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Abstract: Recurrent neural networks (RNNs) are powerful tools for learning information from
temporal sequences. Designing an optimum deep RNN is difficult due to configuration and training
issues, such as vanishing and exploding gradients. In this paper, a novel metaheuristic optimisation
approach is proposed for training deep RNNs for the sentiment classification task. The approach
employs an enhanced Ternary Bees Algorithm (BA-3+), which operates for large dataset classification
problems by considering only three individual solutions in each iteration. BA-3+ combines the
collaborative search of three bees to find the optimal set of trainable parameters of the proposed deep
recurrent learning architecture. Local learning with exploitative search utilises the greedy selection
strategy. Stochastic gradient descent (SGD) learning with singular value decomposition (SVD) aims to
handle vanishing and exploding gradients of the decision parameters with the stabilisation strategy
of SVD. Global learning with explorative search achieves faster convergence without getting trapped
at local optima to find the optimal set of trainable parameters of the proposed deep recurrent learning
architecture. BA-3+ has been tested on the sentiment classification task to classify symmetric and
asymmetric distribution of the datasets from different domains, including Twitter, product reviews,
and movie reviews. Comparative results have been obtained for advanced deep language models and
Differential Evolution (DE) and Particle Swarm Optimization (PSO) algorithms. BA-3+ converged
to the global minimum faster than the DE and PSO algorithms, and it outperformed the SGD, DE,
and PSO algorithms for the Turkish and English datasets. The accuracy value and F1 measure have
improved at least with a 30–40% improvement than the standard SGD algorithm for all classification
datasets. Accuracy rates in the RNN model trained with BA-3+ ranged from 80% to 90%, while the
RNN trained with SGD was able to achieve between 50% and 60% for most datasets. The performance
of the RNN model with BA-3+ has as good as for Tree-LSTMs and Recursive Neural Tensor Networks
(RNTNs) language models, which achieved accuracy results of up to 90% for some datasets. The
improved accuracy and convergence results show that BA-3+ is an efficient, stable algorithm for the
complex classification task, and it can handle the vanishing and exploding gradients problem of
deep RNNs.

Keywords: bees algorithm; training deep neural networks; metaheuristics; opinion mining; recurrent
neural networks; sentiment classification; natural language processing

1. Introduction

Deep recurrent neural networks (RNNs) are powerful deep learning models with the
ability to learn from the large sets of sequential data that characterise many tasks such
as natural language processing [1], time series prediction [2], machine translation [3] and
image captioning [4]. Deep RNNs have self-looped connected deep layers, which can retain
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information from the past and make it possible to learn arbitrarily long time sequences.
However, despite their theoretical power, they have well-known computational issues such
as training difficulties due to vanishing and exploding gradients [5], the need for implemen-
tation in hardware and memory limitations [6]. Besides, designing a deep learning model
to perform a particular task could be very time-consuming as it involves many optimisation
steps such as selecting a proper network architecture, finding the optimum hyperparame-
ters of the selected architecture, and choosing the correct training algorithm for the model.
Training a deep RNN is making it learn higher-level nonlinear features from large amounts
of sequential data, which is typically a nonconvex optimisation problem [6]. This problem
can be formulated as the minimisation of nonlinear loss functions with multiple local
optima and saddle points. From the perspective of optimisation, even convex optimisation
problems have many challenges. Additional difficulties therefore arise in training deep
neural networks because of the nonconvex nature of the problem. For example, Stochastic
Gradient Descent (SGD), which is a commonly used training algorithm, could easily get
trapped at local minima or saddle points, and it cannot guarantee convergence to the
global optimum because of the nonlinear transformations in each hidden layer. Moreover,
the gradient of nonlinear activation functions cannot be computed backward through the
network layers without vanishing or exploding over many training time steps, which
causes the loss of direction in parameter updating to reach a feasible solution [7].

To date, researchers have mainly focused on two alternative pathways to deal with
long-term dependencies. The first pathway is to devise new network architectures such
as Long Short-Term Memory (LSTM) models [8], Gated Recurrent Units (GRU) [9] and
Temporal Restricted Boltzmann Machines (TRBM) [10]. Although these architectures have
proved successful in many applications, they are more complex to implement and require
long implementation and computation times, in addition to specialised software and
powerful hardware. The second pathway is to develop search methods and optimisation
algorithms specifically to handle the vanishing and exploding gradient problem. Recently,
two popular methods, gradient clipping and gradient scaling, were proposed to avoid the
gradient explosion issue. Gradient clipping [5] which employs a shrinking strategy when
the gradient becomes too large, is used to avoid remembering only recent training steps.
Shrinking has also been employed by second-order optimisation algorithms, but these have
been replaced by simple SGD as a fair and practical technique because of the computational
cost of Hessian matrices in second-order optimisation [11].

The learning performance of deep learning models does not depend only on improving
the training algorithm. The initial design parameters also play a key role in the ability to find
global optima without becoming trapped at local stationary points. For example, the initial
weights of a deep network can significantly affect training performance and good solutions
often cannot be reached with gradient-based training algorithms because of the nonlinearity
and “butterfly-effects” of the iterative updating procedure [5]. Generally, design parameters
are adjusted manually, and the designer has to evaluate the model performance repeatedly
to determine the best objective functions, learning rates, or training algorithm for their
task. Besides, even when the optimal model could be designed, additional regularisation
strategies such as dropout [12] are required to handle the overfitting problem of a deep
model. It is well-known that these procedures are very time-consuming, and new strategies
are needed to develop practical solutions.

Numerical methods and exact algorithms cannot handle the nonconvexity of the objec-
tive functions of deep RNNs, which are unable to capture curvature information, causing
the optimisation process to be trapped at local solutions. Nature-inspired metaheuristic
algorithms have been developed to handle nonlinear, multi-constraint and multi-modal
optimisation problems. They have proved to be robust and efficient optimisation tools
that can avoid the issue of local optima. They can adapt to problem conditions like the
nature of the search space (i.e., continuous or discrete), decision parameters, varying con-
straints and other challenges encountered in the training and designing of RNN models.
Previous research into the optimisation of deep learning models has focused on three main
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areas, namely, hyperparameter optimisation, neural architecture or topology optimisation,
and weight optimisation. These studies have been conducted for specified tasks with the
numbers of hidden and recurrent neurons limited to a maximum of five, and new practical
approaches are needed to be useful for deeper RNN models [13].

This paper proposes using an enhanced Ternary Bees Algorithm (BA-3+) to obtain the
optimum weights of a deep RNN model for sentiment classification. Existing population-
based optimisation algorithms need to operate with large populations and, as a result,
are generally slow. The Bees Algorithm [14] is a population-based algorithm that has
been successfully employed to solve many complex real-world optimisation problems
including continuous [15] and combinatorial [16] optimisation problems. It is able to find
both local and global optima without needing to calculate the gradient of the objective
function. The Ternary Bees Algorithm (BA-3) first described in [17] is an improvement
on other population-based algorithms that employs a population of just three individual
solutions. The BA-3+ algorithm presented in this paper is an enhanced version of BA-3,
that also uses only three individual solutions, the global-best solution, the worst solution
and an in-between solution. BA-3+ combines the exploration power of the basic Bees
Algorithm to escape from local optima and the greedy exploitation drive of new local
search operators to improve solutions. The new local search operators comprise one for
neighbourhood search using Stochastic Gradient Descent (SGD) and one for search control
employing Singular-Value Decomposition (SVD). SGD is a greedy operator for reaching a
local optimum quickly. SVD is adopted to stabilise the trainable parameters of the model
and overcome the problem of vanishing and exploding gradients of the selected weights
when SGD is applied to derive the in-between solution. The aim is to use the strengths
of gradient-based backpropagation training as the most commonly used RNN training
method, but without its limitations like local optimum traps and vanishing and exploding
gradients through long time dependencies. As the proposed algorithm uses only three
individual bees, it is very fast, being able to find the global optimum within polynomially-
bounded computation times [17]. Experiments with the sentiment classification of English
and Turkish movie reviews and Twitter tweets show that the Ternary BA performs well,
providing faster and more accurate results compared to previous studies.

