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Abstract: In this work, a double carry-save addition operation is proposed, which is efficiently synthesized for 6-input

LUT-based field programmable gate arrays (FPGAs). The proposed arithmetic operation is based on redundant number

representation and provides carry propagation-free addition. Using the proposed arithmetic operation, a compact and

fast multiply and accumulate unit is designed. To our knowledge, the proposed design provides the fastest multiply-add

operation for 6-input LUT-based FPGA systems. A finite impulse response filter implementation is given to show the

performance of the proposed structure. The proposed implementation provides a dramatic performance increase, which

is at least 2 times faster than conventional binary multiply-add implementations.
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1. Introduction

Generic field programmable gate array (FPGA) devices are based on 4-input look-up table (LUT)-based logic

elements. High-performance FPGA devices offer 6-input LUT-based logic elements by which more complex

functions can be realized with higher performance [1,2]. In this work, an extra redundant arithmetic scheme is

proposed to further exploit 6-input LUT devices.

Redundant architectures are based on signed digit systems and carry-save arithmetic, both of which

provide carry-free addition schemes [3–6]. In carry-save arithmetic, each digit of a number is represented by 2

bits, namely carry (c) and sum (s) [6], whereas in conventional binary (e.g., 2’s complement) representation, each

digit is represented by a single bit. The redundancy in number representation provides carry-free arithmetic

implementations. In this work, redundancy is increased by using double carry-save representation, where each

digit of an arbitrary number is represented by 3 bits.

Increased redundancy enables the addition operation to be handled within a single LUT delay on a 6-

input LUT-based architecture, which is not possible with a conventional redundant carry-save addition scheme.

Addition of two double carry-save mode numbers can be done using a parallel array of (6,3) counter circuits.

Using the proposed arithmetic, the addition of 2 redundant numbers takes a single LUT delay in 6-input LUT

structures, which is the core of the paper.

The (6,3) counters are the best suited multioperand addition schemes for 6-input LUT FPGAs [7]. In

multiplication, (6,3) counters can be used to reduce 6 partial products to 3. Together with provided double
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carry-save arithmetic, both addition and multiplication operations can be handled using only (6,3) counters,

which provides a very regular structure. A multiply-accumulate operation based on the proposed system takes

2 LUT delays if the coefficients of multiplications are 12-bit wide. Twelve-bit also refers to (6,3) counters, since

canonic signed-digit (CSD) [8–11] recording of 12-bit coefficients corresponds to 6 nonzero partial products at

most, which is also suitable for (6,3) counters. Higher bit widths are also possible with the increase of the

critical path.

In this paper, a multiply-accumulate unit is designed and used to realize a constant coefficient FIR filter.

In the proposed system, the multiplication of each constant coefficient is achieved through a (6,3) counter

array with redundant outputs. Moreover, backward sign extension is implemented for the removal of the extra

sign-bit in the system, which will be explained in the following sections. After the multiplication phase, the

redundant addition operation, i.e. the accumulation phase, is also implemented by a single stage (6,3) counter

array yielding a regular multiply-accumulate structure in FIR filters [12]. As a result, a multiply-accumulate

operation is accomplished in 2 stages.

Redundant architectures implemented on FPGAs are not very common. Recent publications related to

FPGA arithmetic include [13–17]. However, only [17] focused on 6-input LUT structures. Our example filter

implementation is compared to the filter implementation of [17] in Section 3, where the performance of the

proposed design is shown to be much higher.

In the next section, the proposed redundant arithmetic scheme will be explained. Section 3 deals with

implementation methodology and comparisons to regular implementations. The paper is finalized with a

conclusion section.

2. (6,3) counters and double carry-save arithmetic

Counter circuits are generally used to reduce the number of operands in a multioperand addition operation, such

as reduction of partial products in multiplication. A counter circuit basically counts nonzero input operands

and converts the result into radix-2 format [18,19]. For example, a (6,3) counter produces results (000)2 and

(110)2 for the 6-input binary inputs 000000 and 111111, respectively [8,11].

