For
example, the CNN architecture shown in Fig.1 (elements are
not to scale) consists of 2 convolution layers each of which
having different number of filters with different sizes. In the
figure, images of size 96 × 96 × 3 are fed into the CNN
through the input layer, where the first two dimensions denote
the width and height of the image, and the third dimension
denotes the number of channels which is 3 for a colored
image. The first convolution layer includes 32 filters each
with a size of 46× 46. Following the convolution operation,
linear structure is transformed into a non-linear structure with
ReLU activation function. As shown in the figure, the size
of the filters are reduced after the the pooling operation.
These features are then transformed into a one-dimensional
vector which is then feeded to the fully connected layer (FC)
where the classification result is obtained. The error value
is calculated using the outputs, and the weights are updated
based on the error.

In the pooling layer, the size of the feature maps are
reduced according to selected hyper-parameters such as
the filter size, the stride and the pooling method. The
stride hyper-parameter, which is common to the convolu-
tion and pooling layer, determines the number of steps the
filter takes as it moves through the input. In the pooling
method, the highest or the average value (depending on the

TABLE 2. Hyper-parameters that can be optimized for CNN.

selected pooling method) in the corresponding field of the
filter is produced. As an alternative to the pooling method,
Springenberg et al. [18] propose Strive method in which a
convolution layer with 3× 3 or 2× 2 filter sizes with a stride
of 2 is used. Filters in this layer do not have weights to learn.
Only size reduction is applied and the summary information
is transferred to other layers.

The hyper-parameters that can be set for each of the layers
are summarized in Table 2. The hyper-parameters that are
common to all layers like the learning rate, dropout rate and
weight initializer are given in separate columns.

III. SOLUTION REPRESENTATION
Solutions can be represented either by block structure as in
[9] or by layer structure as in [8], [10], [19]. In this study,
an architecture that is allowed to extend or shrink dynami-
cally is adopted, and the block structure is selected for this
purpose. Taking the VGGNet [20] architecture as a reference,
each convolution layer (CONV), activation function (ACT),
batch normalization (BN), pooling / strive layer (SUBS) and
dropout (DROP) parameters are collected under a single
block which is called the convolution block. (see Fig. 2a).

Fully connected layer, activation function, batch normal-
ization and the dropout are collected in a single block which
is called the fully connected block (see Fig.2b). Solutions are
formed by combining a number of convolution and fully con-
nected blocks as shown in Fig.2c according to the following
pattern: [(CONV−ACT−BN)∗N−(SUBS−DROP)]∗M−
[(FC−ACT−BN−DROP)]∗K , whereN ,M andK takes on
values in {2, 3}, {2, 4} and {0, 2}, respectively. There cannot
be more than 3 convolution layers in a convolution block.
If the current convolution block has 2 convolution layers
already, a new convolution block is added with a probability
of 0.5. Likewise, if there are 3 convolution layers in the
present convolution block, it is allow to delete a convolution
layer with a probability of 0.5. Each solution can consist
of at least 2, and at most 4 convolution blocks. Adding a
new convolution block can be performed with a very low
probability (probability of 0.0625). It is also allowed for a
solution to have zero or at most 2 fully connected blocks.
For the solutions that do not contain fully connected blocks,
dropout with a rate of 0.5 is applied after the last convolution
block in order to improve the generalization performance.

52530 VOLUME 8, 2020

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

FIGURE 2. Convolution block, fully connected block and a complete
solution.

TABLE 3. Hyper-parameters and associated value ranges adopted in this
study.

The activation function and the pooling or strive methods are
selected at the beginning and these parameters remain the
same for all convolution blocks.

The hyper-parameters considered for optimization in this
study and value ranges defined for each of those parameters
are shown in Table 3. When no restriction is applied on
the selected parameter values, complex architectures with
huge number of parameters leading high training times are
generated. Random selection of these parameter values may
also lead to inefficient networks. For example, if the hyper-
parameters such as the filter size and stride are assigned very
large values at the beginning, then the input size is reduced
prematurely causing the loss of information. The models
begin to move away from some patterns observed in the state-
of-the-art architectures such as selecting the number of neu-
rons to be associatedwith dropout rate, increasing the number
of feature maps gradually and reducing the size of the filter
gradually. Following the general rules discovered in the previ-
ous studies, but at the same time adding some flexibility to be
able to explore the search space efficiently, we aim to obtain
smaller models (models with fewer parameters) that achieve
competitive results with larger models.

Hyper-parameter constraints considered during the gener-
ation of a new solution are listed below (the studies recom-
mending those values are given in brackets):

1) In order to prevent premature feature map size reduc-
tion, stride hyper-parameter is fixed to 1 for the convo-
lutional layer, and it is fixed to 2 for the pooling and
strive layers.

FIGURE 3. Structure of an initial solution.

2) The convolution layers within the same convolution
block will use the same hyper-parameter values ([18],
[20]).

3) Padding hyper-parameter is selected to "SAME" for all
convolution and pooling layers.

4) The filter size selected for a convolution layer should
be less than or equal to the filter size in the previous
convolution block.

5) The dropout value selected for a pooling layer should
be greater than or equal to the dropout value in the pool-
ing layer in the previous convolution block. Dropout
can be at most 0.5 ([21]–[24]). For the first convolution
layer, dropout value will be selected as 0.2 ([18], [21],
[25]).

6) The number of feature maps in a convolutional block
should be at least 32 more than the number of feature
maps in the previous convolutional block ([18], [20]).

7) The number of neurons in a fully connected layer can be
set equal or twice the number of neurons in the previous
fully connected layer.

8) The dropout rate selected for a fully connected
layer should be greater than or equal to the dropout
value selected in the previous fully connected
layer ([20]–[22]). For the first fully connected layer,
a dropout rate of 0.3 is used.

An initial solution formed considering the constraints
related to the network architecture and the hyper-parameters
is shown in Fig.3. This solution consists of 2 convolution
blocks, where the first convolution block consists of 2 convo-
lution layers each with 64 filters, whereas the second block
consists of 3 convolution layers each with 128 filters. Each
block is ended with a max pooling layer, and there is only
one fully connected layer. The same activation function, elu
is used in all of the layers.