The rest of the paper is structured as follows. Section 2 briefly reviews methods to
handle vanishing and exploding gradients (VEG) problem of the deep RNNs. Section 3
presents detailed information about deep RNNs and the difficulties with training them.
Section 4 details the proposed algorithm and its local search operators, and describes its
configuration for training deep RNNs for sentiment classification. Section 5 provides infor-
mation about the datasets used, the hyperparameters of the model, and the experimental
results obtained. Section 6 concludes the paper.

2. Related Work

This section reviews the approaches that have been used to handle the vanishing and
exploding gradient (VEG) problem in deep RNN training.

The first way to handle the VEG problem is to use newer types of RNN architec-
tures such as Long-Short-Term Memory (LSTM) [8], Gated-Recurrent Units (GRUs) [9]
and Echo-State-Networks (ESNs) [18]. These architectures can model sequences and they
produced good results for many applications [19]. However, they have issues such as
limited non-linearity learning abilities [20], training times that can sometimes be many
days or even months, and are still not completely free from the same gradient problem.
Some metaheuristic approaches have been implemented to handle these issues of the
advanced deep recurrent networks. Yang et al. proposed an improved whale optimization
algorithm (IWOA) to predict the carbon prices, hybrid model, incorporating modified
ensemble empirical mode decomposition (MEEMD) and LSTM [21]. Peng et al. proposed
a fruit fly optimization algorithm (FOA) to find optimal hyper-parameter of the LSTM
network to solve time series problems [22]. ElSaid et al. have also proposed employing
the ACO algorithm to evolve the LSTM network structure [23]. Rashid et al. proposed to
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use Harmony Search (HS), Gray Wolf Optimizer (GWO), Sine Cosine (SCA), and Ant Lion
Optimization algorithms (ALOA) algorithms to train LSTMs for classification and analysis
of real and medical time series data sets [24]. Besides these, hyperparameter optimisation
and initial parameter tuning are also needed to improve their performances [25]. For exam-
ple, an improved version of the sine cosine optimization algorithm (SCOA) was used to
identify the optimal hyperparameters of LSTM [26]. Similarly, Bouktif et al. proposed to
use GA and PSO algorithms to find optimum hyperparameters of the LSTM-RNN model
for electric load forecasting [27]. In a similar way to the using of new architectures, some
researchers have proposed to use new activation functions. [28] had been proposed to use
Rectified linear unit (ReLU) function instead of hyperbolic tangent or sigmoid functions.
Similarly, Glorot et al. has proposed Deep Sparse Rectifier Neural Networks (SRNNs),
that helps optimizing weights during training with rectifier units [29]. However, these
approaches have limitations as well. For example, since the ReLU function is positive
definite, it causes a bias shift effect and behaves like a bias term for the next layer of the
model [30]. Hence, it decreases the learning capacity of the model [31].

The second way to handle the VEG problem is the stabilisation of the updated re-
current weights [32]. Gradient clipping [5] is a well-known heuristic approach to rescale
gradients. It controls parameter updating by using a given threshold and prevents un-
expected falls to zero or rises to infinity before operating the gradient-descent learning
rule. L1 and L2 regularisation has also been applied to the recurrent weights to prevent
overfitting. They are used as a penalty term during training mainly to bring weights
closer to zero [6]. Initialisation methods have also been employed to limit the values of the
updated parameters by using the identity or orthogonal shared matrix. Le et al. showed
that combining the proper initialisation with rectified linear units can handle the VEG
problems of RNNs [33]. Xu et al. proposed a hybrid deep learning model by combining
RNNs and CNNs, which is used Rectified Linear Units(ReLUs) and initialised with the
identity matrix [34]. Vorontsov et al. used Singular Value Decomposition (SVD) to find the
orthogonal matrices of the weight matrix, They proposed to update the parameters at each
iteration by using geodesic GD and Cayley methods [35]. Similarly, [36] proposed to use
the SVD operator to stabilise gradients of deep neural network, which has been proposed
as a Spectral-RNN. However, these methods require the computation of inverse matrices
and the unitary initial matrices cannot be held after many training iterations, and the same
issues arise again.

In addition to the aforementioned approaches, Hessian-free (HF) optimisation meth-
ods and novel training algorithms have also been proposed to model the curvature of the
nonlinear functions of deep RNN models using random initialisation. Martens et al. has
proposed to train RNNs by using hessian-free optimisation [20]. They have been inspired
by the second-order derivative method and Newton optimisation method, which is also
called a truncated Newton or the pseudo-Newton method [37]. Nevertheless, besides their
sophisticated nature, they do not have enough generalisation ability to learn and need
additional damping among hidden layers when they have been applied to large-scale
architectures [11]. To date, Kag et al. proposed a novel forward propagation algorithm,
(FPTT) to handle the VEG problem, which has been outperformed by the BPTT for many
tasks including language modeling [38]. Some gradient independent methods have been
developed to address the training difficulties of the Depp RNNs. One of the first best-
known heuristic approaches is the simulated annealing method that performs a random
neighborhood search to find the optimal weights of the system [7]. In addition to their
advantages, the simulated annealing training period may be very long, hence Bengio et al.
have recommended improving alternative practical training algorithms [7].

To date, metaheuristic algorithms have been successfully applied to solve many
nonlinear optimisation problems with their good initialisation strategies and local search
abilities that bring crucial advantages to handle local optima issues such as getting trapped
at local optima [39]. Although the number of studies for optimisation of deep architectures
is less than that for conventional architectures [40], some studies have been carried out to
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improve the optimisation performances for the specified and generalized tasks using the
intelligent nature of population-based algorithms [41]. The studies are mainly focused on
hybridisation approaches, which are used to evolve deep architectures and to optimise the
hyperparameters of the deep learning models. They can focuses on various application
field such as time-series forecasting [42], classification problem [43], prediction problem [44]
and design problem [45].

Studies for evolving network topology with metaheuristics aim to design optimum
network architecture. For example, Dessel et al. have proposed to evolve a deep RNN
network by using ACO [46]. They present a strategy to design an optimal RNN model
with five hidden and five recurrent layers to predict aviation flights. Similarly, Juang et al.
proposed a hybrid training algorithm combining GA and PSO for evolving RNN archi-
tecture. They called the algorithm HGAPSO and applied the algorithm for RNN design
to a temporal sequence production problem [47]. The NeuroEvolution of Augmenting
Topologies (NEAT) approach has been developed based on the GA for the optimisation of
neural model architectures [48]. Desell et al. have used Ant Colony Optimisation (ACO) to
design a deep RNN architecture with five hidden and five recurrent units for predicting
flight data [46]. Similarly, Ororbia et al. have implemented Evolutionary eXploration of
Augmenting Memory Models (EXAMM) and different versions of it such as GRU, LSTM,
MGU and, UGRNN to evolve RNNs [49]. Wang et al. proposed an evolutionary recurrent
neural network algorithm for the proxy of image captioning task [50]. A Random Error
Sampling-based Neuroevolution (RESN) has been proposed as an evolutionary algorithm
to evolve RNN architecture for prediction task [51]. Mo et al. proposed an EA for topology
optimisation of the hybrid LSTM-CNN network for remaining useful life prediction [52].