For a (6,3) counter, the result is represented by 3 bits, as the name (6,3) implies, such that 6 inputs are

reduced to 3. The representation of a (6,3) counter is depicted in Figure 1a. The multiple operand addition

scheme is shown in Figure 1b, where six 8-bit binary numbers X0 ... X5 are reduced to S0 , S1 , S2 . The

conventional binary result is obtained by adding up the 3 outputs S0 , S1 , and S2 by shifting each output

relatively to their bit weights, as seen in Figure 1b. (6,3) counters are especially useful for 6-input LUT-based

FPGAs, where the operation can be handled in a single LUT stage. A (6,3) counter for a single vertical slice

can be implemented by three 6-input LUTs, since the function has 3 outputs.

In carry-save arithmetic, each number is represented by a combination of 2 numbers, Z = (S , C) [6].

In this work, double carry-save architecture is employed as follows:

Za = S0 (1a)

Zb = S1 << 1 (1b)

Zc = S2 << 2 (1c)

Z = (Za, Zb, Zc) (1d)
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Figure 1. (6,3) counter: (a) single bit structure; (b) addition of multiple operands using counters.

The operator “<< k” represents a k -bit left shift. As shown in Figure 1, each output is relatively shifted by

one bit. The redundant number Z represents the addition of 6 binary numbers. The redundant number Z is

always a composition of 3 binary numbers (Za , Zb , Zc), and whenever a normal binary (i.e. conventional 2’s

complement binary representation) is required, a three-operand addition is accomplished, such that S = Za +

Zb + Zc .

To summarize, in double carry-save representation, each number is a composition of 3 radix-2 numbers.

The digit set of each redundant number Zi is in the set of {0, 1, 2, 3} , where each digit can take values

between 0 (zai + zbi + zci = 0) and 3 (zai + zbi + zci = 3). Here, each digit of Zi is represented by 3 bits, i.e. zi

= (zai , z
b
i , z

c
i ). In this structure, each summation digit is also represented by 3 bits.

The redundant addition of 2 double carry-save numbers can be accomplished by a single (6,3) counter

array. The proposed redundant addition and subtraction operations of X and Y with the result of Z are

depicted in Figures 2a and 2b, respectively. Here, each digit of X , Y , and Z is represented as xi , yi , zi ,

respectively.

Double carry-save addition operation can be written as:

Z = X⊕Y (2)

Double carry-save subtraction of X − Y can be written as:

Z = X⊕Y + 3 (3)

Here, ⊕ represents (6,3) reduction, and Y represents inverting each of the bits of the redundant number Y .

Finally, constant 3 is added to the number, since Y is a composition of 3 normal binary numbers. As an

analogy to 2’s complement, where –A is represented as A+ 1, here, constant 3 is added up since each digit is

a composition of 3 bits in proposed redundant representation. Since each number is represented by a set of 3

numbers, the double carry representation is defined as −Y = Y +3. Figure 2b shows the redundant subtraction.
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ÇİNİ et al./Turk J Elec Eng & Comp Sci

    zn-2     zn-1 

 

       

 

 

    (6,3) 

 

} } n-1 n-1

 

    (6,3) 
      

} } 0 0

}  
 z0 

 

    (6,3) 

 

} } 1 1

} 

 

    (6,3) 

 

} } n-2 n-2

 

    (6,3) 

 

} } 2 2

}  

    z1 

0 

0 

0 

    z2 

} } 

s0 s1 s2 s2       s1    s0 

 

 s2           s1    s0 

 

s2       s1    s0 

 

s2       s1    s0 

 

(a)
  

 xn-1 
  

 yn-1 } } 

 

    (6,3) 
      

  

 xn-2 
  

 yn-2 } } 
 

    (6,3) 
      

  

  x2 
  

  y2 } } 

 

    (6,3) 
      

  

  x0 
  

  y0 }  } 

 

    (6,3) 
      

  

  x1 
  

  y1 } }  

 

    (6,3) 
      

    zn-2     zn-1 

 

       

 

}  

 z0 

}  } 
    z1 

1 

0 

1 

    z2 

} } 

s0 s1 s2 s2       s1    s0 

 

 s2           s1    s0 

 

s2       s1    s0 

 

s2       s1    s0 

 

(b)

Figure 2. Redundant double carry-save arithmetic operations: (a) addition; (b) subtraction.