IV. OPTIMIZATION ALGORITHMS
In this study, Microcanonical Optimization (µO) algorithm
is used for architecture selection and hyper-parameter opti-
mization in CNNs. The networks generated by the proposed
method is compared to the networks generated by another
meta-heuristics, namely Simulated Annealing, in terms of

VOLUME 8, 2020 52531

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

both accuracy and size. In addition to these twomethods, Tree
Parzen Estimator (TPE) which is a Bayesion optimization-
based approach is also used for comparison. These three
algorithms are explained in sections IV-A to IV-C.

A. SIMULATED ANNEALING
Simulated Annealing (SA) is a well-established meta-
heuristic which uses an adaptation of the Metropolis
algorithm to accept non-improving moves based on a prob-
ability [27]. If a random move improves the current objective
function, then it is accepted. Worsening moves are accepted
according to an exponential probability distribution that is
biased by the amount of worsening in the objective function
and a temperature parameter, Tcur . Initially, the system is
started with a high initial temperature which is called T0
and the temperature is lowered gradually according to a
prescribed annealing schedule. The search is stopped when
the temperature reaches a minimum temperature value, Tf ,
that is, when no solution that increases the cost function is
accepted anymore. Pseudo-code presenting the general struc-
ture of the SA method is given in Algorithm 1.

Algorithm 1 Simulated Annealing

Generate S ;
initialize_params (Tf , cr, nbr_iter)
compute_params(T0, nbr_out_iter, nbr_in_iter)
Tcur ← T0
for out_counter ← 0 to nbr_out_iter do

for in_counter ← 0 to nbr_in_iter do
Generate S

′

1F = |F(S
′

)| − |F(S)|
pacc←− min{1, exp (− 1F

Tcur
)}

if accept(pacc, prandom) then
S ← S

′

end
end
Tcur ← Tcur ∗ cr

end

B. MICROCANONICAL OPTIMIZATION ALGORITHM
Microcanonical Annealing (MA) algorithmwhich is a variant
of SA uses Creutz’s technique [39] to control the system by
its internal energy, not by its temperature. In the Creutz’s
algorithm, total energy of the system is conserved. To accom-
plish this, total energy is defined as the sum of the potential
energy, EP(S), which is the actual objective function value of
the current solution S and the kinetic energy, ED, (also called
the demon) which is the variable amount of energy (see Eq.1)
that is always non-negative.

E(S) = EP(S)+ ED (1)

The algorithm starts with a random state which is pre-
sumably of high energy, so initial ED is usually set to zero.
As shown in Algorithm 2, after the system reaches equi-
librium at a particular energy level, then the energy of the

system is reduced by a specific amount. Barnard [40] suggests
considering the rate of accepted moves to states of higher
energy as a reasonable test for equilibrium. He also takes
the amount of energy to be removed from the system after
it reaches equilibrium as the initial demon, ED0/300. MA
algorithm has several advantages over SA algorithm. First,
MA is based on Creutz algorithm which does not require
the generation of high quality random numbers, or heavy
computations. Second, the experiments on the Creutz method
show that, it can be programmed to run an order of magnitude
faster than the conventional Metropolis method for discrete
systems [41].

Algorithm 2Microcanonical Annealing
Initialize ED;
while termination condition is not satisfied do

repeat
Generate S’;
4E← E(S’) - E(S);
if 4E ≤ 0 then

S← S’;
ED← ED - 4E;

else
if ED - 4E ≥ 0 then

S← S’;
ED← ED - 4E;

until system reaches equilibrium;
Reduce ED;

end

In the MA method, a new state, S ′, is randomly selected
and is accepted or rejected based on the change in energy
which is calculated as 4E = E(S ′) − E(S). If 4E ≤ 0
, then S ′ is accepted and kinetic energy of the system, ED,
is increased in order to conserve total energy. If 4E > 0,
the acceptance of S ′ is contingent upon ED, if 4E ≤ ED the
change is accepted and demon energy is decreased, otherwise
S ′ is rejected. MA is controlled by periodically removing
energy from the system. After a number of iterations per-
formed at a particular energy level, the energy of the system is
reduced by removing a fixed amount from demon. As shown
in Algorithm 2, the procedure terminates if the number of
iterations is reached or the best solution remains constant for
a specified number of iterations.

In this study, we employed a slightly modified version
of this algorithm defined in [42]. The algorithm consists
of two procedures that are alternately applied: initialization
and sampling (see Algorithm 3). In the initialization phase,
a greedy local search is employed. When the algorithm gets
stuck at a local minima, then the sampling phase starts. This
phase tries to free the solution from the local minima by
resorting to Creutz’s algorithm. The authors, Torreão and
Roe [42] state that their method does not resort to annealing,
so they call this method Microcanonical Optimization (µO)
algorithm, and we adopt the same name.

52532 VOLUME 8, 2020

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

Algorithm 3Microcanonical Optimization (µO)

while termination condition is not satisfied do
Initalization();
Sampling();

end
return SBest

Initialization Phase: During this phase, µO performs a
greedy local search (LS) in which only the moves leading to
a state of lower cost are accepted. As a termination criterion,
Linhares and Torreão [43] suggest using the number of moves
rejected in a row for interrupting this phase. A maximum
iteration limit for this phase may also be set. The initialization
steps are shown in Algorithm 4.

Algorithm 4 Initialization Procedure
Input: S, max_rejected, max_init_iter
L← {} ; // list of rejected solutions’
4E
nbr_rej← 0;
nbr_iter← 0;
while (nbr_rej < max_rejected & nbr_iter<
max_init_iter) do

nbr_iter← nbr_iter + 1;
Generate S’;
4E← E(S’) - E(S);
if 4E ≥ 0 then

Add 4E to L ;
nbr_rej← n + 1;

else
nbr_rej← 0;
S← S’;

end

Sampling Phase: This phase tries to free the solution from
the local minima by resorting to the Creutz’s algorithm. For a
given fixed energy level (see Eq.1), a sample of solutions are
generated, but the acceptance of these solution is dependent
on ED. All improving moves are accepted, and the worsening
moves are accepted only if demon is capable of absorbing
the cost difference incurred. Linhares and Torreão [43] sug-
gest using an adaptive strategy to define ED, by observing
the rejected moves during the initialization phase. Rejected
moves are put into a list denoted by L, then the cost jumps
associated with these moves are used to define initial demon,
DI , that will be used during the sampling phase. Initially, ED
is set to the value ofDI . The steps of this algorithm are shown
in Algorithm 5.