Studies to find the optimum weights and to handle VEG problem of the RNN network
focused on hybrid training algorithms. Kang et al. proposed a hybrid training algorithm
to get rid of the local optima and saddle points by using the PSO and backpropagation
algorithm. They got an improvement on convergence and accuracy results of four dif-
ferent datasets [53]. Ge et al. have presented the modified particle Swarm Optimisation
(MPSO) [54] algorithm for training dynamic Recurrent Elman Networks [55]. The proposed
method aims to find the initial network structure and initial parameters to learn the optimal
value of the network weights for controlling Ultrasonic Motors. Xiao et al. have proposed
a hybrid training algorithm with PSO and backpropagation (BP) for Impedance Identifi-
cation [56]. The RNN architecture has been trained based on finding the minimum MSE
and the largest gradient. Zhang et al. have also proposed hybrid PSO and Evolutionary
Algorithm (EA) to train RNN for solar radiation prediction [57]. Likewise, Cai et al. have
used hybrid PSO-EA for time series prediction with RNN [58]. A real-coded (continuous)
Genetic Algorithm (GA) has been employed for training RNN by updating weight parame-
ters using random real-valued chromosomes [59]. Nawi et al. proposed a Cuckoo Search
(CS) algorithm for training Elman Recurrent Networks combined with backpropagation for
data classification compared to the Artificial Bee Colony and conventional backpropagation
algorithm [60]. A recurrent NARX neural network has been trained by a Genetic Algorithm
(GA) to improve the state of charge (SOC) of lithium batteries [61].

Although the proposed hybrid approaches can train or optimize the topology of the
RNNs, those networks do not have so many hidden layers that they can be considered
as deep architectures, since the number of hidden layers of most studies is not as high
as deep learning architectures. For example, Bas et al. proposed RNN models that have
two to five hidden layers for forecasting using the PSO algorithm. The performance of the
proposed algorithm was compared to the LSTM and Pi-Sigma NN architectures, which are
trained by using gradient-based algorithms that performed similar [62]. There have only
been limited studies into optimizing the architecture of a deep RNN [46] or deep LSTM [23]
models. The authors of [46] have used ACO to convert fully connected RNNs into less
complex Elman ANNs.

In addition to these studies, some examples of metaheuristic approach focusing on
network training in recent years. A neural network training algorithm was proposed by
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Kaya et al. namely ABCES (Artificial Bee Colony Algorithm Based on Effective Scout
Bee Stage) [63]. They proposed to use ABCES to train a feedforward neural network
model to detect the nonlinearity of given static systems, including 13 different numerical
optimisation problems. Shettigar et al. proposed an ANN model for surface quality
detection, which is trained by using traditional backpropagation algorithm, GA, ABC
algorithms compared to the RNN architecture. RNN and BP-NN algorithms performed
comparable, and ABC-NN and RNN models gave better results compared to the others [64].
A BeeM-NN algorithm has been proposed as a bee mutation optimizer for training the
RNN model for cloud computing application [65]. A Parallel Memetic Algorithm (PMA)
has been proposed to train RNNs for the energy efficiency problem by Ruiz et al. [66].
Hu et al. implement a hybrid grey wolf optimizer (GWO) and PSO to determine the
endometrial carcinoma disease with Elman RNN. on the [67]. Tian et al. have also proposed
a metaheuristics recommendation system for training deep RNNs to optimise real-world
optimization problems, such as the aerodynamic design of turbine engines and automated
trading [68]. Roy et al. have proposed an Ant-Lion optimizer for training RNN to find
energy scheduling in micro grid-connected system [69]. A data-driven deep learning
model has been proposed by Aziz et al. by using 10 different classification datasets [70].
Elman RNN and NN models have been trained by PSO that improved the classification
accuracy. Similarly, Hassib et al. proposed a data-driven classification framework using
Whale Optimization Algorithm (WOA) for feature selection and training the Bidirectional
Recurrent Neural Network [71]. A Global Guided Artificial Bee Colony (GGABC) algorithm
proposed for Recurrent Neural Network training by for breast cancer prediction dataset [72].
Kumar et al. proposed hybrid flower pollination and PSO algorithm for training LSTM-
RNN model to predict Intra-day stock market [73].

According to the review study, recently over two hundred studies have been made
focusing on evolutionary swarm intelligence and deep learning models for topology
optimization, hyper-parameter optimization, and training parameter optimisation [74].
Table 1 reports some of the selected works related to deep RNNs. Even though there
are many studies focusing on training artificial neural networks, most of the proposed
metaheuristics for training recurrent deep learning models do not comprise many deep
hidden layers that could cause the VEG problem. The existing proposed methods have
worked over big population numbers, and they are not trying to optimize the deep RNN
architectures. The proposed BA-3+ algorithm has only three bees as a population number,
and as we proved in Section 5, the total training time is much lower than the Differential
Evolution (DE) and Particle Swarm Optimization (PSO). In addition, the choice of the
BA-3+ algorithm is motivated by the No Free Lunch theorem [75], as it released there is no
universally efficient algorithm for all kinds of problems. Hence we can say if algorithm A
could perform better than algorithm B in some class of problems and datasets, algorithm B
could perform better than algorithm A in some other class of problems and datasets. Hence
in this study, we focus on exploring the advantages of the BA-3+ approach for improving
the deep recurrent learning abilities as a solution for the VEG problem, which has been
discussed in detail in the next section.
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Table 1. Selected related work to handle the VEG problem of the deep RNNs.

Study/Year Proposed Solution Algorithm/Function

[62] 2021 Metaheuristic Training PSO
[70] 2021 Metaheuristic Training PSO
[63] 2021 Metaheuristic Training ABC
[38] 2021 New Gradient-based Training FPTT
[65] 2021 Metaheuristic Training BeeM-NN
[22] 2021 Hyperparameter optimization FOA
[52] 2021 Topology Optimisation EA
[73] 2021 Hybrid Metaheuristics Training FP & PSO
[76] 2021 Metaheuristic Training BSO
[64] 2020 Hybrid Metaheuristics Training GA & ABC
[71] 2020 Metaheuristic Training WOA
[21] 2020 Metaheuristic Training IWOA
[26] 2020 Hyperparameter optimization SCOA
[27] 2020 Hyperparameter optimization GA & PSO
[77] 2020 Metaheuristic Training ABSA
[51] 2020 Topology Optimisation RESN
[72] 2019 Hybrid Metaheuristic Training GGABC
[49] 2019 Topology Optimisation EXAMM
[61] 2019 Metaheuristic Training GA
[69] 2019 Hybrid Metaheuristic Training Ant-Lion
[67] 2019 Hybrid Metaheuristic Training GWO & PSO
[66] 2019 Metaheuristic Training PMA
[36] 2018 Gradient Stabilisation SVD
[23] 2018 Topology Optimisation ACO
[24] 2018 Metaheuristic Training GWO, ALOA, SCA, HS
[44] 2018 Metaheuristic Training PSO
[53] 2017 Hybrid Metaheuristic Training PSO & BP
[45] 2017 Metaheuristic Training DE
[34] 2016 Initialisation Training tricks for RNNs
[33] 2015 A New Deep Architecture RNN& CNN
[46] 2015 Topology Optimisation ACO
[60] 2015 Metaheuristic Training CS
[57] 2013 Hybrid Metaheuristic Training PSO & EA
[29] 2011 A New Deep Architecture SRNNs
[20] 2011 Hessian-free methods Hessian-free optimisation
[28] 2010 A New Activation Function ReLU
[56] 2007 Hybrid Metaheuristic Training PSO & BP
[58] 2007 Hybrid Metaheuristic Training PSO & EA
[55] 2007 Hybrid Metaheuristic Training MPSO & BP
[18] 2004 A New Deep Architecture Echo-State-Networks (ESNs)
[47] 2004 Hybrid Metaheuristic Training GA & PSO
[48] 2002 Topology Optimisation GA (NEAT)
[59] 2001 Metaheuristic Training GA

3. Recurrent Neural Networks and Problem Preliminaries
3.1. Problems with Training Deep Recurrent Neural Networks

In this section, a deep recurrent neural network (RNN) model is described based on
the standard RNN model for the sentiment classification task for both the English and
Turkish languages. A many-to-one deep RNN model is presented and formulated for a
clear understanding of the training difficulties of the proposed model.

