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A B S T R A C T

Brain vasculature analysis is critical in developing novel treatment targets for neurodegenerative diseases.
Such an accurate analysis cannot be performed manually but requires a semi-automated or fully-automated
approach. Deep learning methods have recently proven indispensable for the automated segmentation and
analysis of medical images. However, optimizing a deep learning network architecture is another challenge.
Manually selecting deep learning network architectures and tuning their hyper-parameters requires a lot of
expertise and effort. To solve this problem, neural architecture search (NAS) approaches that explore more
efficient network architectures with high segmentation performance have been proposed in the literature.
This study introduces differential evolution-based NAS approaches in which a novel search space is proposed
for brain vessel segmentation. We select two architectures that are frequently used for medical image
segmentation, i.e. U-Net and Attention U-Net, as baselines for NAS optimizations. The conventional differential
evolution and the opposition-based differential evolution with novel search space are employed as search
methods in NAS. Furthermore, we perform ablation studies and evaluate the effects of specific loss functions,
model pruning, threshold selection and generalization performance on the proposed models. The experiments
are conducted on two datasets providing 335 single-channel 8-bit gray-scale images. These datasets are a public
volumetric cerebrovascular system dataset (vesseINN) and our own dataset called KUVESG. The proposed NAS
approaches, namely UNAS-Net and Attention UNAS-Net architectures, yield better segmentation performance
in terms of different segmentation metrics. More specifically, UNAS-Net with differential evolution reveals high
dice score/sensitivity values of 79.57/81.48, respectively. Moreover, they provide shorter inference times by
a factor of 9.15 than the baseline methods.
1. Introduction

Brain is a fragile organ that consumes a high amount of energy.
Protection of the brain is maintained by the blood–brain barrier and
resources for energy are provided through the cerebral vasculature.
Disruption of either of these structures is accepted as an important
contributor of disease mechanism in many neurodegenerative disorders
including Alzheimer’s disease, multiple sclerosis, cerebral small-vessel
disease, vascular dementia [1]. Imaging and subsequent image anal-
ysis of the cerebral vasculature are frequently used in biomedical

∗ Corresponding author at: Fatih Sultan Mehmet Vakif University, Department of Computer Engineering, Beyoğlu, Istanbul, 34445, Turkey.
E-mail addresses: zkus@fsm.edu.tr (Z. Kuş), bkiraz@fsm.edu.tr (B. Kiraz), tkocak@fsm.edu.tr (T.K. Göksu), maydin@fsm.edu.tr (M. Aydın),

eozkan19@ku.edu.tr (E. Özkan), atayvural@ku.edu.tr (A. Vural), akiraz@ku.edu.tr (A. Kiraz), bcan@fsm.edu.tr (B. Can).

research to uncover novel mechanisms that lead to the disturbance of
cerebrovasculature in order to find novel treatment targets.

Vasculature is a web-like tubular structure and it is difficult to
reliably quantify the vessel-related parameters such as length and
branching in this complex structure by manual methods. High and
irregular background signal is a frequently encountered problem in
microscopy that can hinder correct identification of blood vessels,
leading to increased error ratio in such analysis. Therefore, proper
segmentation is a key to accurate vessel analysis. Vessel segmentation
has been first performed in medical imaging in order to effectively
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monitor pathology samples [2]. Manual vessel segmentation is not
a feasible process in terms of time, labor, and observer reporting
variability because it corresponds to a time-consuming and tedious op-
eration that requires professional expertise. Therefore, semi-automated
or completely-automated methods are required for faster and more
accurate vessel segmentation that will lead to critical improvements in
treatment planning. The following factors make the vessel segmentation
process difficult: (1) The forms of vessels do not adhere to a simple
pattern; (2) The existence of additional structures (lesions and the optic
disc) [3]; (3) Different imaging circumstances (low image contrast,
noise, and pathological issues).

