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INTRODUCTION

Alzheimer’s disease (AD) is one of the most common 
neuropsychiatric disorders, with a frequency of 6% of 
the population over the age of 65 years.  AD is a pro-
gressive disease with disabling symptoms in remember-
ing recent events, language impairment and cognitive 
decrease.  Recent reports have identified gender differ-
ences in hippocampus and parietal lobe development that 
significantly affect AD development (Benoit et al., 1999; 
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Alzheimer’s disease (AD) and major depressive disorder (MDD) are comorbid 
neuropsychiatric disorders that are among the leading causes of long-term dis-
ability worldwide.  Recent research has indicated the existence of parallel molec-
ular mechanisms between AD and MDD in the dorsolateral prefrontal cortex 
(DLPFC).  However, the premorbid history and molecular mechanisms have not 
yet been well characterized.  In this study, differentially expressed gene (DEG), 
differentially co-expressed gene and protein–protein interaction (PPI) network 
propagation analyses were applied to gene expression data of postmortem DLPFC 
samples from human individuals diagnosed with and without AD or MDD (AD: 
cases = 310, control = 157; MDD: cases = 75, control = 161) to identify the main 
genes in the two disorders’ specific and shared biological pathways.  Subsequently, 
the results were evaluated using another four assessment datasets (n1 = 230, n2 = 
65, n3 = 58, n4 = 48).  Moreover, the postmortem DLPFC methylation status of 
human subjects with AD or MDD was compared using 68 and 608 samples for AD 
and MDD, respectively.  Eight genes (XIST, RPS4Y1, DDX3Y, USP9Y, DDX3X, 
TMSB4Y, ZFY and E1FAY) were common DEGs in DLPFC of subjects with AD 
or MDD.  These genes play important roles in the nervous system and the innate 
immune system.  Furthermore, we found HSPG2, DAB2IP, ARHGAP22, TXNRD1, 
MYO10, SDK1 and KRT82 as common differentially methylated genes in the DLPFC 
of cases with AD or MDD.  Finally, as evidence of shared molecular mechanisms 
behind this comorbidity, we propose some genes as candidate biomarkers for both AD 
and MDD.  However, more research is required to clarify the molecular mechanisms 
underlying the co-existence of these two important neuropsychiatric disorders.
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entially co-expressed genes, differentially expressed genes (DEGs), differentially 
methylated genes
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Perry and Hodges, 1999; Burns and Iliffe, 2009; Mielke, 
2018; Guest, 2019).

Comorbidity of patients with AD and depression has 
been observed in up to 50% of patients.  Depression 
is one of the highly prevalent psychiatric symptoms 
of AD, affecting approximately 17% of people in their 
lifetime.  Depression and AD symptoms are often co-
diagnosed, particularly in older people with impaired 
memory.  It has been reported that older people with 
minor depressive disorders are more likely to develop 
major depressive disorders (MDD).  While people with a 
history of depression may be at greater risk of develop-
ing AD, the history of depression in AD is not well known 
(Jorm, 2001; Ownby et al., 2006; Byers and Yaffe, 2011; 
Mendes-Silva et al., 2016).

Progress in high-throughput technology has provided 
new insights into the potential mechanism of depression 
in AD (Atkinson et al., 2014; Sulaimany et al., 2017), and 
emerging methods for gene co-expression studies enable 
the inference of gene changes in the context of transcrip-
tomics (Ghasemi et al., 2014; Motieghader et al., 2017; 
Kouhsar et al., 2019).  Two genes are defined as co-
expressed genes in a dataset when they show a similar 
and correlated expression pattern across different traits 
(cases and controls).  Differential co-expression methods 
are used to determine regulatory genes and identify dif-
ferences in modules of genes in the various phenotypes 
(van Dam et al., 2018; Zhang et al., 2018; Alaei et al., 
2019).  The co-expression approach has been used pre-
viously to study AD and dementia.  Gene co-expression 
network analysis was used on 329 samples to find bio-
markers for AD stages (Zakeri et al., 2020).  Moreover, 
using the co-expression approach to study neurodegen-
erative dementia in mice, two preserved co-expressed 
modules with mutations in the genes MAPT and GRN 
were identified (Mortezaei et al., 2017; Swarup et al., 
2019).  The lack of knowledge about the etiology and 
pathogenesis of AD and depression disorders prevents the 
development of more effective treatments.  Although the 
overall mechanism of depression is not yet fully explored, 
a recent study indicates that immune cells and their sig-
naling pathways play a role in the pathophysiology of 
major depressive disorder (Chi et al., 2014; Khundakar 
and Thomas, 2015).