To summarize, the output of (6,3) counter with 6 normal binary numbers at the input results in a single

double carry-save format output, as shown in Figure 1b. Two double carry-save format numbers can be added

up using a single stage (6,3) counter circuit, as shown in Figure 2a.

It should also be noted that the addition of 3 normal binary numbers (i.e. conventional 2’s complement

binary number) to the output of double carry-save output is so trivial that all 3 are written down together,

without any operation at all. For example, if 3 numbers X0 , X1 , and X2 are to be added, Za = X0 , Z
b =

X1 , Z
c = X2 , then the output is Z = (Za , Zb , Zc). If 2 numbers are to be added, i.e. X0 and X1 , then Za

= X0 , Z
b = X1 , Z

c = 0, then the result is again Z = (Za , Zb , Zc), as in Eq. (1d).

For comparison, the proposed double carry-save, conventional redundant carry-save, and normal binary

(i.e. conventional 2’s complement binary) additions are implemented using 6-input LUT devices. The redundant

carry-save representation is also named as CS2 [5,20] representation in the literature, since each digit is

represented by 2 bits. The redundant carry-save addition operation is represented in Figure 3. The (3,2)

blocks represent counters for reducing 3 operands to 2, which have the equivalent function of full adders. Two

stages of (3,2) counters implement the function of (4,2) reduction. Here, numbers Y and X are added giving

the result Z, where each of X, Y, and Z is represented by a combination of (XS , XC), (YS , YC), and (ZS ,

ZC), respectively. Here, addition operation is actually a (4,2) reduction, where 4 operands are reduced to 2.

The comparison of the 3 different addition schemes is depicted in Figure 4. As can be seen, carry-

propagate addition delay increases with adder size. Normally, the delay is directly proportional to the adder

size in the carry-propagate addition. There is a slight nonlinearity after the synthesis. The conventional carry-

save operation and proposed double carry-save representation delays are independent from the digit lengths.

However, the conventional redundant carry-save operation requires 2 LUT delays, whereas the proposed double

carry-save operation requires only a single LUT delay. The area requirement of normal carry-save and double

carry-save is the same. Both implementations have approximately twice the area of a carry-propagate adder.
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It should also be noted here that, for short adder sizes, carry-propagate addition operation is quite fast due to

the fast carry logic blocks of the FPGA fabric. However, the double carry-save method is still much faster than

both implementations for any adder size. The timing analyses of the adders are measured using the TimeQuest

Timing Analyzer of the Altera QuartusII platform for StratixII FPGAs.
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Figure 3. Conventional redundant carry-save addition.
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Figure 4. Different adder implementations on a 6-input LUT FPGA.

3. Implementation

In this section, a useful example for the double carry-save arithmetic will be given. As mentioned in the previous

section, the proposed arithmetic operation is especially useful for recursive multiply-accumulate operations. One

of the most commonly used applications for this type of implementation is digital filters. These filters require

many cascades of multiply-add operations, and the proposed double carry-save structure is extremely useful for

reaching high performance targets. For this reason, a fixed coefficient-based FIR filter will be designed based

on a fixed coefficient multiply and add unit.