3.2. Model Description and Problem Preliminaries

Let x(i) = (x1, x2, . . . , xt−1, xt) is a sequential feature vector of the sequence of
words, i.e., n-dimensional word embedding or word vector for each observation in the
dataset. The proposed deep RNN model has been constructed using the sequences of the
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following recurrence formula and defined below for each time step t with two commonly
used nonlinear activation functions, tanh and sigmoid:

ht = tanh(Whh ht−1 + Wxh xt + bh) (1)

y = sigmoid(Why ht + by) (2)

The hidden state of the model ht passes the information from the previous time step
ht−1, and uses it to classify the given observation x(i). The sigmoid function is used to
predict the sentiment class of x(i), i.e., each review or tweet from the dataset. The objective
of the RNN model is to maximise the correct estimation by using each pair of (y(i), t(i)) or
to minimise the BCE error between predicted y(i) and target data t(i).

The training algorithm searches for the optimal values of the learnable parameters
Wxh, Whh, Why, bh, by. Most of the training algorithms, such as SGD are based on the
gradient descent learning rule by backpropagation through time (BPTT) [78] using the
following update rule for each time step t as follows:

θt+1 = θt − η ∇θ L( f (xi, θ), ti)) (3)

Here η is the learning rate, that is one of the most important hyperparameters of
the deep learning models. Once the loss function is calculated at the feedforward step,
the proposed partial derivatives ∂L

∂Why
, ∂L

∂by
, ∂L

∂Whh
, ∂L

∂Wxh
, ∂L

∂bx
represented as ∇θ in the (3)

above need to be calculated for updating the set of trainable parameters of the system.
In this study, we focused on binary sentiment classification datasets for the English

and Turkish languages. Turkish classification datasets include movie reviews [79], multi-
domain product reviews [79] and Twitter dataset [80] with a raw text format. English
dataset includes the huge English IMDB movie reviews dataset [81], small movie reviews
dataset [82] and Yelp dataset including reviews about businesses, check-in, photos, and tips
of the users [83]. Table 2 presents the detailed information about the datasets. Here, the
Yelp dataset is asymmetric distributed and the others are symmetric distributed datasets.

Table 2. Turkish and English datasets.

Dataset Size

TR Books [79] 700 P, 700 N
TR DVD [79] 700 P, 700 N

TR Electronics [79] 700 P, 700 N
TR Kitchen Appliances [79] 700 P, 700 N
Turkish Movie Reviews [79] 5331 P, 5331 N
Turkish Twitter Dataset [80] 12,490 P, 12,490 N

English IMDB Movie Reviews [81] 12,500 P, 12,500 N
English Movie Reviews [82] 1000 P, 1000 N

English Yelp dataset [83] 3337 P, 749 N

During the backpropagation, since the same weight parameters are shared at each
time step, the recursive nature of the training process causes the vanishing and exploding
gradients problem which leads to a huge loss of information across the deep hidden layers.
From the perspective of dynamical systems, when the model keeps its state in the same
stable state for a long time, the same issue occurs and the updating information about the
system is lost [7].

3.3. Vanishing and Exploding Gradients (VEG) Problem

This section contains a mathematical proof of the vanishing and exploding gradients
(VEG) problem encountered when training deep RNNs.
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The objective of the RNN model is to maximise the correct estimation by using each
pair of (y(i), t(i)) or to minimise the BCE error between predicted y(i) and target data t(i)

as follows:

L(t, y) =
N

∑
i=1

Lt(yi, ti)

∂L
∂Whh

=
Nout

∑
t=1

∂Lt

∂Whh

=
Nout

∑
t=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂Whh

∂ht

∂Whh
= tanh′t(Whhht−1 + Wxhxt + bh)[ht−1 + Whh

∂ht−1

∂Whh
]

(4)

ht and ht−1 are both a function of Whh, so the product rule of the derivative should be used
for every time step as follows:

∂ht−1

∂Whh
= tanh′t−1(Whhht−2 + Wxhxt−1)[ht−2 + Whh

∂ht−2

∂Whh
] (5)

∂ht−2

∂Whh
= tanh′t−2(Whhht−3 + Wxhxt−2)[ht−3 + Whh

∂ht−3

∂Whh
] (6)

The rightmost term of the should be expanded until t = 1 to calculate ∂h1
∂Whh

, and the fol-
lowing backpropagated sequence is found if tanh′t(Whhht−2 +Wxhxt−1 + bh) is represented
as tanh′t:

∂ht

∂Whh
= tanh′t

[
ht−1 + Whhtanh′t−1

[
ht−2 + . . . +Whh

∂h1

∂Whh

] ]
= tanh′t ht−1 + tanh′t Whhtanh′t−1ht−2 + . . .

(7)

Here the partial derivatives of ht are calculated with respect to the previous time step
hk. Therefore, the total loss can backpropagated according to Whh as follows:

∂L
∂Whh

=
t

∑
k=1

∂Lt

∂yt

∂yt

∂ht

∂ht

∂hk

∂hk
∂Whh

(8)

Here ∂ht
∂hk

= ∏t
s=k+1

∂hs
∂hs−1

for any time state s of the system, and each ∂hs
∂hs−1

is the

Jacobian matrix for h ∈ RDn defined as follows:

∂hs

∂hs−1
=

[
∂hs

∂hs−1,1
. . .

∂hs

∂hs−1,Dn

]

=


∂hs,1

∂hs−1,1
· · · ∂hs,1

∂hs−1,Dn
...

. . .
...

∂hs,Dn
∂hs−1,1

· · · ∂hs,Dn
∂hs−1,Dn


(9)

Equation (8) becomes the following:

∂L
∂Whh

=
T

∑
t=1

t

∑
k=1

∂Lt

∂yt

∂yt

∂ht
(

t

∏
s=k+1

∂hs

∂hs−1
)

∂hk
∂Whh

(10)
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Since ht = tanh (Whhht−1 + Wxhxt + bh), the term ∏t
s=k+1

∂hs
∂hs−1

gives the diagonal
matrix from (9) and (10), that can be seen from the following equation:

t

∏
s=k+1

∂hs

∂hs−1
=

t

∏
s=k+1

WT
hhdiag(tanh′(Whhhs−1) ) (11)

Let a and b be both the upper bounds, or largest singular values of the matrices WT
hh

and diag(tanh′(Whhhs−1)), respectively. The 2-norms of these matrices are bounded by ab
defined as follows for any time state s of the system:∥∥∥∥ ∂hs

∂hs−1

∥∥∥∥ =
∥∥∥WT

hh

∥∥∥∥∥diag
(
tanh′(Whhhs−1)

)∥∥ ≤ ab (12)

∥∥∥∥ ∂ht

∂hk

∥∥∥∥ =

∥∥∥∥∥ t

∏
s=k+1

∂hs

∂hs−1

∥∥∥∥∥ ≤ (ab)t−k (13)

During training, the same weight matrix Whh is used across the layers, so as t → ∞
the term (a.b)t−k vanishes at the very small value such as (ab)t−k → 0 or explodes to the
extremely large value such as (a.b)t−k → ∞.