With the use of machine learning (Masoudi-Sobhanzadeh 
et al., 2019b) and the gene co-expression approach, two 
modules in frontotemporal dementia were found that 
may link the impairment of neurogenesis, axon branching 
and synaptogenesis in the hippocampus to the pathology 
of MDD (Leyhe et al., 2009; Budni et al., 2015).  Dys-
regulation in molecular signaling pathways such as 
ERK1/2, p38, Src family tyrosine kinases and glutamate 
receptors may also be related to MDD pathology.  It has 
been reported that the progression of AD is associated 
with the formation of amyloid plaques and neurofibrillary 

tangles in the brain (Busciglio et al., 1997; Hooshmand 
et al., 2021).  Also, the related signaling pathways in AD 
include Ras/ERK, PI3K/Akt and PKA/cAMP (Mizuno et 
al., 2012; Van Dooren et al., 2014).

Several publications have reported common mecha-
nisms between AD and MDD (Ownby et al., 2006); one of 
these studies (Mendes-Silva et al., 2016) reported micro-
RNAs as being involved in both AD and MDD biologi-
cal pathways such as proteostasis control, maintenance 
of genomic integrity, regulation of transcriptional activ-
ity, immune-inflammatory control and neurotrophic sup-
port.  Another reported shared genetic etiologies between 
AD and MDD in SNPs corresponding to the SPI1 gene 
and the MS4A gene cluster and novel pleiotropic risk loci 
for AD conditional with MDD (Lutz et al., 2020).

Systematic reviews suggest that DNA methyla-
tion is associated with the etiology of depression and 
AD.  Brain-derived neurotrophic factor (BDNF), nuclear 
receptor subfamily 3 group C member 1 (NR3C1) and 
serotonin transporter (SLC6A4) are candidate genes in 
association with DNA methylation in MDD (Chen et al., 
2017).  Tau, transmembrane protein 59 (TMEM59) and 
amyloid processing genes also have an epigenetic role in 
AD development (Barrachina and Ferrer, 2009; Mastroeni 
et al., 2011).

While the etiology of depression in AD still needs con-
ceptual clarification, the relationship between AD and 
MDD suggests that they share common neurobiological 
abnormalities; hence, we think elucidating the cellular 
and molecular links between AD and MDD may be crucial 
to understanding the cause of comorbidity of these psy-
chiatric disorders.  This study suggests common under-
lying cellular mechanisms for AD and MDD.  Moreover, 
with the knowledge of gender effects on brain develop-
ment, we consider sex differences.  This article addresses 
shared altered genes and cellular pathways by analyz-
ing GEO datasets.  Constructing a gene co-expression 
network and identifying differential co-expression and 
differentially expressed genes (DEGs) along with the 
view of methylated genes may be a practical approach 
for diagnosing parallels between AD and MDD in clinical 
practice.

RESULTS

Shared DEGs in AD and MDD  Detecting genes with 
the same differential expression pattern between AD 
and MDD could help to find biological processes that are 
shared by these disorders.  Accordingly, after data nor-
malization and removing age-dependent genes, differen-
tial expression analysis was performed on AD and MDD 
datasets, and DEGs were identified for each trait.  Fur-
thermore, the intersection between sex-dependent 
genes and DEGs was checked, which revealed that sex-
dependent DEGs did not overlap with disease-related 
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DEGs.  Consequently, a total of 103 and 87 genes were 
differentially expressed in the DLPFC of subjects with 
AD and MDD, respectively, compared to control sam-
ples.  Subsequently, we examined overlaps between AD 
and MDD DEGs.  Eight DEGs including XIST, RPS4Y1, 
DDX3Y, USP9Y, DDX3X, TMSB4Y, ZFY and E1FAY were 
common between AD and MDD DEGs.  XIST (X-inactive 
specific transcript) is an RNA gene on the X-chromosome 
of placental mammals that causes X-inactivation.  Evi-
dence shows roles for XIST lncRNA in MDD and for 
RPS4Y1, DDX3Y, USP9Y and ZFY in AD; these genes 
play essential roles in neural differentiation (Sun et al., 
2014; Ghafouri-Fard et al., 2021).  Also, the expression of 
DDX3Y (DEAD-box polypeptide 3, Y-linked) affects neuro-
nal markers and is essential for promoting the repair of 
neurons, consequently contributing to neurodegenerative 

disease (Vakilian et al., 2015).
We also investigated gene ontology (GO) terms enriched 

among DEGs in AD and MDD, which indicated that three 
GO terms were common: cellular response to copper ion, 
positive regulation of chemokine production, and negative 
regulation of growth.