Vessel segmentation has become a hot topic in biomedical im-
age analysis [4,5]. Several ‘‘handcrafted’’ and ‘‘supervised’’ approaches
have been presented for vessel segmentation. Handcrafted approaches
depend on the inherent features of vascular systems, whereas super-
vised methods are based on labeled ground truth images. Deep neural
network architectures, which are among the supervised methods, have
shown remarkable success in vessel segmentation [6–11]. These deep
architectures are also used in brain segmentation studies [12,13]. The
Computer Aided Disease Diagnosis system that uses CNN-assisted seg-
mentation and SVM classification to identify brain tumors in 2D MRI
slices is proposed in [14]. Ramya et al. [15] have proposed a novel
framework consisting of filtering, enhancement, segmentation, feature
extraction, and classification step for recognizing Alzheimer’s disease
(AD) using image processing techniques. In [16], a new method is pro-
posed for detecting and classifying brain tumors using a deep saliency
map, pre-trained EfficientNet-B0, and improved dragonfly optimiza-
tion algorithms, and it outperforms previous accuracy results on brain
tumor datasets. HHOCNN [17], which optimize hyperparameters and
classifies segmented tumor regions, is proposed for brain tumor classi-
fication. Our work differs from these studies in terms of deep learning
architecture, brain images and evaluation metrics.

Hyper-parameter Optimization (HPO) and Neural Architecture
Search (NAS) are some of the most common problems for automated
machine learning (AutoML) [18]. Every machine learning system has
many hyper-parameters that need to be tuned, and the selection of
these hyper-parameters directly affects the overall performance. The
approaches proposed for NAS have aimed at finding the optimal neural
network for a given machine learning problem. Therefore, NAS studies
can be considered as a subset of HPO studies. Neural networks are
generated in the pre-defined search space using the chosen method
(usually meta-heuristics, and their performance is evaluated on a given
dataset. The generated neural networks are expected to provide a good
performance as well as low computational complexity.

In this study, differential evolution-based NAS approaches are pre-
sented for the segmentation of 2D brain vessel images. The conven-
tional differential evolution (DE) and the opposition-based differential
evolution (ODE) are used to search the optimal network architectures.
Since U-Net based models are shown to be successful in bioimage seg-
mentation, U-Net and Attention-UNet architectures are employed for
NAS as baselines in this study. We introduce a novel search space com-
bining the advantages of Nas-Bench-101 [19] and DARTS [20] which
are frequently used search spaces for NAS studies. Accordingly, four
differential evolution based NAS approaches, namely UNAS-Net + DE,
UNAS-Net + ODE, Attention UNAS-Net + DE, and Attention UNAS-Net +
ODE are presented. Experiments are conducted on a combination of two
datasets consisting of images taken using two-photon microscopy. A
total of 335 single-channel 8-bit grayscale images are provided by these
datasets. 179 images of the vesseINN [21] dataset available in the litera-
ture were used together with 156 images obtained by the authors in the
Cellular and Molecular Imaging Center at Koç University Translational
Medicine Research Center (KUTTAM). This dataset is called KUVESG.
Our proposed approaches are compared with the U-Net, Attention-UNet
and ResNet + U-Net network in terms of twenty-one segmentation
performance metrics and model complexity. Based on the experimental
2

results, UNAS-Net improves the segmentation performance with respect
to different performance measures and reduces the model complexity
of the baseline U-Net and Attention U-Net. Moreover, although a single
objective, i.e. minimizing the loss function, is considered in the DE-
based search algorithms, these methods produce the models with both
high segmentation performance and low inference times due to the
proposed cell-based micro search space and macro search space.

The main contributions of this paper are listed as follows:

• A new search space combining the benefits of Nas-Bench-101 [19]
and DARTS [20] is presented. We optimize encoder/decoder net-
works within UNAS-Net and Attention UNAS-Net and control the
depth of the networks by using these search spaces, which consist
of cell-based micro search space and macro search space. Thus,
we generate efficient networks regarding segmentation perfor-
mance and model complexity.