It has been shown that [5,7], if the absolute value of the largest eigenvalue of the WT
hh

is smaller than 1
b , then the gradients vanish as follows:

∀ s,
∥∥∥∥ ∂hs

∂hs−1

∥∥∥∥ ≤ ∥∥∥WT
hh

∥∥∥∥∥diag
(
tanh′(Whhhs−1)

)∥∥
≤ ab <

1
b

.b < 1

∃ γ,
∥∥∥∥ ∂hs

∂hs−1

∥∥∥∥ ≤ γ < 1∥∥∥∥ ∂ht

∂hk

∥∥∥∥ =
t

∏
s=k+1

∂hs

∂hs−1
≤ (γ)t−k

(14)

As t→ ∞, it is clear that lim
t→∞

∏t
s=k+1

∂hs
∂hs−1

= 0. Similarly, when the largest eigenvalue

of the WT
hh is bigger than 1/b, gradients explode and lim

t→∞
∏t

s=k+1
∂hs

∂hs−1
= ∞.

4. An Enhanced Ternary Bees Algorithm (BA-3+) to Handle VEG Problem of Training
Deep RNN

In this section, a population-based search algorithm for training deep RNNs is pre-
sented. The learnable parameters θ = (Wxh, Whh, Why , bh, by) are the same as in SGD,
which is defined as a candidate solution in BA-3+, and try to minimise the binary cross-
entropy loss function L(y, t) for each pair of the sequential input (x1, x2, . . . , xt−1, xt),
the desired-targeted output t, and the predicted value y.

Gradient-based learning algorithms are particularly sensitive to the initial value of the
weights and noise variance of the dataset in non-convex optimisation. Hence, the difficulty
of the training deep RNN model depends on not only keeping the information through
long-term time but also initial values of the parameters. Most initialisation methods are
generally based on the random initialisation [84] or researchers choose to initiate the
weights as an identity matrix or close to the identity conventionally [85]. Therefore, finding
optimum initial parameters for a specified model and exploring which parameters should
be updated and learned are still remains an open difficult optimisation task, due to the lack
of the exact knowledge about the which properties of these parameters are kept or learned,
under which conditions [6].

As mentioned above, this work uses an enhanced Ternary Bees Algorithm (BA-3+)
for training deep RNNs. BA-3+ combines exploitative local search with explorative global
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search [17]. Improvements to the training of deep RNN models with BA-3+ have been made
in three key areas: finding promising candidate solutions and initialising the model with
good initial weights and biases, improving local search strategies to enhance good solutions
by neighbourhood search, particularly to overcome the vanishing and exploding gradients
problem, and performing exploration to find new potential solutions with global search.

4.1. Representation of Bees for Deep RNN Model

The Bees Algorithm was developed by Pham et al. with inspiration from clever
foraging behaviours of the honey bees in nature [14]. In the proposed method the bee
represents a sequential deep RNN model, which is modelled for the binary sentiment
classification task. As can be seen in Figure 1, every bee (Sequential model) instance has
the input layer, hidden deep RNN layers, and the output layer. The proposed model has
the learnable parameters θ = (Wxh, Whh, Why, bh, by), and aims to classify the sequential
input data (x1, x2, . . . , xt−1, xt) to its targeted class t.

Figure 1. A Deep RNN architecture representing a bee in the proposed algorithm. Black lines are the
forward pass of RNN cell at time t (unfolded version at upper) and red lines representing the error
backpropagation through long-term dependencies.

Based on the training procedure of the RNN model, each “bee model” has its own
forward propagation action to calculate the initial solutions, local search procedure by
gradient descent training with singular value decomposition (SVD), and global search
actions to find the optimal parameters θ = (Wxh, Whh, Why, bh, by) via the binary cross-
entropy loss function (fitness function) LBCE( f (x(i), θ), y(i)) as defined Section 3.3.

BA-3+ does not require a large population, which is a drawback with other population-
based methods. BA-3+ employs only three individual bees for each training time. Each
iteration begins with these three initial solutions as a forward pass of the model and
continues with specified search strategies including exploitative local search, stochastic
gradient descent (SGD) stabilised by Singular Value Decomposition (SVD), and explorative
global search.

As with the basic Bees Algorithm [14], the initial candidate solutions are sorted.
The maximum fitness value is selected as the best RNN bee for the local exploitative search.
The worst fitness value (third bee) is selected for global search to avoid getting trapped at
local optima, and the remaining RNN, i.e., the middle RNN bee is selected for stochastic
gradient-descent learning with the stabilisation strategy of SVD operator to update weights
and biases without vanishing and exploding gradients.

Figure 2 represents the flowchart of the proposed algorithm. (x(train), t(train)) is the
training sample from the dataset, that x(i) = (x1, x2, . . . , xt−1, xt) is defined as an n-
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dimensional sequential input and t(i) ∈ {0, 1} is its targeted sentiment class. Parameters
of the deep RNN model trained by using BA-3+ are shown in Table 3. Three initial solutions
are calculated with the initial trainable parameters θ (see Table 4) and sorted according to
the loss function. The elite (best) RNN bee performs the local search operator, the middle
RNN bee performs stochastic gradient-descent with SGD operator, and the third RNN bee
performs global search. The optimisation continues with a new population of bees until
the stopping criteria met; in other words, until the loss value is converged to zero.

Figure 2. Flowchart of the proposed enhanced Ternary Bees Algorithm (BA-3+).

Table 3. Parameters of the deep RNN model trained by using BA-3+.

Parameters Information

x(i) = (x1, x2, . . . , xt−1, xt) ith temporal sequential input from the input training set
t(i) ith targeted class of the output training set
y(i) ith predicted class of the x(i)

Wxh Weight matrix from input layer to hidden layer
Whh Weight matrix from hidden layer to hidden layer
Why Weight matrix from hidden layer to output layer
bh, by Biases for the hidden layer and the output layer

nScout Number of scout bees for initialisation
ngh Neighbourhood size for the local search

nhidden Hidden layer size
η Learning rate for SGD
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Table 4. Learnable (trainable) parameters.

Parameters Dimension

Wxh Rnumber of hidden layers × dimension of each word

Whh Rnumber of hidden layers × number of hidden layers

Why R |V|× number of hidden layers

bh R number of hidden layers

by R number of output layers

|V| : number of words in the vocabulary

4.2. Local Search Operator

The local search procedure in the basic Bees Algorithm includes improving a promising
solution within the neighbourhood of the selected solution parameters. In Algorithms 1 and 2,
ngh represents the initial size of the neighbourhood for the local search. The neighbourhood
begins as a large area and it is reduced by using a shrinking method [86] at each iteration
according to the formula ngh(t + 1) = α ngh(t). Here, α is usually a number between 0 and
1. The neighbourhood matrix is generated with the same dimension of each weight matrix
of the learnable parameters θ = (Wxh, Whh, Why , bh, by), and then is aded to the original
weight matrix to obtain the updated weights. The pseudo-code to generate neighbourhood
weights is given in Algorithm 2. The updated local weights are used for the local search of
BA-3+ that can be seen in Algorithm 4.