Specific disorder-related DEGs  We categorized DEGs 
into three groups based on their presence in either dis-
ease.  Genes shared by both AD and MDD are listed in 
Table 1, while AD-specific DEGs include SMCY, CYorf15A, 
CYorf15B, PRKY, HSFY2, HSFY1, UTX, SMCX, GTPBP6, 
PLXNB3 and PLCXD1, and MDD-associated DEGs com-
prise TTTY15, NLGN4Y, COL4A5, PUDP, NAP1L3, 
TMEM100, ALDH3A2, PAPOLA, CHI3L1 and ANOS1 
(Fig. 1).  Specific disorder-related DEGs are major fac-

Table 1.  Fold change results for common DEGs between AD and MDD in various datasets

GSE92538 GSE33000 GSE54567-68 GSE102556 GSE84422 GSE44770

RPS4Y1 3.38 1.66 0.63 0.58 2.56 1.71

DDX3Y 1.03 1.62 0.84 −6.54 2.54 1.72

USP9Y 1.16 0.48 0.49 0.20 0.90 1.47

DDX3X −0.30 −0.11 – −0.50 – −0.15

TMSB4Y – 0.79 – 0.18 – 0.94

ZFY 0.10 0.19 0.45 0.41 – 0.20

EIF1AY 0.46 0.53 0.40 0.20 0.72 0.72

XIST −3.68 −1.97 −1.52 −6.36 −3.46 −1.90

Fig. 1.  Venn diagram shows the numbers of shared and disorder-specific DEGs in AD and MDD.
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Fig. 2.  Identification of gene co-expression modules in AD (A) and MDD (B).  The y-axis shows the co-expression distance 
and the x-axis corresponds to the genes.  The horizontal bar indicates modules with a different color.

tors of cellular processes and biological pathways that dif-
ferentiate the disorders from each other.

Disorder-related co-expression network modules 
Similar transcription changes of various genes between 

case and control subjects indicate their cooperation in 
carrying out particular molecular and cellular processes, 
which leads to the emergence of a specific trait (disor-
der).  Hence, discovering a co-expression network and 
extracting co-expressed genes are important for finding 
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Fig. 3.  KEGG pathway enrichment analysis of modular genes.  (A) The significantly enriched pathways (P <  0.05) in 
the KEGG pathway analysis of the AD modular genes.  (B) The significantly enriched pathways (P <  0.05) in the KEGG 
pathway analysis of the MDD modular genes.

altered biological processes and pathways that play key 
roles in disorder development.  We built a co-expression 
network for each disorder and after scrutiny of gene 
expression correlations, fourteen modules were found 

in the AD and 21 in the MDD gene co-expression net-
works (Fig. 2).  The most extensive module in the AD 
gene co-expression network contained 893 members, and 
the smallest had 23 members.  In the MDD gene co-
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expression network, a module with 719 compounds was the 
largest, and the smallest had 21 members, while 16,538 
components were not assigned to any modules and are 
labeled with the color gray.  To better understand each 
module’s behavior, we identified the hub genes of each 
module.  They include genes such as RFXDC2, FRMD4B, 
IRF2BPI, SYK, ACTA2, DNAJA1, RIF1 and PLLP in AD, 
and XIST, MLPH, UBE2J2, PRKA1A, ATP50, NOTCH2, 
ACAP1, ZNF148, EV12A, GAPDH, FAM76A, ACTG1, 
CANX, TDRG1, SOCS3, RPS24, EFNA5, SLC6A8, 
IL17RB and SCP2 in MDD.

To determine the functional implications of the gene 
co-expression networks, each module was annotated 
using KEGG (Kanehisa and Goto, 2000; Masoudi-Nejad 
et al., 2007a, 2007b), and functional enrichment analy-
sis revealed biological functions related to each of the 

extracted modules in MDD and AD.  Some of the top 
pathways are listed in Fig. 3.  The enrichment analysis 
results are strongly associated with AD and MDD disor-
ders, which were also enriched in shared pathways.  For 
example, the neuronal system was the commonest shared 
pathway in AD and MDD.  Alterations in synaptic pro-
teins play an essential role in the neuronal system and 
are among the main causes of abnormal neuronal sys-
tems (Mattson, 2004).  The next commonest pathway is 
the immune or innate immune system, which has diverse 
interactions with AD and Parkinson’s disease neuropa-
thology (Jevtic et al., 2017; Cao and Zheng, 2018).