• DE and ODE algorithms are employed to search the optimal
network architectures. To the best of our knowledge, this study
is the first attempt to use the ODE in NAS. We demonstrate that
DE-based NAS with the proposed search space gives better results.
Furthermore, experimental results reveal that UNAS-Net and At-
tention UNAS-Net, which are best architectures generated by DE
and ODE, outperform the U-Net and Attention U-Net in terms of
segmentation performance and computational complexity.

• We publicly share the KUVESG dataset, which consists of mouse
cortex images taken from a multiphoton microscope to fill the gap
in annotated dataset for the vasculature segmentation. We invite
researchers to use this dataset and share their findings with the
scientific community.

• We perform ablation studies in order to show the effects of dif-
ferent loss functions, model pruning, generalization performance
and threshold selection on the proposed models. We analyze the
proposed method in detail and discuss the outcomes.

The rest of the paper is organized as follows: Section 2 provides
a brief literature survey on brain vessel segmentation and NAS. Sec-
tion 3 presents the detail of proposed DE-based NAS approaches. The
experimental design including the dataset, performance measures and
implementation details are presented in Section 4. The results of the
experiments are discussed in Section 5. Finally, Section 6 presents the
conclusion and future work.

2. Related work

Deep convolutional neural network (CNN) has emerged as an effec-
tive model for several vessel segmentation problems [22]. Numerous
CNN architectures have been proposed for the retinal blood vessel
segmentation [6,7,11]. A deep learning architecture with the structured
prediction is presented in [23]. [24] proposes a multiple deep con-
volutional neural network (MDCNN). A cross-connected convolutional
neural network (CcNet) that combines some extracted features at inter-
mediate layers is presented in [25]. A fully convolutional deep learning
architecture is also used for the retinal blood vessel segmentation [26,
27].

On the other hand, there are various CNN-based deep learning
models presented for the brain vasculature analysis [28–30]. Fully
Convolutional Dense Convolutional Network (FC-DenseNets) is shown
to perform an automatic 3D vascular segmentation for two-photon
microscopy images in [31]. Besides, a fully automated 3D CNN model,
called BRAVE-NET (BRAinVEssel-NETwork), is applied to brain vessel
segmentation on the dataset for the cerebrovascular diseases. A CNN-
based framework, namely Vessel Segmentation & Analysis Pipeline
(VesSAP), is presented to perform vascular analysis of the whole mouse
brain. VesSAP consists of three stages: (1) Pre-processing: Cleaning is
performed on the images obtained by light-sheet microscopy; (2) Deep
Learning: Segmentation is performed with CNN-based network and 3D
reconstruction of vasculature; (3) Analysis: 3D Vascular analysis of

whole mouse brain and statistical evaluation.
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U-Net is a specialized convolutional network model proposed for
biomedical image segmentation [32]. Several U-Net based models such
as deep residual U-Net, Attention-UNet, etc. have been successfully
employed for various vessel segmentation tasks [8,9]. In [33], a U-Net
architecture is developed for arterial brain vessel segmentation using
the magnetic resonance (MR) images. U-Net with residual connection
is presented to detect the vessels as well as the tiny one [34]. A U-Net
based model with inception module and dense connections is employed
for the retina blood vessel segmentation, the lung segmentation, and
the brain tumor segmentation [35]. A hybrid method combining U-
Net and random forest provides a good accurate results for vessel
segmentation [36]. [37] presents an empirical comparison of three
deep neural networks including auto-encoder, U-Net, and ResNet+U-
Net for the brain vessel segmentation. A weighted attention and the skip
connection scheme are involved in a U-Net architecture for the retina
blood vessel segmentation [38]. Attention U-Net based models, a U-Net
model with attention mechanism, have been proposed and evaluated
on retinal vessel segmentation problems [39–41]. [42] introduces the
Attention ResU-Net model, which combines the Attention U-Net and
residual block structures for blood vessel segmentation. In [43], vertical
and horizontal pooling operations are applied to create attention maps
with the dual-direction attention block module in Fully Attention-based
U-Net Network.