One cycle of the algorithm is illustrated in Table 4. In the
example, max_rejected and max_init_iter takes the values
of 5 and 9, respectively. That is, the initialization phase stops
if 5 moves in a row are rejected, or if the number of itera-
tions exceeds 9. In addition, adaptive selection of ED in the
sampling phase is also illustrated in the table. The median of

Algorithm 5 Sampling Procedure
Select DI from the list-of-rejected-moves;
Let max_samp_iter be the maximum number of
sampling iterations;
Let S be the starting solution of the sampling phase;
num_iter← 0;
ED← DI ;
while (num_iter < max_samp_iter) do

Generate S’;
4E← E(S’) - E(S);
if 4E ≤ 0 then

S← S’;
ED← ED - 4E;

else
if ED - 4E ≥ 0 then

S← S’;
ED← ED - 4E;

num_iter← num_iter + 1;
end

TABLE 4. Illustration of a cycle in µO.

the rejected objective values is selected as ED, and the moves
yielding a cost increase greater than this value are rejected.

C. TREE-STRUCTURED PARZEN ESTIMATOR
Bayesian optimization approaches keep track of past evalua-
tion results to focus on the most promising hyper-parameters
in contrast to random or grid search where significant
amount of time can be spent evaluating bad hyper-parameters.
Sequential Model Based Optimization (SMBO) algorithms
are a formalization of Bayesian optimization where each trial
is executed one after another. The true objective function that
is costly to evaluate is approximated by a probability model
(surrogate) that is cheaper to evaluate. The steps of a generic
SMBO are given in Algorithm 6. At each step, the point
x∗ that gives the best result for the surrogate is selected for
calculating the true objective function f . Then this new point
along with its true objective function value is added to the
observation history which is then used to update the current
surrogate modelMt . There are several variants of the SMBO
algorithms that differ in terms of building the surrogate of the
objective function and the criteria for selecting the next set

VOLUME 8, 2020 52533

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

of hyper-parameters. In this study, we consider SMBO with
Tree Parzen Estimators [44], [45] as the surrogate model and
the Expected Improvement (EI) as the selection criterion.

Algorithm 6 The Pseudo-Code of Generic Sequential
Model Based Optimization
Input: f , M0, T , S
H← ∅ ; // observation history
for t ← 0 to T do

x∗← argminx S(x,Mt−1)
evaluate f (x∗) ; // true objective
function calculation
H← H ∪ (x∗, f (x∗)) ; // update H
fit a new modelMt to H ; // update
surrogate model Mt

end
returnH

Expected Improvement is the expectation under some
model M (surrogate) of f that f (x) will be smaller (better)
than some threshold y∗ which is computed as in (2). pM (y|x)
is the surrogate probability model expressing the probability
of y given x. If pM (y|x) is zero for every point that y < y∗,
then the hyper-parameters x are not expected to give any
improvement. Conversely, if EIy∗ (x) is positive, then the
hyper-parameters x are expected to yield smaller values than
y∗. TPE build the model by applying Bayes rule, that is,
pM (y|x) is computed as pM (y|x) = p(x|y)p(y)/p(x). Then the
expected information equation becomes as shown in (3).

EIy∗ (x) =
∫ y∗

−∞

max(y∗ − y, 0)pM (y|x)dy (2)

EIy∗ (x) =
∫ y∗

−∞

max(y∗ − y, 0)
p(x|y)p(y)
p(x)

dy (3)

The probability of the hyper-parameters x given the score
y, p(x|y), is defined using two different distributions, namely
l(x) and g(x), where l(x) is the distribution formed using the
observations better than y∗, whereas g(x) is the distribution
of the remaining ones (see (4)).

p(x|y) =
{
l(x), If y < y∗

g(x), If y ≥ y∗
(4)

Intuitively, TPE wants to draw values of x which are more
likely under l(x) than under g(x) and the parameter y∗ is
chosen to be some quantile γ of the observed y values, so that
p(y < y∗) = γ . The candidates are selected according to l(x)
and evaluated according to l(x)/g(x) and at each iteration,
the x∗ which gives the greatest EI which is computed as in
(5) is returned.

EIy∗ (x) =
γ y∗l(x)−l(x)

∫ y∗
−∞

p(y)dy

γ l(x)+ (1− γ)g(x)
α

(
γ+

g(x)
l(x)

(1−γ)
)−1
(5)

Prior to the run of TPE, random search is applied in order to
collect data for building the initial surrogate,M0. The number

of random search iterations depends only on the computation
budget allocated for this step of the algorithm. Themore com-
putational budget the better initial probability distribution.
In this study, the number of initial random search iterations
is selected as the 10% of the total number of solutions to be
produced. The ratio of best observations, γ is selected as 0.2.
At each step, 1000 candidate solutions whose approximate
objective function values of are calculated using the surrogate
probability model are generated. For the SMBO with TPE
implementation, we use Hyperopt python library [46].

V. RESULTS
A. EXPERIMENTAL SETUP
µO algorithm and SA was implemented in Python, and the
CNNs were trained using Keras [47] with a Tensorflow back-
end on the following hardware: Intel Xeon CPU @ 2.30GHz
CPU, 12.6 GB Memory, 16 GB Tesla T4 GPU.