Algorithm 1: Pseudo-code to generate neighbourhood weights.
Input: weight matrix : w, ngh
Output: updated ngh weights

1 Function generateNghWeight(w, ngh):
2 for each we ∈ w do
3 ngh← random number ∈ [−ngh, ngh]
4 wngh ← we + ngh

5 return wngh

Algorithm 2: Pseudo-code of the local search operator of BA-3+.
Input: Bee, ngh : neighbourhood radius
Output: Local Bee with Updated Parameters

1 Function LocalSearch(Bee, ngh):
2 for each w ∈ θ = (Wxh, Whh, Why , bh, by) do
3 dimw ← dimension(w)
4 wngh ← generateNghWeight(w, ngh)
5 Bee.w← wngh

6 return Bee

4.3. Enhanced Local Search by SGD and Singular Value Decomposition (SVD) Operator

As analysed in Sections 3.2 and 3.3 due to the sharing the same hidden matrix Whh
across the deep hidden layers and multiplying it again and again at every time step of
the BPTT algorithm, the eigenvalues of the Jacobian matrix exponentially grow or vanish
after t time steps. To handle this issue, it has been proposed to use a singular value
decomposition of the hidden layer matrix to stabilise the eigenvalues of the updated
matrix in the enhanced local search of BA-3+. As an example, assume that the eigenvalues
of the Whh are represented λ1, λ2, . . . , λn The singular values of Whh can be founded by
using the positive eigenvalues of the matrix WhhWhh

T , for every λi ≥ 0 ∈ λ1, λ2, . . . , λn,
and Si =

√
λi if Whh is positive semi-definite square matrix [87]. Since the learnable
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parameters of the RNN can also be rectangular matrices, it is needed to find singular values
of an arbitrary matrix A.

It is well-known that every arbitrary real matrix can be represented by the product
of three matrices as A = USVT , which is called singular value decomposition (SVD) of
matrix A, which is used to find the singular values [88]. Figure 3 represents the SVD of
an n×m dimensional matrix. Here, S is the r× r dimensional diagonal matrix Sn×n =
diag[S1, S2, . . . , ..., Sn] that each Si represents the singular values of the matrix A, and U
and V contain the corresponding singular vectors where U and V are orthogonal matrices
with the n× r and r×m dimensions, respectively.

Figure 3. Singular Value Decomposition (SVD) of matrix A.

After updating each parameter of the θ = (Wxh, Whh, Why, bh, by) by SGD rule,
the SVD operator has used to control the eigenvalues of each parameter. The method
aims to keep the singular values of the updated matrix close to 1 for gradient stabilisation.
To this end, the SVD decomposition of the updated matrix is performed to find the singular
values, and then every singular vector is controlled to be close to the unit vector. As given
in Algorithm 3, the singular values of the updated weight matrix are restricted to the
interval [1/(1 + ngh), 1 + ngh] to avoid updating in the wrong direction. Here, ngh is the
initial neighbourhood size, which is chosen between (0, 1). As a result, Whh can be updated
over time without vanishing or exploding gradients.

Algorithm 3: Pseudo-code of SGD with the SVD operator.
Input: Learning rate:η, Bee, ngh : neighbourhood radius
Output: Bee with Updated Parameters

1 Function SGDSVD(η, θ):
2 for each w ∈ θ = (Wxh, Whh, Why, bh, by) do

// Update θ by using gradient descent rule
3 θt+1 = θt − η ∇θ L( f (xi, θ), yi))
4 Calculate SVD for each w :
5 U, S, VT = SVD(w)
6 for each si ∈ S do
7 if si ≥ (1 + ngh) then
8 si = 1 + ngh
9 else if si ≤ 1/(1 + ngh) then

10 si = 1/(1 + ngh)

11 Bee.w← wSVD

12 return Bee

4.4. Global Search Operator

Besides the enhanced local search procedures, the proposed algorithm also includes
a global search operator that combines random sampling chances which is also a good
strategy for escaping local optimum points of the solution space. The third bee in a colony
is used for the random exploration for potential new solutions of the search space. If the
updated random weights gave a better solution for the loss function, then the third bee is
updated with new global searched weights. This procedure gives the advantage to escape
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getting trapped at local optima, which results in converging to the global optimum faster
during the training process. Algorithm 4 shows the pseudo-code of the proposed enhanced
Ternary Bees Algorithm (BA-3+). The source code of the proposed algorithm is given at
Appendix A.

Algorithm 4: Pseudo-code of the enhanced Ternary Bees Algorithm (BA-3+) for
training deep RNN model.

Input: nScout, learning rate:η, ngh: neighbourhood
radius, dataset

1 Function BA-3+(nScout,η, ngh, dataset):
2 Start
3 inputs← CreateInputs(dataset)
4 targets← labels(y)
5 items← convert dataset to list o f // x=sentences and t=targets
6 for each (x(i), t(i)) ∈ items do
7 Initialize population with ternary RNNBee
8 while stopping criterion not met do
9 Evaluate fitness of the population

10 y, Loss← FORWARD(RNNBee, x(i))
11 Sort population according to loss values
12 localbee ← LOCALSEARCH(bestBee, ngh)
13 Evaluate fitness of localBee
14 if localBee better than bestBee then

// Update First Bee
15 bestBee = localBee

16 SGDSVDBee ← SGDSVD(secondBee, ngh)
17 Evaluate fitness of SGDSVDBee
18 if SGDSVDBee better than secondBee then

// Update Second Bee
19 secondBee = SGDSVDBee

20 globalBee ← GLOBALSEARCH(thirdBee)
21 Evaluate fitness of globalBee
22 if globalBee better than thirdBee then

// Update Third Bee
23 thirdBee = globalBee

24 Evaluate fitness of the new population
25 Sort population according to loss values
26 Best Model = Best Bee

27 return Best Model (Best Bee)

In this study, sentiment analysis is considered as a binary classification problem.
The F1-score or F1 measure was used as a statistical measure for the analysis of the binary
classification problem in addition to the accuracy measure. F1 measure is calculated
as follows:

F1 =
2 Precision Recall
Precision + Recall

(15)

Precision =
TP

(TP + FP)
(16)
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Recall =
TP

(TP + FN)
(17)

Accuracy =
TP + TN

(TP + TN + FP + FN)
(18)

Precision is the total count of true positives divided by the total number of positive
results. The recall is the total number of true positive results divided by the number of all
samples that should have been classified as positive. F1 measure can also be defined as a
harmonic mean of the precision and recall value. The next section reports the details of the
proposed algorithm’s experimental setup and performance results and benchmarks.

5. Results
5.1. Experimental Setup

The proposed algorithms were implemented using the Tensorflow library with Keras
Sequential model in Python on the macOS Catalina on MacBook Pro, 3.1 GHz quad-core
Intel Core i5 hardware. The proposed BA-3+ algorithm was run with batch size 1 for
each (x(i) = (x1, x2, . . . , xt−1, xt), t(i)) pair of datasets. Each dataset was divided into a
training set (%80 of the dataset) and a validation set (%20 of the dataset) by using 5-fold
cross-validation. The training was performed with BA-3+ and SGD according to BCE loss
value over 100 independent runs, each involving 100 epochs. The BA-3+ training procedure
was online learning and happened incrementally over each iteration, which means the
learnable parameters were updated after each forward and backward propagation of
each training sample [89]. Figure 4 represents the flowchart of the proposed classification
model. The model implemented with Python Programming language with on Google
Colab IDE [90] by using various tools and libraries, including TensorFlow [91], Keras [92],
SciPy [93], NumPy [94], Pandas [95], and Matplotlib [96].

Figure 4. Flowchart of the proposed classification model.