A similar observation was made for the cellular 
response to heat stress associated with the accumulation 
of misfolded proteins and abnormal protein aggregation 
in the human brain.  This is essential for various neuro-

Fig. 4.  Three-dimensional (3D) scatter plots of genes, modeled by 3D feature vectors.  Genes that are farther from the origin may 
play key roles in disorder generation and progression.  The x-axis shows the differentially expressed gene measure, the y-axis shows 
the differentially co-expressed gene value and the z-axis shows the PPI network propagation score for the gene’s corresponding tran-
script.  (A) 3D scatter plot of gene distribution for females with AD.  (B) The distribution for males with AD.  (C) The distribution for 
males with MDD.  (D) The distribution for females with MDD.
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degenerative diseases (Calabrese et al., 2007; Ahmadi et 
al., 2013; Campanella et al., 2018).

Disorder-related prioritized genes  We also com-
bined three measures, namely differential gene expres-
sion, differential co-expression and network propagation, 
to prioritize the genes’ influences on AD and MDD pro-
gression in four separate groups (separated into male and 
female).  Differential co-expression analysis was used 
to recognize highly altered hub genes that potentially 
play an important role in disease.  Besides differential 
co-expression analysis, protein–protein interaction (PPI) 
network propagation is also a useful practical approach 
to surveying the influence of genes in biological processes 
(Ghasemi et al., 2014).

As shown in Fig. 4, males and females with AD and 
MDD have a similar pattern in each disease, while in 
each trait we observed more alterations in some genes, 
such as DCTN2, PSMC3, GNG3 and PSMD8 in the AD-
female group; PGK1, GNAS, VDAC1 and POLR3K in the 
AD-male group; STYXL1, ALAD, ZNF141 and SNX15 
in the MDD-female group; and PFKFB3, LAPTM5 and 
SPTBN4 in the MDD-male group.

CpG site distribution in AD  Change in the genomic 
distribution of CpG sites, including in the transcription 
start site (TSS), gene body and intergenic region, may 
alter some genes’ expression and thus affect their associ-
ated biological pathways.  Our identified CpG site distri-
bution for AD is shown in Fig. 5 and a comparative scatter 

Fig. 5.  AD-associated DNA methylation patterns.  (A) Scatter plot of DNA methylation between AD and control samples.  (B) Bar 
plots show CpG context distributions.  (C, D) Pie charts of hypermethylated (C) and hypomethylated (D) CpGs associated with AD for 
the indicated gene regions.
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plot of DNA methylation between AD and control is shown 
in Fig. 5A.  TSS class is assigned to TSS1500, TSS200 or 
5′ UTR, while CpG sites located in the 1st exon, body or 3′ 
UTR group construct the gene body.  Intergenic sites are 
CpG sites with no annotated regions (Deaton and Bird, 
2011; Edgar et al., 2014).  According to our analysis, 114 
differentially methylated regions (DMRs) were hyper-
methylated and 81 were hypomethylated in AD.  Of 
the hypermethylated regions, 72 were located in some 
genes while the other 52 (which were not included in 

gene coding regions) were linked to several genes.  The 
most hypermethylated genes were PRIC285, HLA-DQA1, 
HDAC4 and KIAA0319, and the most hypomethylated 
ones were HSD17B7P2, HLA-DRB5, RANBP17 and 
TRIM6.  Genomic regions outside CpG islands were 
more likely to undergo methylation (Fig. 5B).  The meth-
ylation profiles differed among genic regions.  The lowest 
methylation level was observed for CpG sites from the 1st 
exon, while gene body regions were most highly methyl-
ated (Fig. 5C, 5D).

Fig. 6.  MDD-associated DNA methylation patterns.  (A) Bar plots show CpG context distributions.  (B, C) Pie charts of hypermethyl-
ated (B) and hypomethylated (C) CpGs associated with MDD for the indicated gene regions.