Both µO and SA algorithms start with the same initial
solution presented in Section III and each of the algorithms
iterates by moving from one solution to the next by con-
forming to the architecture and hyper-parameter constraints.
Evaluating the objective function of a solution (network)
obtained at any iteration involves a complete training of the
network using the whole training data and for a number of
epochs and then testing it using the whole test data. However,
performing these evaluations at each iteration is computation-
ally inefficient. In order to overcome this drawback, we used
a function approximation approach that is widely accepted in
CNN hyper-parameter optimization studies. A given network
is trained for a small number of epochs, like 5, using a
reduced sample of the original data, although providing poor
results. This pessimistic estimation of the network quality
will not effect the evolution of the good networks, since what
is important here is to perform a fair comparison between
different networks rather than their actual objective function
values. From the original training data, 50% of them are
selected randomly for training, and 10% of this reduced
sample of training data is used for validating a given network.
The original test set is never used during training and it is
only used for evaluating the actual performance of the best
solution obtained for a whole run of the algorithm. The image
classification datasets used in this study are given in Table 5.
The number of training and test samples in the original dataset
and in the reduced dataset is also given in the table. For
each dataset, among the models produced by the algorithm,
top 5 CNNs according to the accuracy are trained for long
training epochs (200 epochs) using the original training data
and tested on the original test data.

B. PARAMETER TUNING
For the SA algorithm, the selection of T0, Tf and the asso-
ciated cooling scheme is very important for the perfor-
mance. There are many studies from different domains in
which the effect of these parameters have been carefully
observed. Thompson and Dowsland [56] tested different

52534 VOLUME 8, 2020

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

TABLE 5. Image datasets used in the experiments.

cooling schedules using different cr values, and the results
indicated that the best cooling strategy was to employ slow
geometric cooling with cr = 0.99. They set T0 at a value
where it was estimated that approximately 75% of moves
would be accepted. In a more recent study [57], it is shown
that cr in the geometric cooling scheme is not significant as
long as its value is close to 1. Smith et al. also proposed a
real time initial temperature selection strategy [58]. Initial
temperature is adjusted so that non-improving solutions will
be accepted with a probability of 50%. In order to estimate
the energy levels of the solutions, a short ‘‘burn-in" period is
used and then the initial temperature is set equal to the average
positive change of energy divided by ln(2).

In this study, we adopted a real time initial temperature
selection strategy that employs a short burn-in period in
which both worsening and improving moves are accepted.
We set T0 =

−1∗avgδP
ln(pacc)

, where avgδP is the average worsening
energy observed during the burn-in period, and pacc is the
initial acceptance probability. For the pacc, we selected a
value of 0.5 which ensures that non-improving moves will be
accepted with a probability of 50%, and for cr , we adopted
the most agreed upon value of 0.99. There are several ways
to determine the termination condition. For example, SA
might terminate when when Tcur reaches a predefined final
temperature Tf , or after a number of iterations has passed.
Additionally, a time limit can also be set on the algorithm.
In this study, we set this condition as the number of solu-
tions created during a single run of SA, and the algorithm
stops if the total number of created solutions exceeds the
solution budget. This approach ensures that approximately
the same number of solutions are created at each run of the
algorithm and it allows a fair comparison between different
algorithms. The solution budget or the total number of iter-
ations, tot_nbr_iter , is defined as 200 solutions. In order to
define the number of outer iterations, nbr_out_iter , in which
the current temperature is cooled we tested for two different
values, 10, 20, and the number of solutions sampled at each
temperature level, nbr_in_iter , is defined as nbr_in_iter =
tot_nbr_iter
nbr_out_iter

.

There are a few parameters within the µO algorithm that
might affect the performance of the algorithm. These param-
eters are max_init_iter and max_samp_iter , where the first
parameter determines the maximum number of iterations
in the initialization phase, whereas the second parameter
determines the maximum number of iterations in the sam-
pling phase. Also, the parameter max_rejected_moves which

TABLE 6. Test configurations for µO.

defines the number of rejected solutions in a row that ends
the initialization phase should be defined. As the algorithm
alternates between the initialization and the sampling process,
a termination condition on the number of these cycles is also
needed. We set this condition as the number of solutions
created during the µO algorithm run and the algorithm stops
if the total number of created solutions exceeds the solution
budget. This approach ensures that approximately the same
number of solutions are created at each run of the algorithm.
Within the solution budget which is defined as 200 solutions,
the parametersmax_init_iter andmax_samp_iter are defined
as the ratio of the solutions created in each cycle. The algo-
rithm is tested using two different values for the minimum
number of cycles, min_cycle, and the ratio of the solutions
in the initialization phase, init_soln_ratio, and the ratio of
the solutions in the sampling phase, samp_soln_ratio, are
selected as given in Table 6
For the configurations where the min_cycle is selected

as 10, the maximum number of solutions generated at each
cycle is computed as 200/10 = 20. For the Config 4 where
init_soln_ratio is selected as 0.7, the maximum number of
solutions generated in the initialization phase is set to 20 ∗
0.7 = 14, and the remaining solution budget of 6 solutions
can be used in the sampling phase. The max_rejected_moves
parameter is set to be the half of the max_init_iter value.

The µO method was run for 6 configurations defined
in Table 6 using the CIFAR10 and FashionMNIST datasets.
The solutions accepted throughout the run of the algorithm
are recorded and used for performance comparison. Kruskal-
Wallis h-test is applied to determine if there are signifi-
cant differences among those configurations. The test results
reveal that Config 4 is significantly better than 1, 2, 5 and 6,
but there is no significant difference between Config 3 and
4. In order to further identify the best configuration, top
5 solutions obtained for Config 3 and 4 were trained over
200 training periods using the same datasets. T-test results
again revealed no significant differences, therefore Config
3 which had better average accuracy is chosen as the winning
configuration.

C. PERFORMANCE COMPARISON
The µO algorithm is run independently for each of the six
image recognition datasets starting from the initial solution
given in Section III. The algorithm iterates by moving from
one solution to the next by conforming to the architecture and
hyper-parameter constraints within the predefined solution

VOLUME 8, 2020 52535

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

FIGURE 4. µO trajectory for each of six datasets - blue line connects the costs of the accepted solutions.

budget of 200 solutions. The solutions produced during a sin-
gle run of the µO algorithm and the objective function values
(error rates) of the generated solutions are shown in Fig.4.
The blue line connects the objective values of the accepted
solutions. As the figure suggests, the search trajectory of the
algorithm changes from one dataset to another. For example,
for the MNIST dataset, the best solution is obtained within
the first 25 iterations, whereas for the FashionMNIST dataset,
best error rates are obtained just a few iterations before the
200th iteration.