5.2. Parameter Tuning

Table 5 reports the parameters of BA-3+. The number of scout bees represents the
number of sequential RNN networks. Each training sample of the input data x(i) =
(x1, x2, . . . , xt−1, xt) is padded to the maximum sequence length after pre-processing
steps of the given dataset. Nine widely-used sentiment classification datasets in Turkish
and English from three different domains (movie reviews, multi-domain product reviews,
and Twitter reviews) were adopted to verify the proposed algorithm.
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Table 5. Parameter setting.

Parameter Value

x(i) = (x1, x2, . . . , xt−1, xt) max length = 200
nScout 3

nEiteSiteBee 1
nSelectedSiteBee 1

ngh 0.5
nhidden 32

epoch 100
independent runs (solution numbers) 100

batch size 1
upper limit of max singular value 1 + ngh
lower limit of min singular value 1/(1 + ngh)

η (learning rate) 0.01

For each dataset, the sequential model was implemented with the same hyperparam-
eters for the sake of fair comparison. Every sequential model was constructed with the
input layer, hidden RNN layers, and the output layer. The embedding layer was used as
the input layer, which converts the indexes of the sequential input to the fixed size dense
vectors as an input of the model. The vocabulary size of each dataset was used as the input
dimension of the embedding layer. The random uniform function was used as a weight
initialiser for both the embedding layer and hidden layers.

As a critical hyper-parameter, the neighbourhood size (ngh) of the BA-3+ is set to 0.5.
The learning rate (η) of the SGD is set to 0.01. The neighbourhood size is used for both the
local search and the stabilisation of the largest and the smallest eigenvalue of the updated
parameters. The number of hidden layers is set to 32 for each model. Each element of the
learnable (trainable) parameter of the θ = (Wxh, Whh, Why , bh, by), the dimension of the
weight matrices is changed according to hidden layer numbers, and the corresponding
dimensions of the weight matrix can be seen in Table 4, in Section 4.2.

5.3. Results and Discussion

Table 6 reports the best and average accuracy, loss, and F1 measures obtained by
both the BA-3+ and SGD algorithms. The accuracy and loss values of the training and
validation datasets are given as percentages. The average values were calculated after
100 independent training runs. Figure 5 shows the loss values for each dataset after one
independent run which contains 100 training epochs. According to experimental results,
the proposed BA-3+ algorithm guarantees fast convergence to the optimum value and the
lowest error rate for each dataset. As can be clearly seen in Figures 6 and 7, BA-3+ obtained
the best solution within the first 20 iterations for each dataset. Besides, the gap between
training and validation performance is small, which means BA-3+ prevents overfitting.
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Figure 5. Comparison of the loss values of BA-3+ (TBA) and SGD for one independent run.

Symmetry 2021, 1, 0 18 of 26

Figure 5. Comparison of the loss values of BA-3+ (TBA) and SGD for one independent run.

Figure 6. Distributions of the loss values of the training and validation dataset for 100 independent runs.

Figures 6 and 7 represent the distributions of the loss values for both BA-3+ and
SGD over 100 independent runs. Table 6 reports the best and average accuracy and loss
values of the training datasets and validation datasets. BA-3+ performs better compared to
traditional SGD. Results showed that BA-3+ can be used as an effective learning method
for the sentiment classification task. The performances of BA-3+ were better both in terms
of the best and average accuracy compared to SGD. Similarly, the best and average values
of BA-3+ were lower than for SGD for each dataset.

Figure 6. Distributions of the loss values of the training and validation dataset for 100 independent runs.

Figures 6 and 7 represent the distributions of the loss values for both BA-3+ and
SGD over 100 independent runs. Table 6 reports the best and average accuracy and loss
values of the training datasets and validation datasets. BA-3+ performs better compared to
traditional SGD. Results showed that BA-3+ can be used as an effective learning method
for the sentiment classification task. The performances of BA-3+ were better both in terms
of the best and average accuracy compared to SGD. Similarly, the best and average values
of BA-3+ were lower than for SGD for each dataset.
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Figure 7. Distributions of the loss values of the training and validation dataset for 100 independent runs.

Table 6. Comparison of the results of 100 independent experiments with 100 epochs.

Accuracy Results Loss Results F1 Score

Datasets Alg. TrainBest ValBest TrainAvg ValAvg TrainBest ValBest TrainAvg ValAvg TrainAvg ValAvg

TR Book BA-3+ 0.99 0.99 0.801 0.882 0.00 0.00 0.0769 0.117 0.81 0.78
SGD 0.73 0.64 0.527 0.51 0.686 0.688 0.695 0.697 0.68 0.67

TR DVD BA-3+ 0.99 0.99 0.923 0.91 0.00 0.00 0.076 0.089 0.80 0.78
SGD 0.52 0.39 0.519 0.389 0.686 0.701 0.708 0.748 0.70 0.70

TR Elect. BA-3+ 0.99 0.99 0.915 0.916 0.00 0.00 0.084 0.083 0.83 0.81
SGD 0.99 0.58 0.615 0.549 0.092 0.684 0.640 0.849 0.75 0.73

TR Kitchen BA-3+ 0.99 0.99 0.81 0.810 0.00 0.00 0.189 0.191 0.81 0.75
SGD 0.52 0.54 0.507 0.525 0.692 0.689 0.640 0.813 0.70 0.67

EN IMDB BA-3+ 0.99 0.99 0.911 0.90 0.00 0.00 0.032 0.006 0.77 0.75
SGD 0.58 0.47 0.579 0.469 0.68 0.693 0.81 0.870 0.71 0.70

TR Twitter BA-3+ 0.99 0.99 0.914 0.830 0.00 0.00 0.017 0.029 0.76 0.73
SGD 0.99 0.55 0.747 0.456 0.112 0.691 0.51 0.909 0.59 0.57

TR Movie BA-3+ 0.99 0.99 0.93 0.855 0.00 0.00 0.00 0.05 0.80 0.77
SGD 0.9 0.58 0.58 0.494 0.376 0.689 0.668 0.725 0.66 0.63

EN Movie BA-3+ 0.99 0.99 0.896 0.87 0.00 0.00 0.024 0.058 0.81 0.80
SGD 0.640 0.610 0.585 0.601 0.655 0.668 0.69 0.678 0.77 0.75

EN Yelp BA-3+ 0.99 0.99 0.87 0.86 0.00 0.00 0.030 0.02 0.75 0.70
SGD 0.87 0.809 0.79 0.854 0.325 0.318 0.490 0.424 0.61 0.57

BA-3+ has been compared with Differential Evolution (DE) and Particle Swarm Opti-
mization (PSO) algorithms. For the sake of comparison, PSO has been evaluated with three
particles as we propose to employ only three scout bees over 100 epochs. However, DE
has been employed with 100 generations since it gave too low accuracy when it employees
with only three generations. Table 7 reports the time consumption of the SGD, BA-3+,
DE, and PSO algorithms in second. As can be seen in Table 8, BA-3+ has outperformed
the DE and PSO, and its computation time of the BA-3+ is lower from DE and PSO. Al-
though BA-3+ time consumption was longer than standard SGD, the accuracy value and F1
measure have improved for all classification datasets, at least with a 30–40% improvement.
Furthermore, BA-3+ was more stable and converged faster than the DE and PSO algorithms
since it employs only three individual bees as a population. As is expected SGD model has
the lowest computation time, but the accuracy result is also lower compared to all other
metaheuristic training algorithms.
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Table 7. Total training time (sec) of the BA-3+, DE, PSO and SGD algorithms.