9MDD and AD shared molecular mechanisms in DLPFC

CpG site distribution in MDD  We also utilized dif-
ferentially methylated positions (DMPs) in previously 
reported postmortem DLPFC of cases diagnosed with 
MDD (Huels et al., 2020).  The CpG site distribution of 
DMPs in MDD is shown in Fig. 6.  The overrepresented 
CpG sites were in islands, while N_shelf (north shelf) had 
the lowest distribution of methylation (Fig. 6A).  Differ-
entially methylated CpGs were more abundant in the 
body, TSS1500 and 5′ UTR regions in both hyper- and 
hypomethylated genes (Fig. 6B, 6C).  The most hyper-
methylated genes were ENPP6, RP5-998H6.2, RP13-
895J2.7 and RP11-162A12.2 and the most hypomethyl-
ated were F2RL2, UGT8, AC116655.1, SERPINA6 and 
EBPL.

AD and MDD common differentially methylated 
genes  We compared genes with altered DNA methyla-
tion in the postmortem DLPFC samples of individuals 
with AD and MDD.  Seven genes are shared between the 
two groups, comprising HSPG2, DAB2IP, ARHGAP22, 
TXNRD1, MYO10, SDK1 and KRT82 (Table 2).  The 
methylation differences included both hyper- and hypo-
methylated genes.

Evaluation of shared DEGs in other datasets  We 
obtained common DEGs in AD and MDD in two test 
datasets (GSE33000, GSE92538).  To assess the primary 
results in other GSE datasets that had not initially been 
analyzed, we compared the expression alteration pattern 
of the identified common DEGs with their counterparts 
in other datasets.  The results (Table 1) showed a consis-
tent correlation in the fold change of ZFY, EIF1AY and 
XIST, but RPS4Y1, DDX3Y and USP9Y showed little or 
no correlation with these other GSE datasets.

DISCUSSION

Comorbidity of AD and MDD symptoms in people diag-
nosed with one of these neuropsychiatric disorders sug-
gests the existence of altered transcription of the same 
genes and shared disease-related pathways in both ill-
nesses.  With the recent advantages of high-throughput 
technology and advances in differential expression and 
co-expression analysis methods, we can expand our 
knowledge of the molecular and biochemical relationship 
between AD and MDD.  In the present study, we profiled 
differentially expressed and co-expressed genes and func-
tional modules of gene expression in postmortem dorso-
lateral prefrontal cortex samples of subjects diagnosed 
with AD or MDD.  We also compared differentially meth-
ylated genes in postmortem DLPFC of individuals with 
AD or MDD.  These approaches have not previously been 
employed integrally in MDD and AD expression datasets 
of the dorsolateral prefrontal cortex of the brain.

We investigated age- and sex-dependent gene expres-
sion to remove age- and sex-influenced DEGs from disor-
der-related DEGs.  Nevertheless, some limitations could 
not be completely overcome.  The number of males and 
females in the control group was not equal.  The average 
ages considered to recognize age-dependent genes were 
far from the average age of cases diagnosed with the 
disorders.  In addition, taking medicine can affect the 
expression of genes related to disorders.  However, since 
information about drug consumption by the patients 
under investigation was not publicly available, we could 
not survey the exact effect of the disorders alone on gene 
expression alteration in this research.

Nevertheless, we found overlaps in the altered gene 
expression profiles in postmortem DLPFC between AD 
and MDD cases.  Genes related to neuronal cell develop-
ment and differentiation may play an essential role in 
neuropsychiatric disorders such as AD and MDD.  They 

Table 2.  Common differentially methylated genes between AD and MDD

Gene
∆Beta Elements P-value

AD MDD AD MDD AD MDD

HSPG2    0.01 0.003 Body; S_Shore Body 0.02 0.003

DAB2IP    0.03 0.004 Body; Island Body; N_Shore 0.001 0.006

ARHGAP22    0.03 0.003 Body; Island Island 0.000 0.007

TXNRD1 −0.01 0.008 Island; SS200; 1st Exon; Body TSS200; Island 0.001 0.004

MYO10    0.015 −0.015 Body; Island S_Shore 0.03 0.001

SDK1    0.02 −0.013 Body; 3′ UTR; Island Body 0.011 0.002

KRT82 −0.01 −0.011 1st Exon; 5′ UTR; TSS200; TSS1500 3′ UTR 0.004 0.006

Note: ∆Beta is a coefficient that demonstrates differentially methylated values between AD or MDD 
and control samples.  Genomic regions of DNA methylation alteration include gene body, CpG islands, 
northern/southern shores (regions up to 2 kb from CpG island, upstream and downstream), northern/
southern shelves (regions from 2 to 4 kb from CpG island, upstream and downstream) and open sea (the 
rest of the genome).
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can also have gender-specific functions and may contrib-
ute to male neurodegenerative disease (Lai et al., 2010; 
Gueler et al., 2012; Masoudi-Sobhanzadeh et al., 2019b).