SA is also implemented and run under the same archi-
tecture and hyper-parameter constraints and budget limita-
tions. Then, the performance of SA and µO algorithms are
compared in terms of both the classification accuracy and
the size of the networks. In addition to these two methods,
we considered other studies from the literature that employ
meta-heuristics for the same task and also report the size of
the networks clearly. According to the results given in Table 7,
µO algorithm achieves the best accuracy on 4 of 6 datasets,
and SA achieves the best accuracy on 3 datasets. As can be
seen from the table, the best or the second best accuracy
is achieved either by µO or SA both of which generate the
networks within predefined architecture and hyper-parameter
constraints. When it comes to the size of the networks, µO
algorithm generates the smallest networks for 4 datasets,
whereas SA generates the smallest network for only 1 dataset.
For MNIST, MNIST-Digits and FashionMNIST datasets, µO
achieves best accuracy rates with much smaller networks.
Although there are other studies reporting better accuracy
rates for the same datasets, we have selected only the ones
that perform automatic hyper-parameter and/or architecture
optimization without any data augmentation or data prepro-
cessing.

The performance of µO and SA are also compared when
the constraints given in Section III are relaxed. In Table 8,
µO-u stands for the unconstrained version of the µO algo-
rithm. Results obtained by TPE (Tree Parzen Estimator) is

TABLE 7. Comparison of µO with other meta-heuristics.

also included in the table, since no constraints are imposed
on this method. The results state that SA-u achieves the
best accuracy on 4 datasets, whereas µO-u and TPE each
achieves the best accuracy on only 1 dataset. However, there
is no significant accuracy difference between µO and SA.
SA achieves 0.09% and 0.175% better accuracy than µO for
MNIST and EMNIST-Letters datasets, respectively, but this
accuracy improvement comes with a significant increase in
computational cost.

The performance of all the approaches given in
Tables 7 and 8 is also illustrated in Figure 5, where the meth-
ods that result in non-dominated solutions are connected by
a red line. For better visualization, this red line is extended
so that it intercepts the x and y axis at the extreme values

52536 VOLUME 8, 2020

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

FIGURE 5. Pareto fronts of the methods for each of six datasets.

TABLE 8. Comparison among µO-u, SA-u and TPE.

of the corresponding objective values. One can see from the
figure that µO is always on the front except for one dataset
where SA dominates all the others.

We also compared the performance of the networks gener-
ated by µO to the state-of-the-art architectures. Two state-of-
the-art architectures, namely VGGNet [20] and ResNet [51],
are selected for comparison. To be more specific, VGGNet-
16 and ResNet-50 architectures are selected and they have
been rebuilt by adhering to the original articles [20], [51]. The
results presented in Table 9 suggest that the CNNs generated
byµOby conforming to the predefined constraints and design
rules are able to achieve competitive results with the state-
of-the-art architectures with significantly smaller number of
parameters. As illustrated in Fig.6, the size has dramatic
effect on training duration.

FIGURE 6. Comparison of the training duration of the µO with the
training duration required for the state-of-the-art architectures.

D. INVESTIGATING OTHER HYPER-PARAMETERS
In all of the experiments, the batch size, the learning rate,
weight initializer and the optimizer method hyper-parameters
were excluded from the optimization process. For these
parameters, we had adopted the values recommended in the
literature. A batch size of 32, a learning rate of 1e-4, weight
initializer of Xavier was adopted in all of the experiments
and Adam method was selected as the optimization method.
In order to investigate the effect of these parameters on the
performance of the CNN topologies, we trained and tested
the best topology proposed by the µO method for each of
the datasets for different values of these parameters given
in Table 10. At each step, only one parameter value is allowed
to change, other parameters remain the same.

The optimizer method SGD produced slightly better
results than the Adam optimizer for all the datasets
except CIFAR10 dataset. For the MNIST, EMNIST-Digits,
EMNIST-Balanced and FashionMNIST datasets, SGD with
the learning-rate of 1e-2 and learning-rate decay of 1e-4; for
the EMNIST-Letters dataset, the learning-rate of 1e-3 and the
learning-rate decay of 1e-8 produced slightly better results
than the Adam optimizer. Xavier method proved to be the

VOLUME 8, 2020 52537

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

TABLE 9. Comparison of the best architectures obtained by each method
in terms of accuracy and the size for each dataset.

TABLE 10. Hyper-parameters and the values investigated for further
performance increase.

TABLE 11. Accuracy rates obtained after investigating different values for
the fixed hyper-parameters.

best weight initialization technique for all of the datasets.
As shown in Table 11, the effect of these new values on the
performance of the model is minimal.

E. DISCUSSION OF THE BEST ARCHITECTURES
In this section, a discussion on the best CNN topologies along
with the hyper-parameters generated by the µO method is
provided. Fig.7 illustrates the best CNNs obtained for each
of the datasets (notation is described in Fig.8). One can
observe from the figure that all of the topologies excluding
the one for the EMNIST-Letters dataset are composed of two
convolution blocks each ending with a pooling layer. Another
interesting observation is about the selection of the pooling
method. Although no constraint had been imposed for this
hyper-parameter, maximum pooling is selected at the end of

FIGURE 7. The architecture and hyper-parameters of the best CNNs
generated for each of the six datasets - the size and the accuracy rates
are written in the upper part.

FIGURE 8. Notation used to describe the best CNN topologies.

each intermediary convolution block in all of the topologies
except for EMNIST-Digits. For the last convolution block,
average pooling is selected which is often used and desired in
state-of-the-art architectures. It is also interesting that some
best topologies do not include fully connected layers, but
still yield in high accuracy rates. Regarding the activation
function, ReLU is selected in all of the topologies except for
the CIFAR-10 dataset. The stability of the µO method is also
quantified using a similarity-based stabilitymetric introduced
by Dunne et al. [60] (see [59] for a detailed discussion on
several stability measures). A stability value is calculated in
order to determine the amount of variation in the distribution
of architectural features and hyper-parameters in the resultant
networks generated for six datasets. Using Hamming distance
as the similarity measure as proposed in [60], average pair-
wise similarity between each possible pairs of the networks is
calculated and a stability value of 0.64 is obtained. According
to the benchmark scale proposed by Fleiss et al. [61], this
value indicates a good stability.