3.1. FIR filter generation

FIR filters are used for shaping the input signal with the desired frequency response. Discrete time domain

representation for an N -tap FIR filter is given as:
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y [n] =

N−1∑
k=0

h [k]x [n− k] (4)

Here, x , y , h are the input, output, and transfer function of the filter, respectively. The frequency response

H(ω)of a linear-phase FIR filter with impulse response h [n ] and length N is:

H(ω) =

N−1∑
n=0

h [n] e−jωn (5)

Here, the requirement for a linear filter is that filter coefficients be symmetric or antisymmetric. As a result,

the filter coefficients can also be written in terms of amplitude A(ω) and phase terms, as:

H(ω) = A(ω)e−jω(M−1) (6)

For a symmetric filter, M is approximately half the length of the filter tap count. Here, M is given as:

M =

⌊
N

2

⌋
+ 1 (7)

Amplitude A (ω) is a real function of frequency given by:

A(ω) =
M−1∑
m=0

h [m]Tm (ω) (8)

Here, Tm(ω) is a trigonometric function determined by the length and type of symmetry of the filter. The

values of Tm(ω) for the 4 possible types of linear phase FIR filters are given in Table 1 [21].

Table 1. Tm(ω) for different types of linear-phase FIR filters.

Type N Symmetry Tm (ω)

1 Odd Symmetric

{
1
2 cos ((M −m− 1)ω)

m = M − 1
otherwise

2 Even Symmetric 2 cos ((M −m− 0.5)ω)
3 Odd Antisymmetric 2 sin ((M −m− 1)ω)
4 Even Antisymmetric 2 sin ((M −m− 0.5)ω)

The transposed FIR filter minimizes the critical path of the FIR operation to a single multiply-add

operation, as seen in Figure 5a. The linear phase implementation of an odd length filter, realized by symmetric

or antisymmetric coefficients, can be realized as seen in Figure 5b.

3.2. Realization of multiply-add operation

Here, the proposed arithmetic will be implemented by generating a multiply-add unit. If the filter specifications

are defined, corresponding filter coefficients and number of taps for the filter can be generated using any FIR

filter generation algorithm [21]. Since the filter characteristics are predefined, fixed multiplication coefficients

are used to generate fixed multiplication blocks.
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Figure 5. FIR filter implementation: (a) transposed form; (b) sharing the coefficients.

After the filter coefficients are calculated, the multiply and accumulate operations can be implemented

according to the redundant arithmetic, as defined in Section 2. The fixed coefficient multiplication for the

generated filter coefficients is realized by properly tiling the variables. A multiplication scheme for a 12-bit

fixed coefficient and 12-bit data input word length is depicted in Figure 6a. In the example, the coefficient is

given as (010101010101). Here, we rename each nonzero digit in the coefficient as ci , wherec0 = −1, c1 = 1,

c2 = −1, c3 = 1, c4 = 1, and c5 = −1 in the example (enumeration c0...c5 is based on the nonzero digit from

the right to the left of the example coefficient). At most, 6 nonzero digits are allowed in any of the coefficients,

which is always the general case for 12-bit CSD coded coefficients. A 12-bit CSD coded number has at most 6

nonzero digits, since the number of nonzero digits in CSD format is at most half of the word length [12]. In this

representation, higher input data word-length is allowed without increasing the critical path delay. The si in

each line, shown in Figure 6a, also represents the sign bit of any nonzero bit for the corresponding coefficient.

The diagram in Figure 6a is an example and not a generalized case. In the generalized case, the shift

operations of the coefficients can be arbitrary amounts, depending on the positions of the nonzero digits.

Arithmetic right shift operation is applied to the partial product (n – i) times, where n is the coefficient word

length and i is the position of the nonzero digit in the coefficient. Here, ei is the most significant bit (MSB)

of input variable X , if the corresponding coefficient digit is 1. On the other hand, ei is the complement of the

MSB of input variable X if the corresponding coefficient digit is –1. In other words, ei = xMSB⊕ si [19,22].

Here, si is the sign of the incident nonzero coefficient digit. As can be seen in Figure 6a, the sign bit of the

most significant digit of the coefficient (s5) increases the number of partial products by one, i.e. 7 products

exist in the worst case, and the partial products cannot be fed into a single stage (6,3) counter. The problem is

solved using backward sign extension. The (6,3) reduction is performed after this operation. Figure 6b shows

the application of backward sign extension.