In addition, we modeled each surveyed gene by a 
three-dimensional (3D) feature vector whose three fea-
tures include a differentially expressed gene measure 
(log2(ratio) threshold), a differentially co-expressed gene 
value (gene neighbors alteration), and a PPI network 
propagation score for the gene’s corresponding transcript 
(random walk algorithm outcome for each gene).  Scatter 
plots of 3D gene distributions for males with AD, females 
with AD, males with MDD and females with MDD are 
illustrated in Fig. 4.  Genes with the most alterations in 
AD and MDD included ZNF141, DCTN2, PSMC3, GNG3, 
PSMD8, PGK1, GNAS, VDAC1, POLR3K, STYXL1, 
ALAD, SNX15, PFKFB3, LAPTM5 and SPTBN4, some of 
which have previously been reported as genes associated 
with AD and MDD (Burns and Iliffe, 2009; Naughton et 
al., 2015; Miyata et al., 2016).

By pathway enrichment analysis of genes associ-
ated with each co-expression module, we could divide 
all identified enriched pathways into five main groups 
(Fig. 2): signal transduction (e.g., constitutive signaling 
NOTCH1 HD domain mutants, opioid signaling, disease 
of signal transduction), endocrine control (oxidative phos-
phorylation, parathyroid hormone), neurotransmission 
(GABAergic synapse, serotonergic synapse) (Calvo-Flores 
Guzmán et al., 2018), neurological disorder (Parkinson’s 
disease, addiction) and immune system (immune system, 
adaptive immune system) (Robson et al., 2017).

As well as identifying common differentially expressed 
genes between AD and MDD, we found DEGs that were 
associated with only one disorder.  These disorder-specific 
DEGs determine transcriptomic changes in related condi-
tions, which could help to distinguish genes involved in 
biological pathways in each disorder, as well as to iden-
tify potential disease development/progression indicator 
biomarkers.

There is evidence for the role of DNA methylation 
changes in both AD and MDD development (Irier and 
Jin, 2012; Pishva et al., 2017).  We found that DNA 
methylation changes in CpG island sites and gene bod-
ies contribute to regulation of gene expression and sus-
ceptibility to these neuropsychiatric disorders (see Table 
2).  Differentially methylated genes were ranked as the 
most hyper- or hypomethylated in AD.  The eight top-
ranked genes comprise PRIC285, HLA-DQA1, HDAC4, 
KIAA0319, HSD17B7P2, HLA-DRB5, RANBP17 and 
TRIM6.  Among these, KIAA0319 was reported as a sig-
nificant locus in the discovery analysis of AD-associated 
DMRs (De Jager et al., 2014).  Literature data suggest-
ing that the expression of these genes changes in AD were 
partially confirmed by the results of our study (Pistollato 
et al., 2016; Zhang et al., 2022).  Also, we and others 
demonstrated hyper- or hypomethylated genes associated 

with MDD (ENPP6, RP5-998H6.2, RP13-895J2.7, RP11-
162A12.2, F2RL2, UGT8, AC116655.1, SERPINA6 and 
EBPL) (Huels et al., 2020).

Common differentially methylated genes provide more 
insights into the disorders’ comorbidity etiologies.  In 
the present study, differences in brain DLPFC genome-
wide DNA methylation were observed in both AD and 
MDD.  Our results support the importance of DNA 
methylation alteration in AD and MDD pathology and 
highlight the value of scrutinizing the exact role of some 
hyper- or hypomethylated genes in future studies.  Our 
presented DNA methylation changes in HSPG2, DAB2IP, 
ARHGAP22, TXNRD1, MYO10, SDK1 and KRT82 in 
DLPFC brain tissue of cases with AD and MDD have 
confirmed some former research (Table 2) (Soerensen et 
al., 2008; Kaut et al., 2015; Roberts et al., 2017; Lutz et 
al., 2020).  Also, DNA methylation changes of MYO10 in 
three independent brain cohorts were reported before (De 
Jager et al., 2014).

We assessed the shared DEGs of the primary datasets 
in four other datasets and found that three genes (ZFY, 
EIF1AY and XIST) showed consistent differential expres-
sion patterns in all of them (Table 1).  These genes are 
worthy of further investigation as potential biomarkers of 
AD and MDD comorbidity.  The other five common DEGs 
do not have consistent expression behavior in all ana-
lyzed datasets.  As they were not age- or sex-dependent 
genes, these DEGs may be related to unknown specific 
characteristics of the other datasets.