Datasets SGD Total Time BA3+ Total
Time DE Total Time PSO Total Time

TR Book 237.36 393.139 871.608 544.914
TR DVD 233.92 407.187 860.439 520.700
TR Elect. 233.15 411.297 1317.971 512.482

TR Kitchen 235.73 417.765 855.125 513.929
TR Movie 1021.38 1394.631 3827.576 3969.091
TR Twitter 4334.98 8340.9 16,178.52 8978.6
EN IMDB 12,100.00 22,347.5 31,724.76 25,674.5
EN Movie 1293.718 2206.8 3361.95 2399.71
EN Yelp 4691.78 12,112.8 21,157.6 13,894.9

Table 8. Comparison of BA-3+ performance with DE and PSO and SGD.

Datasets SGD Acc. BA3+ Acc. DE Acc. PSO Acc.

TR Book 0.527 0.801 0.789 0.690
TR DVD 0.519 0.923 0.808 0.678
TR Elect. 0.58 0.915 0.786 0.696

TR Kitchen 0.507 0.81 0.794 0.686
TR Movie 0.58 0.93 0.887 0.759
TR Twitter 0.747 0.914 0.74 0.709
EN IMDB 0.579 0.91 0.778 0.701
EN Movie 0.585 0.896 0.78 0.69
EN Yelp 0.79 0.87 0.71 0.68

Since we aim to improve the learning capacity of RNN as good as advanced deep
learning language models such as LSTMs, we compared the proposed training algorithm
with the advanced neural language models, including chain-structured and tree-structured
language models. For this purpose, LSTM has been modeled with the same hidden layer
number and training optimizer. Tree-LSTM has been modeled with similar hyperparam-
eters to the RNTN model, which operates over MS-TR treebank [97]. The results of the
Recursive Neural Tensor Network (RNTN) model have been taken from [97]. Table 9
reports the hyperparameters of the advanced deep language models and Table 10 reports
comparisons of accuracy results of advanced recurrent and recursive language models for
Turkish binary classification datasets over test dataset. According to the experiments, it
is observed that the RNN model combined with the BA-3+ training algorithm performed
close or as good as advanced recurrent and recursive deep language models and gave
comparable results.

Table 9. Parameter setting for LSTM and Tree-LSTM models.

Parameter Value

x(i) = (x1, x2, . . . , xt−1, xt) max length = 50
embedding dimension 300

nhidden 32
epoch 100

batch size 32
optimizer SGD

learning rate 0.01
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Table 10. Comparisons of average accuracy results of advanced recurrent and recursive language
models for Turkish binary classification datasets.

Models Book Electr. DVD Kitchen Movie Twitter

LSTM 0.823 0.725 0.751 0.75 0.835 0.895
Tree-LSTM 0.883 0.853 0.85 0.82 0.88 0.89

RNTN 0.86 0.866 0.824 0.798 0.88 0.835
RNN BA3+ 0.88 0.801 0.866 0.818 0.854 0.838
RNN SGD 0.808 0.75 0.734 0.704 0.721 0.744

As it can be clearly seen from Figure 8, RNN-SGD performed well for only one dataset.
Accordingly, we can say that the performance of the systems can be better when the
models are trained with huge datasets such as the Twitter classification dataset (see Table 2).
However, in all other cases, we found that the BA algorithm performed well and yielding
results just as well as advanced language models. The experimental results demonstrate
that BA-3+ gives us a chance to get rid of the disadvantages of the SGD algorithm and
can handle the VEG problem. Although BA-3+ time consumption is longer than SGD,
the accuracy value and F1 measure are higher for all classification datasets. Furthermore,
since BA-3+ employs only three scout bees, the total training time is shorter than the DE
and PSO algorithms and it outperformed the DE and PSO (see Tables 7 and 8). BA-3+ and
PSO runtimes are similar, but BA-3+ gave better results in terms of accuracy. Even though
the DE algorithm was tested for 100 generations, it could not reach the BA-3+ performance.

Figure 8. Comparison of BA-3+ performance with advanced models and RNN model trained with
SGD for some datasets.

The success of BA-3+ depends on its hybrid metaheuristic nature. BA-3+ evaluates
only three candidate models, each having the same deep RNN architecture with differ-
ent learnable parameters. The training process starts with these three candidate models
(number of scout bees), which dynamically search for the optimum values of the learnable
parameters, and continues selecting the best model for local search to find better solutions.
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This is the feature of BA-3+ that brings good initial parameters for the iterative learning
process. After each iteration of the proposed algorithm, if more optimum values of the
learnable parameters are found, they will be updated incrementally. This feature of BA-3+
yields faster convergence. Additionally, as BA-3+ combines local SGD training with the
SVD, it can exploit the learning ability of SGD while controlling vanishing and exploding
gradients, making BA-3+ a hybrid meta-learning algorithm combining gradient-free and
gradient-based optimisation. Finally, BA-3+ has a random exploration operator, namely,
a global search operator, which enables the exploration of new promising solutions while
preventing the optimisation process from being trapped at local stationary points. Be-
sides these advantages, critical hyperparameters, such as learning rate and neighbourhood
size, were empirically selected for BA-3+ as for SGD.

In the future, the proposed algorithm will be compared to the recent metaheuristic
methods, such as advanced backtracking search optimisation algorithm (ABSA) [77], which
has proved its performance superiority compared to the GA, DE, and backtracking search
optimization algorithm (BSA) for global optimisation [76]. Since we recommend using only
three individual bees as population size, we think it would be unfair to compare BA-3+ with
all other population-based metaheuristic algorithms using higher population sizes without
any SGD-SVD local search. Therefore, the previous population-based metaheuristics should
be improved with hybrid approaches to work well with lower population sizes in the future.
Furthermore, the hyperparameter tuning study will be done since the deep learning model
and metaheuristic algorithms are sensible to critical hyperparameters. The proposed
algorithm will also be tested for fine-grained classification problems with more than
two classes. Although the accuracy rate of the proposed algorithm is high, strategies
should be found to ensure faster convergence in terms of time. Learning large datasets
may also require the parallel running of the proposed algorithm and more powerful
hardware resources.

6. Conclusions

This paper has described the use of the Ternary Bees Algorithm (BA-3+) as a training
algorithm for finding the optimal set of parameters of a sequential deep RNN language
model for the sentiment classification task. BA-3+ has been modeled as a sequential model
and tested on nine different datasets including Turkish and English text. The model con-
ducts an exploitative local search with the best bee and an explorative global search with
the worst bee. The in-between bee is used for improved Stochastic Gradient Descent (SGD)
learning with Singular Value Decomposition (SVD) to stabilise the updated model parame-
ters after the application of SGD. This strategy is adopted to prevent the vanishing and
exploding gradients problem of SGD training. The proposed BA-3+ algorithm guarantees
fast convergence as it combines local search, global search, and SGD learning with SVD,
and it is faster than other iterative, metaheuristic algorithms, as it employs only three can-
didate solutions in each training step. BA-3+ has been tested on the sentiment classification
task with different datasets, and comparative results were obtained for chain-structured
and tree-structured deep language models, Differential Evolution (DE), and Particle Swarm
Optimization (PSO) algorithms. BA-3+ converged to the global minimum faster compared
to the DE and PSO algorithms and it outperformed the SGD, DE, and PSO algorithms
both for the Turkish and English datasets. According to the experimental results, BA-3+
performed better compared to the standard SGD training algorithm and RNN combined
with BA-3+ performs as good as for advanced deep neural language models. The small
differences between the training and validation results for the nine datasets have confirmed
the efficiency of the proposed algorithm, with BA-3+ indeed offering better generalisation
and faster convergence than the SGD algorithm.
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Appendix A

The source code of the proposed method can be found at https://tinyurl.com/4hh8
msy2 (accessed on 24 July 2021).
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