2.1. Neural architecture search

Recently, various approaches have been developed in the litera-
ture; reinforcement learning [44,45], gradient-based [46,47], evolu-
tionary based [20,48,49]. Reinforcement learning based NAS approach
is proposed in [45]. Successful results are obtained with the proposed
structure on the CIFAR-10 dataset, which is one of the image classi-
fication tasks. Zoph et al. [50] are proposed a new NAS approach,
namely NASNet. In the proposed approach, the network structure is
divided into small blocks called cells and then the search is performed
on these cells instead of the entire network architecture (cell-based
search space). Each cell is represented as a graph without any edge
or node limitation (there are some limitations in literature [19]. In
this network structure, different cell structures are generated, since
there is no repetitive pattern rule between operations in the cell. Liu
et al. [20] introduce the differentiable architecture search (DARTS),
which uses cell-based search space and provides successful results for
image classification and natural language processing problems. NAS
benchmarks such as NAS-Bench-101 [19], NAS-Bench-201 [51] and
NAS-Bench-301 [52] have been published for a fair comparison of the
proposed NAS methods and to reduce the computation time caused
during the training of networks.

Evolutionary NAS approaches have achieved successful results for
different problems [53,54]. Regularized Evolution approach is pre-
sented in [53], which gives competitive results as well as less compu-
tational complexity for NAS-Bench-101. In [55], a deep belief network-
based NAS approach is proposed. Particle Swarm Optimization is used
as a search algorithm in this study. Moreover, Differential Evolu-
tion (DE) yields better performance than five different approaches on
different NAS benchmarks [56].

Although NAS studies on image classification problems have been
increasing rapidly and giving successful results, there are limited NAS
studies in the biomedical image segmentation tasks. NAS studies on
the medical image segmentation can be examined in two different
groups: 2D and 3D segmentation networks [48,57,58]. A NAS approach
based on policy gradient reinforcement learning is proposed [59].
The authors generate networks with lower computational complexity
than state-of-the-art approaches for cardiac MR images using the novel
2D segmentation network design, which is called Densely connected
encoder–decoder CNN. In [60], NAS-Unet is presented for 2D medical
image segmentation based on U-Net. The approach achieve higher
3

segmentation performance than baseline U-Net for Promise12, Chaos, f
and ultrasound nerve datasets. An Automated Neural Network, namely
AutoSegNet, is introduced in [61]. AutoSegNet searches the compo-
nent of the 2D segmentation network via Recurrent Neural Network
controller. It gives better segmentation performance for two differ-
ent industrial medical image datasets than state-of-the-art methods
such as U-Net and pyramid scene parsing network (PSPNet). Evolu-
tionary NAS methods have also developed for the 2D retinal vessel
segmentation problem [62,63]. Moreover, genetic algorithm based NAS
approaches are used as search algorithms to find the optimal U-Net
architectures [63,64].

3. DE-based NAS for U-Net architectures

Due to its proven success in brain vessel segmentation [33,37,65]
U-Net model is employed as baseline in NAS approach followed in this
study. We also considered the improved version of U-Net architecture,
namely Attention U-Net [66]. We explored two DE-based NAS ap-
proaches for searching the optimal U-Net and Attention U-Net architec-
tures. These are the conventional DE and opposition-based differential
evolution (ODE) search algorithms. Conventional DE [67], categorized
as a population-based meta-heuristic algorithm, has achieved successful
results in NAS studies [56]. Moreover, it is stated that ODE, in which
opposition-based learning is utilized, accelerates the convergence speed
of DE [68]. This section presents the details of the proposed NAS
approaches including DE, ODE, UNAS-Net, and Attention UNAS-Net.