MATERIALS AND METHODS

Data collection and preprocessing  Microarray gene 
expression datasets including GSE54567, GSE54568, 
GSE92538 and GSE102556 for postmortem DLPFC of 
cases with and without MDD along with GSE33000, 
GSE84422 and GSE44770 for postmortem DLPFC of 
subjects with and without AD, as well as the GSE125895 
raw methylation dataset for DLPFC of cases with and 
without AD, were downloaded from the National Center 
for Biotechnology Information’s Gene Expression Omni-
bus (GEO) database.  Moreover, we utilized previously 
reported differentially methylated positions (DMPs) in 
the postmortem DLPFC of individuals diagnosed with 
MDD (Huels et al., 2020) due to the lack of publicly 
available MDD methylation data.  Table 3 describes 
these datasets in detail.  In addition, we utilized human 
protein–protein interaction data from String (von Mering 
et al., 2003) and disease-associated genes from eDGAR 
(Babbi et al., 2017; Masoudi-Sobhanzadeh et al., 2019a) 
databases.

Human postmortem DLPFC transcriptome samples of 
subjects with AD or MDD were normalized using the RMA-
Express tool (Bolstad et al., 2003; Irizarry et al., 2003a, 
2003b).  The SVA package (Leek et al., 2012) was then 
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employed to remove batch effects.  Probes with missed 
values were adjusted using multiple regression.  Hier-
archical clustering demonstrated GSM1319087, 
GSM1319094 and GSM1319095 samples as outliers in 
the merged GSE54567 and GSE54568 datasets; therefore, 
they were removed from further analyses.  Two datasets, 
GSE33000 and GSE92538 (with the largest numbers of 
samples), were picked out as the primary investigation 
input datasets and the others were used to validate DEG 
analysis results.

The GSE125895 dataset, consisting of raw human 
postmortem DLPFC methylation data of cases with AD, 
was preprocessed using the minfi package (Aryee et al., 
2014).  Probes with low signal detection containing con-
trol probes, probes with P-value >  0.01 in more than 50% 
(n =  110), cross-reactive probes, non-CpG probes and sex 
chromosome probes were filtered out by minfi (with n = 
485,512 probes as input).  Beta values were calculated 
as the ratio of methylated signal to the sum of unmethyl-
ated and methylated signals at each CpG site (ranging 
from 0 for the unmethylated site to 1 for a fully methyl-
ated site) and normalized by the Funnorm normalization 
method for background correction and adjusting probe 
types Ι and ΙΙ.

DEG analysis: identifying disorder-related DEGs 
for AD and MDD  Limma tools (Smyth, 2005) were 
utilized to identify DEGs between case and control sam-
ples.  Genes with adjusted P-value ≤ 0.05 were selected 
for further analyses.  To reduce the effects of individu-
als’ age on the final results, we treated DEGs for samples 
with age greater than the average age of the dataset and 
samples with age less than the dataset average age sepa-
rately, and common DEGs were considered age-dependent 
DEGs.  A similar approach was applied to identify and 
remove gender-dependent DEGs (DEGs between nor-

mal males and females calculated and considered as 
gender-specific DEGs).  After removing age- and gender-
dependent DEGs, disorder-related DEGs, which were 
calculated separately for each of the datasets, were inte-
grated to form a set of obtained DEGs for each of the AD 
and MDD disorders.  The number of final DEGs between 
AD cases and controls was 103, whereas 87 MDD-related 
DEGs were identified.

Construction of gene co-expression networks and 
module identification  Using the WGCNA (weighted 
gene co-expression network analysis) package (Langfelder 
and Horvath, 2008), we created signed networks for 
male and female samples of GSE33000 and GSE92538 
for AD and MDD, respectively.  Pearson’s correlation for 
pairwise genes was calculated to construct an adjacency 
matrix.  This was then replaced with a weighted adja-
cency matrix by raising the correlations to the power 
β, which was chosen to emphasize strong correlations 
between genes and penalize weak correlations.  Next, the 
weighted adjacency matrix was transformed into a topo-
logical overlap matrix (TOM), which could measure the 
network connectivity of a gene with all other genes.  Net-
work features are clustered into co-expressed modules 
that have strong interconnectivity patterns.  TOM 
empowers us to create more robust co-expression rela-
tionships by identifying modules.