VI. CONCLUSION
In this study, Microcanonical Optimization (µO) algorithm
which is a variant of Simulated Annealing (SA) is used to
automatically discover the best components of the CNNs
in terms of both the architecture and the hyper-parameters.
Instead of limiting the optimization process within a fixed
network architecture, an architecture that is allowed to
extend or shrink dynamically is adopted. Moreover, a wide
range of hyper-parameters are selected for optimization.
In order to expedite the search process, we defined the value

52538 VOLUME 8, 2020

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

ranges for each of those hyper-parameters by following the
general design rules recommended in previous studies.

The performance of µO algorithm is compared to the well-
established SA meta-heuristic in terms of both the classi-
fication accuracy and the size of the networks. The two
algorithms are first allowed to run under the same architec-
tural and hyper-parameter constraints and budget limitations.
These algorithms are also compared to other studies from the
literature that employ meta-heuristics for automatic hyper-
parameter optimization and also clearly indicate the size of
the networks. The test results based on the six widely-used
image recognition data sets reveal that the best and the second
best accuracy is achieved by the networks generated by µO
and SA methods. However, for some datasets, proposed µO
method achieves the best accuracy rates with much smaller
networks. When the architectural and hyper-parameter con-
straints are relaxed, the proposed method again achieves high
quality results when compared to SA and also a Bayesian
optimization-based method, Tree Parzen Estimator (TPE).
In fact, SA achieves slightly better accuracy rates thanµO and
TPE, but this accuracy improvement comes with a significant
increase in computational cost. When the size of the networks
is taken into account, unconstrained µO can be preferable to
other methods despite slightly reduced accuracy.

The CNN architectures generated by µO algorithm are also
compared to the state-of-the-art architectures. Experimental
results reveal that the proposed method is able to generate
networks that achieve competitive classification results with
the state-of-the-art architectures. Moreover, similar or better
accuracy rates are achieved with much smaller networks that
have been trained on a single GPU within smaller training
durations. Therefore, µO method can especially be preferred
in situations where fast processing is important, but pro-
cessing capacity is limited and energy consumption is a big
concern. For future research, this problem can be considered
as a multi-objective problem, and a Pareto set of CNNs rather
than a single CNN can be provided to the user.

REFERENCES
[1] Y. LeCun, B. E. Boser, J. S. Denker, D. Henderson, R. E. Howard,

W. E. Hubbard, and L. D. Jackel, ‘‘Handwritten digit recognition with a
back-propagation network,’’ in Proc. Adv. Neural Inf. Process. Syst., 1990,
pp. 396–404.

[2] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner, ‘‘Gradient-based learn-
ing applied to document recognition,’’ Proc. IEEE, vol. 86, no. 11,
pp. 2278–2324, 1998.

[3] I. Goodfellow and Y. Bengio, Courville (2016) a Deep Learning, vol. 1.
Cambridge, MA, USA: MIT Press, 2016.

[4] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z. Huang,
A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L. Fei-Fei, ‘‘Ima-
geNet large scale visual recognition challenge,’’ Int. J. Comput. Vis.,
vol. 115, no. 3, pp. 211–252, Dec. 2015.

[5] J. Bergstra and Y. Bengio, ‘‘Random search for hyper-parameter optimiza-
tion,’’ J. Mach. Learn. Res., vol. 13, pp. 281–305, Feb. 2012.

[6] X. Yao and Y. Liu, ‘‘A new evolutionary system for evolving artificial
neural networks,’’ IEEE Trans. Neural Netw., vol. 8, no. 3, pp. 694–713,
May 1997.

[7] K. O. Stanley and R. Miikkulainen, ‘‘Evolving neural networks through
augmenting topologies,’’ Evol. Comput., vol. 10, no. 2, pp. 99–127,
Jun. 2002.

[8] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘Evolving deep convolutional
neural networks for image classification,’’ IEEE Trans. Evol. Comput., to
be published.

[9] B. Ma, X. Li, Y. Xia, and Y. Zhang, ‘‘Autonomous deep learning: A genetic
DCNN designer for image classification,’’ Neurocomputing, vol. 379,
pp. 152–161, Feb. 2020.

[10] Y. Sun, B. Xue, M. Zhang, and G. G. Yen, ‘‘A particle swarm optimization-
based flexible convolutional autoencoder for image classification,’’ IEEE
Trans. Neural Netw. Learn. Syst., vol. 30, no. 8, pp. 2295–2309, Aug. 2019.

[11] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘Evolving deep convolutional
neural networks by variable-length particle swarm optimization for image
classification,’’ in Proc. IEEE Congr. Evol. Comput. (CEC), Jul. 2018,
pp. 1–8.

[12] B. Wang, Y. Sun, B. Xue, and M. Zhang, ‘‘A hybrid differential evolution
approach to designing deep convolutional neural networks for image clas-
sification,’’ in Proc. Australas. Joint Conf. Artif. Intell.Cham, Switzerland:
Springer, 2018, pp. 237–250.

[13] W.-Y. Lee, S.-M. Park, and K.-B. Sim, ‘‘Optimal hyperparameter tuning
of convolutional neural networks based on the parameter-setting-free har-
mony search algorithm,’’ Optik, vol. 172, pp. 359–367, Nov. 2018.

[14] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
vol. 135. Cambridge, MA, USA: MIT Press, 1998.

[15] V. Mnih, K. Kavukcuoglu, D. Silver, A. Graves, I. Antonoglou,
D. Wierstra, and M. Riedmiller, ‘‘Playing Atari with deep reinforce-
ment learning,’’ 2013, arXiv:1312.5602. [Online]. Available: http://arxiv.
org/abs/1312.5602

[16] B. Baker, O. Gupta, N. Naik, and R. Raskar, ‘‘Designing neural network
architectures using reinforcement learning,’’ 2016, arXiv:1611.02167.
[Online]. Available: http://arxiv.org/abs/1611.02167

[17] P. Neary, ‘‘Automatic hyperparameter tuning in deep convolutional neural
networks using asynchronous reinforcement learning,’’ in Proc. IEEE Int.
Conf. Cognit. Comput. (ICCC), Jul. 2018, pp. 73–77.