The multiplication operation for a fixed coefficient with input data is realized by reduction of the partial

products, generated as shown in Figure 6b. For the redundant double carry-save representation, each number is

a composition of 3 normal binary numbers. As a result, the 6 partial products need to be reduced to 3, in order to

make the number compatible with double carry representation. For 6 partial products generated, multiplication

with redundant outputs is shown in Figure 7a. In the figure, it can be seen that the multiplication phase consists

of a single stage (n+ 1) digit (6,3) reduction scheme. Here, n is equal to the length of the coefficient and the

length of the variable, i.e. n = (coef word length + data word length), which is 24 for the given example.

The + 1 in the (n+ 1) definition is for the residue reduction, as shown in Figures 6b and 7a. Still, after the

reduction, there are residue bits existing together with the multiplier result. The end result is obtained at the
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Figure 6. (a) Generation of the partial products; (b) backward-sign extension.

accumulation step. The accumulation step is also an (n+ 1) digit (6,3) reduction scheme. The other input

for the accumulation step comes from the previous tap of the designed filter. The whole multiply-accumulate

operation is accomplished in 2 stages of (n+ 1) digit (6,3) counter arrays. At the multiply-add operation

output, the result appears in double carry-save format, which is composed of 3 binary numbers.

When 3 or less nonzero digits exist in the coefficients, the multiply phase becomes even simpler, as

(6,3) reduction for the multiply phase is removed. The multiplication phase for the multiply-add operation

only consists of arithmetic shifts and sign bit padding operations, which are shown in Figure 7b. In this case,

the hardware cost for the multiply-accumulate phase is halved, which greatly reduces the hardware cost for

the construction of the related filter tap. As a result, the reduction of nonzero digits in coefficients plays an

important role in the filter design procedure.

3.3. Filter realization

For the performance measurement, a low-pass filter is implemented using the proposed multiply-accumulate

unit. The frequency response characteristics of the filter are given in Table 2. The pass-band and stop-band

frequencies are normalized to the sampling frequency in the example. The magnitude and phase response plots

of the filter are shown in Figure 8.

Given the specifications in Table 2, the filter can be synthesized using any mathematical tool, such as

MATLAB, or other kinds of filter design software. However, if the multiplication is to be done in a single stage,
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Figure 7. Multiply-add operation: (a) generalized case; (b) up to 3 nonzero bits in the coefficient.
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Table 2. Frequency response characteristics of the example filter.

Pass-band Pass-band Stop-band Stop-band
ripple (dB) frequency attenuation frequency
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Figure 8. Frequency response of the sample filter.

the coefficients must be digitized to 12-bit word length. The word length of the example filter is optimized

using the algorithm in [10]. The example filter could be synthesized with 25 taps and 12 digit coefficients.

The synthesized coefficients for the filter are given in Table 3. In the table, the coefficients that have 3 or less

nonzero digits are marked with asterisks. The coefficients with 3 or less nonzero digits save space in synthesis

and increase performance.

Table 3. Optimized coefficients of the filter.

Coefficients of filter F1 with N= 25,B= 12
h(0) = –2−8 (*) h(7) = –2−4 + 2−6 – 2−8 + 2−10

h(1) = –2−7 + 2−9 (*) h(8) = –2−5 – 2−7 – 2−10 (*)
h(1) = –2−11 (*) h(9) = 2−5 – 2−9 (*)
h(3) = 2−6 – 2−8 – 2−11 (*) h(10) = 2−3 + 2−6 + 2−8 (*)
h(4) = 2−6 + 2−8 (*) h(11) = 2−2 + 2−8 + 2−10 (*)
h(5) = 2−7 + 2−10 (*) h(12) = 2−2 + 2−4 – 2−6 + 2−8

h(6) = –2−6 – 2−8 – 2−10 (*)
h(n) = h(24-n) for n = 13, 14, . . . , 24

The last stage of the redundant multiply-add operation is pipelined with registers, and between the

pipelines, a three-operand addition is handled to convert double carry-save representation to normal 2’s com-

plement binary output in the end. The representation of the multiply-accumulate operation is shown in Figure

9. The representation only shows the last multiply-add operation of Figure 5b. As the figure reveals, the re-

dundant output of the system is converted to normal binary by insertion of a three-operand adder circuit after

the last tap of the multiply-add operation.