Differentially co-expressed gene analysis  We mea-
sured the change for each node’s neighborhood in disease 
and control co-expression networks to identify highly dif-
ferentially co-expressed genes.  This value is considered a 
differential co-expression measure for each gene.  Highly 
differentially co-expressed genes may have a great impact 
on disease generation and progression (Chen et al., 2008).

Table 3.  Characteristics of GSE datasets used in this work

GSE number Disease Platform

Number of participants

Male Female Patients Controls

No. Age No. Age No. Age No. Age

GSE54567 MDD Affymetrix 28 – 0 – 14 – 14 –

GSE54568 MDD Affymetrix 0 – 30 – 15 – 15 –

GSE92538 MDD Affymetrix 177 52.00±15.74 59 59.00±10.72 75 41.20±13.56 161 59.30±12.31

GSE102556 MDD Illumina HiSeq 26 44.19±13.54 22 49.28±15.70 26 45.68±13.15 22 47.63±16.48

GSE84422 AD Affymetrix 24 78.11±10.81 41 89.10±7.41 34 87.82±8.06 31 63.50±9.90

GSE33000 AD Rosetta/Merck 258 71.12±12.16 209 79.45±10.81 310 80.60±8.99 157 63.51±9.90

GSE44770 AD Rosetta/Merck 144 68.55±13.01 86 78.38±11.76 129 80.14±9.26 101 62.11±10.86

GSE125895 AD
Illumina Human 
Methylation 450 

Beadchip
39 67.31±11.08 29 67.10±13.05 21 79.95±9.46 47 61.54±7.71

Note: GSE102556 and GSE125895 are datasets of whole RNAseq; the others are microarrays.
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PPI network propagation gene ranking  The Ran-
domWalkRestartMH package (Valdeolivas et al., 2019) 
implemented in R was used to establish network prop-
agation from a given seed (protein) using the random 
walk algorithm.  We obtained PPI networks for AD- and 
MDD-related co-expression networks from the String 
database (von Mering et al., 2003).  For each gene in the 
disorder-related co-expression network, corresponding 
transcripts and all their directly linked transcripts with 
a combined score of more than 700 were obtained from 
the String database and assumed as a disorder-related 
PPI network.  The random walk algorithm was then 
used on AD and MDD PPI networks with each disease 
gene’s transcripts as algorithm seeds, to rank transcripts 
(genes) based on their interaction with genes proven 
to cause a genetic disorder.  Disease-associated genes 
(seeds) for each of AD and MDD were downloaded from 
the eDGAR database (Babbi et al., 2017).  Eventually, 
PPI network propagation top-ranked genes were identi-
fied and assumed to be disorder-related genes.

Gene set enrichment analysis and function anno-
tation  To determine the functions of the genes in the 
modules, genes were submitted to Enrichr web serv-
ers (Raudvere et al., 2019) for annotation.  Adjusted 
P-value <  0.05 was the threshold used to define signifi-
cant terms.

Identification of DMRs  The seqlm package (Kolde et 
al., 2016) was applied with a maximum 500-bp distance 
between each segmentation to identify DMRs.  Regions 
with a false discovery rate (FDR) <  0.05, methylated 
regions with more than three probes, and absolute meth-
ylation value (Δβ) ≥  0.01 were identified as candidate 
DMRs.

DMPs in MDD  To identify the differentially methyl-
ated sites in MDD, we utilized previously reported DMPs 
in the DLPFC in MDD individuals (Huels et al., 2020), 
because the methylation data of MDD in DLPFC sam-
ples were not publicly available.  Huels and colleagues 
studied methylation profiles in DLPFC samples of late-
life MDD in 608 participants from The Religious Orders 
Study and Rush Memory and Aging Project (ROS/MAP) 
using Illumina Infinium Human Methylation 450K.

CONCLUSION

In this study, we analyzed differentially expressed and 
co-expressed genes, PPI network propagation and DNA 
methylation alteration in datasets of DLPFC samples of 
postmortem human brain tissue data to find important 
distinct and shared disease-causing genes in and between 
AD and MDD, two of the most globally burdensome 
neuropsychiatric disorders.  Moreover, by identifying co-

expression modules and employing pathway enrichment 
analysis, we suggest some molecular biological mecha-
nisms that play key roles in the development and progres-
sion of either AD or MDD, or of both disorders.  Several 
common DEGs were also proposed as potential biomark-
ers of AD and MDD comorbidity.
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