[18] J. T. Springenberg, A. Dosovitskiy, T. Brox, and M. A. Riedmiller,
‘‘Striving for simplicity: The all convolutional net,’’ in Proc. ICLR, 2015,
pp. 1–14.

[19] T. Yamasaki, T. Honma, and K. Aizawa, ‘‘Efficient optimization of con-
volutional neural networks using particle swarm optimization,’’ in Proc.
IEEE 3rd Int. Conf. Multimedia Big Data (BigMM), Apr. 2017, pp. 70–73.

[20] K. Simonyan and A. Zisserman, ‘‘Very deep convolutional networks for
large-scale image recognition,’’ in Proc. 3rd Int. Conf. Learn. Represent.
(ILCR), 2015, pp. 1–13.

[21] G. E. Hinton, N. Srivastava, A. Krizhevsky, I. Sutskever, and
R. R. Salakhutdinov, ‘‘Improving neural networks by preventing co-
adaptation of feature detectors,’’ 2012, arXiv:1207.0580. [Online].
Available: http://arxiv.org/abs/1207.0580

[22] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and
R. Salakhutdinov, ‘‘Dropout: A simple way to prevent neural networks
from overfitting,’’ J. Mach. Learn. Res., vol. 15, no. 1, pp. 1929–1958,
2014.

[23] H. Wu and X. Gu, ‘‘Max-pooling dropout for regularization of convolu-
tional neural networks,’’ in Proc. Int. Conf. Neural Inf. Process. Cham,
Switzerland: Springer, 2015, pp. 46–54.

[24] H. Wu and X. Gu, ‘‘Towards dropout training for convolutional neural
networks,’’ Neural Netw., vol. 71, pp. 1–10, Nov. 2015.

[25] S. Park and N. Kwak, ‘‘Analysis on the dropout effect in convolutional
neural networks,’’ in Proc. Asian Conf. Comput. Vis. Cham, Switzerland:
Springer, 2016, pp. 189–204.

[26] V. Ayumi, L. M. R. Rere, M. I. Fanany, and A. M. Arymurthy, ‘‘Opti-
mization of convolutional neural network using microcanonical annealing
algorithm,’’ in Proc. Int. Conf. Adv. Comput. Sci. Inf. Syst. (ICACSIS),
Oct. 2016, pp. 506–511.

[27] S. Kirkpatrick, C. D. Gelatt, andM. P. Vecchi, ‘‘Optimization by simulated
annealing,’’ Science, vol. 220, no. 4598, pp. 671–680, 1983.

[28] E. Dufourq and B. A. Bassett, ‘‘EDEN: Evolutionary deep networks for
efficient machine learning,’’ in Proc. Pattern Recognit. Assoc. South Afr.
Robot. Mechatronics (PRASA-RobMech), Nov. 2017, pp. 110–115.

[29] E. Bochinski, T. Senst, and T. Sikora, ‘‘Hyper-parameter optimization
for convolutional neural network committees based on evolutionary algo-
rithms,’’ in Proc. IEEE Int. Conf. Image Process. (ICIP), Sep. 2017,
pp. 3924–3928.

[30] S. Fujino, N. Mori, and K. Matsumoto, ‘‘Deep convolutional networks for
human sketches bymeans of the evolutionary deep learning,’’ inProc. Joint
17thWorld Congr. Int. Fuzzy Syst. Assoc., 9th Int. Conf. Soft Comput. Intell.
Syst. (IFSA-SCIS), Jun. 2017, pp. 1–5.

VOLUME 8, 2020 52539

A. Gülcü, Z. Kuş: Hyper-Parameter Selection in CNNs Using Microcanonical Optimization Algorithm

[31] A. Lopez-Rincon, A. Tonda, M. Elati, O. Schwander, B. Piwowarski, and
P. Gallinari, ‘‘Evolutionary optimization of convolutional neural networks
for cancer miRNA biomarkers classification,’’ Appl. Soft Comput., vol. 65,
pp. 91–100, Apr. 2018.

[32] F. Assunçao, N. Lourenço, P. Machado, and B. Ribeiro, ‘‘DENSER: Deep
evolutionary network structured representation,’’Genetic Program. Evolv-
able Mach., vol. 20, no. 1, pp. 5–35, Mar. 2019.

[33] A. Baldominos, Y. Saez, and P. Isasi, ‘‘Evolutionary convolutional neural
networks: An application to handwriting recognition,’’ Neurocomputing,
vol. 283, pp. 38–52, Mar. 2018.

[34] P. R. Lorenzo, J. Nalepa, M. Kawulok, L. S. Ramos, and J. R. Pastor,
‘‘Particle swarm optimization for hyper-parameter selection in deep neu-
ral networks,’’ in Proc. Genetic Evol. Comput. Conf. - GECCO, 2017,
pp. 481–488.

[35] G. L. F. da Silva, T. L. A. Valente, A. C. Silva, A. C. de Paiva, and M. Gat-
tass, ‘‘Convolutional neural network-based PSO for lung nodule false
positive reduction on CT images,’’ Comput. Methods Programs Biomed.,
vol. 162, pp. 109–118, Aug. 2018.

[36] J. Nalepa and P. R. Lorenzo, ‘‘Convergence analysis of PSO for hyper-
parameter selection in deep neural networks,’’ in Proc. Int. Conf. P2P, Par-
allel, Grid, Cloud Internet Comput. Cham, Switzerland: Springer, 2017,
pp. 284–295.

[37] T. Domhan, J. T. Springenberg, and F. Hutter, ‘‘Speeding up automatic
hyperparameter optimization of deep neural networks by extrapolation
of learning curves,’’ in Proc. 24th Int. Conf. Artif. Intell. (IJCAI), 2015,
pp. 3460–3468.

[38] B. van Stein, H. Wang, and T. Bäck, ‘‘Automatic configuration of deep
neural networks with EGO,’’ 2018, arXiv:1810.05526. [Online]. Available:
http://arxiv.org/abs/1810.05526

[39] M. Creutz, ‘‘Microcanonical Monte Carlo simulation,’’ Phys. Rev. Lett.,
vol. 50, no. 19, pp. 1411–1414, May 1983.