For the comparison, the filter is designed in 3 ways. The first implementation is generated using fixed
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Figure 9. Representation of multiply-add operation and conversion to normal binary.

coefficient multipliers and carry-propagate adders in normal binary mode, using a total 6-input FPGA fabric. In

the second implementation, firm multipliers are used, which are generally recommended for DSP operations in

FPGA fabrics. For the accumulation phase, carry-propagate adders are used in the second implementation. In

the third implementation, proposed double carry-save implementation is handled for multiply and accumulate

units. In each of the implementations, the architecture in Figure 5b is used.

Fixed coefficient multipliers are designed using the Altera QuartusII Megafunctions Wizard. Each of

the implementations is synthesized using Altera Quartus II software. The comparison of hardware cost and

maximum operating speed is given in Table 4. A fast redundant signed-digit-based FIR filter [17] is also added

for comparison. The implementation in [17] also has a redundant representation with carry-free arithmetic

utilizing 8-bit coefficients with 8-bit data word-length and 16 taps, where the recorded speed is 293 MHz in

a 6-input LUT-based FPGA. Our implementation performance is far beyond the referenced implementation;

in addition, our implementation has larger coefficient and data widths (both of which are 12 bits wide) with

25 taps. The hardware resources used are not reported in the implementation [17]. The speed performance

comparison of the filter implementations is shown in Figure 10. The synthesized filter is functionally tested on

the Altera Stratix II DSP Development Kit by filtering out the high performance component of a mixture of 2

sinusoidal signals.

Table 4. Comparison of various implementations of the filters.

Implementation
Hardware cost

Maximum speed (MHz)
ALUT + DSP blocks Register count

Fixed coefficient soft multiplier 814 ALUT 576 188
Firm multiplier 576 ALUT + 26 DSP blocks 600 190
Proposed method 1515 ALUT 1491 446
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Figure 10. Filter performance comparison.
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Various FIR filter implementations and a detailed analysis of filter design are planned for a future study.

However, we found that as the number of taps in the design is increased, the maximum speed of the system is

gradually reduced. The reason is the loading effect of the input signal. Since the input signal is connected to

every tap in the transposed FIR filter structure, as the number of taps increase, the capacitive loading of the

interconnections dominates. This effect also occurs in conventional soft multipliers.

It should be mentioned that the FIR filter is simply a good example of implementation. Together with

fixed coefficient architectures, variable coefficient multiply-add units and other arithmetic structures that require

multiply-add operations can be tailored according to the requirements. The arithmetic operations proposed here

can be applied to high performance systems, which recursively require addition, and multiplication operations

such as digital filtering, matrix multiplication, and other similar structures.

4. Conclusion

In this work, double carry-save arithmetic is presented for carry-propagation-free operations. Using the proposed

scheme, the critical path for each multiply-add operation is reduced to only 2 LUT cascades, one for the multiply

operation and the other for the accumulate operation. The hardware is generated using only (6,3) counters,

giving a very regular structure.

For testing the performance, a fixed coefficient FIR filter implementation methodology, suitable for 6-

input LUT-based FPGAs, is presented. The proposed implementation resulted in more than 100% speed

improvement over conventional fixed coefficient multiplication-based FIR filtering schemes. The filter frequency

is recorded as 440 MHz, whereas any arithmetic circuit, such as a simple AND gate delay, is limited to 500 MHz

for the StratixII FPGAs. By exploiting the compatibility of the number system with the FPGA hardware, an

extreme speed advantage is gained. To our knowledge, the implementation presented here provides the fastest

speed in 6-input LUT-based FPGAs for multiply-add operations.
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