[40] S. T. Barnard, ‘‘Stereo matching by hierarchical, microcanonical anneal-
ing,’’ inProc. 10th Int. Joint Conf. Artif. Intell. (IJCAI), 1987, pp. 832–835.

[41] G. Bhanot, M. Creutz, and H. Neuberger, ‘‘Microcanonical simulation of
Ising systems,’’ Nucl. Phys. B, vol. 235, no. 3, pp. 417–434, Jul. 1984.

[42] J. A. Torreão and E. Roe, ‘‘Microcanonical optimization applied to visual
processing,’’ Phys. Lett. A, vol. 205, nos. 5–6, pp. 377–382, Sep. 1995.

[43] A. Linhares and J. R. A. Torreão, ‘‘Microcanonical optimization applied
to the traveling salesman problem,’’ Int. J. Mod. Phys. C, vol. 09, no. 01,
pp. 133–146, Feb. 1998.

[44] J. S. Bergstra, R. Bardenet, Y. Bengio, and B. Kégl, ‘‘Algorithms for hyper-
parameter optimization,’’ in Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 2546–2554.

[45] J. Bergstra, D. Yamins, and D. D. Cox, ‘‘Making a science of model
search: Hyperparameter optimization in hundreds of dimensions for vision
architectures,’’ in Proc. 30th Int. Conf. Mach. Learn., 2013, pp. 115–123.

[46] J. Bergstra, B. Komer, C. Eliasmith, D. Yamins, and D. D. Cox, ‘‘Hyperopt:
A python library for model selection and hyperparameter optimization,’’
Comput. Sci. Discovery, vol. 8, no. 1, p. 14008, 2015.

[47] F. Chollet. (2015). Keras. [Online]. Available: https://keras.io
[48] A. Krizhevsky and G. Hinton, Learning Multiple Layers of Features From

Tiny Images, vol. 1, no. 4. Toronto, ON, Canada: Univ. of Toronto, 2009,
p. 7.

[49] H. Xiao, K. Rasul, and R. Vollgraf, ‘‘Fashion-MNIST: A novel
image dataset for benchmarking machine learning algorithms,’’ 2017,
arXiv:1708.07747. [Online]. Available: http://arxiv.org/abs/1708.07747

[50] G. Cohen, S. Afshar, J. Tapson, and A. van Schaik, ‘‘EMNIST: An exten-
sion of MNIST to handwritten letters,’’ 2017, arXiv:1702.05373. [Online].
Available: http://arxiv.org/abs/1702.05373

[51] K. He, X. Zhang, S. Ren, and J. Sun, ‘‘Deep residual learning for image
recognition,’’ in Proc. IEEE Conf. Comput. Vis. Pattern Recognit. (CVPR),
Jun. 2016, pp. 770–778.

[52] R. E. Bellman, Adaptive Control Processes: A Guided Tour, vol. 2045.
Princeton, NJ, USA: Princeton Univ. Press, 2015.

[53] H. Larochelle, D. Erhan, A. Courville, J. Bergstra, and Y. Bengio,
‘‘An empirical evaluation of deep architectures on problems with many
factors of variation,’’ in Proc. 24th Int. Conf. Mach. Learn. (ICML), 2007,
pp. 473–480.

[54] F. Hutter, H. H. Hoos, and K. Leyton-Brown, ‘‘Sequential model-based
optimization for general algorithm configuration,’’ in Proc. Int. Conf.
Learn. Intell. Optim. Berlin, Germany: Springer, 2011, pp. 507–523.

[55] M. W. Hoffman and B. Shahriari, ‘‘Modular mechanisms for Bayesian
optimization,’’ in Proc. NIPS Workshop Bayesian Optim., 2014, pp. 1–5.

[56] J. M. Thompson andK. A. Dowsland, ‘‘A robust simulated annealing based
examination timetabling system,’’ Comput. Oper. Res., vol. 25, nos. 7–8,
pp. 637–648, Jul. 1998.

[57] S. Ceschia, L. Di Gaspero, and A. Schaerf, ‘‘Design, engineering, and
experimental analysis of a simulated annealing approach to the post-
enrolment course timetabling problem,’’Comput. Oper. Res., vol. 39, no. 7,
pp. 1615–1624, Jul. 2012.

[58] K. I. Smith, R. M. Everson, and J. E. Fieldsend, ‘‘Dominance measures
for multi-objective simulated annealing,’’ in Proc. Congr. Evol. Comput.,
2004, pp. 23–30.

[59] S. Nogueira, K. Sechidis, and G. Brown, ‘‘On the stability of feature
selection algorithms,’’ J. Mach. Learn. Res., vol. 18, no. 1, pp. 6345–6398,
2017.

[60] K. Dunne, P. Cunningham, and F. Azuaje, ‘‘Solutions to instability prob-
lems with sequential wrapper-based approaches to feature selection,’’
J. Mach. Learn. Res., vol. 28, pp. 1–22, Sep. 2002.

[61] J. L. Fleiss, B. Levin, and M. C. Paik, ‘‘The measurement of interrater
agreement,’’ in Statistical Methods for Rates and Proportions. Hoboken,
NJ, USA: Wiley, 2004, pp. 598–626.

AYLA GÜLCÜ (Member, IEEE) received the B.S.
and M.S. degrees from the Electronics and Com-
puter Science Department, Marmara University,
Istanbul, Turkey, in 2006, and the Ph.D. degree
in engineering management from Marmara Uni-
versity, in 2014. She has been working as an
Assistant Professor with the Computer Engineer-
ing Department, Fatih Sultan Mehmet University,
since 2015. She has been teaching data mining,
algorithm design and analysis, data science, and

programming courses. Her research interests include discrete optimization,
meta-heuristics, machine learning, and deep neural networks.

ZEKI KUŞ received the B.S. degree and the M.S.
degree in computer engineering from Fatih Sultan
Mehmet University, Istanbul, Turkey, in 2017 and
2019, respectively, where he is currently pursuing
the Ph.D. degree in computer engineering. His
research interests include meta-heuristics, deep
neural networks, and image processing.

52540 VOLUME 8, 2020