3.1. Differential evolution

DE, presented in [67], is a well-known evolutionary algorithm
especially for continuous optimization problems. In DE, each candidate
solution is represented by a real-valued vector. The first population is
generated at random and is evaluated. Following the initialization step,
DE uses mutation, crossover, and selection operators to create a new
population.

In this study, each candidate solution (𝑋𝑖,𝐺, where 𝑖 = 1,… , 𝑁𝑃 ,
𝑁𝑃 is the population size, and 𝐺 is the generation number) is a
vector of real-valued numbers in the range [0, 1]. The fitness function
is defined as the dice score obtained by the candidate network (see
Section 4.4) (used in [48,57]) and is given as:

𝐷𝑖𝑐𝑒 𝑆𝑐𝑜𝑟𝑒 =
2|𝑦 ∩ �̂�|
|𝑦| + |�̂�|

, (1)

where 𝑦 is the ground truth image; �̂� denotes the predicted image.
e consider the classical variant of DE (denoted as DE/rand/1/bin) in
hich the random mutation (DE/rand/1) and binomial crossover are
mployed. A mutant vector (𝑉𝑖,𝐺) at generation 𝐺 is generated for each
olution in the current population (target vector) as:

𝐸∕𝑟𝑎𝑛𝑑∕1 ∶ 𝐕𝑖,𝐺 = 𝐗𝑟1,𝐺 + 𝐹 × (𝐗𝑟2,𝐺 − 𝐗𝑟3,𝐺) , (2)

here 𝑟1, 𝑟2, 𝑟3 ∈ {1, 2,… , 𝑁𝑃 } are random integers and 𝐹 ∈ [0, 2] is
he scaling factor. After generating mutant vectors, the corresponding
rial vectors (𝑈𝑖,𝐺) are created using binomial crossover given as:

𝑘
𝑖,𝐺 =

⎧

⎪

⎨

⎪

⎩

𝑉 𝑘
𝑖,𝐺 , if 𝑟𝑎𝑛𝑑() ≤ 𝐶𝑅

𝑋𝑘
𝑖,𝐺 , otherwise

,

for 𝑘 = [1,… , 𝐷] , (3)

here 𝐶𝑅 is the crossover probability, 𝑟𝑎𝑛𝑑() is the random number
rawn from the uniform distribution, 𝐷 is number of decision variables.
n case of boundary constraint violation, the values exceeding the
oundaries are replaced with a random value sampled from uniform
istribution ([0, 1]) [69]. Finally, the selection process is applied. In the
election stage, each target vector is compared with its corresponding
rial vector in terms of objective function value. If the target vector is
uperior to its corresponding trial vector, the target vector is selected
or the next generation [70,71]. Since the problem addressed in this
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study is a maximization problem, the vector for the next generation is
selected as:

𝑋𝑖,𝐺+1 =

{

𝑈𝑖,𝐺 , if 𝑓 (𝑈𝑖,𝐺) > 𝑓 (𝑋𝑖,𝐺)
𝑋𝑖,𝐺 , otherwise

(4)

here 𝑓 (.) denotes the fitness value of the corresponding vector. The
seudo-code of DE is given in Algorithm 1.

Algorithm 1: Differential Evolution Pseudo-code
input: 𝑁𝑃 : Population size; 𝑓 (⋅): Fitness value

1 𝐺 ← 0
2 𝑃𝐺 ← Generate initial population
3 for i to 𝑁𝑃 do
4 𝑓 (𝑋𝑖, 𝐺) ← Fitness_Eval(𝑋𝑖,𝐺)

5 𝐺 = 𝐺 + 1
6 while Termination condition is not satisfied do
7 for i to 𝑁𝑃 do
8 𝑉𝑖,𝐺 = Mutation(𝑋𝑖,𝐺−1)
9 𝑈𝑖,𝐺 = Crossover(𝑋𝑖,𝐺−1, 𝑉𝑖,𝐺, 𝐶𝑅)

10 𝑈𝑖,𝐺 = Boundary_check(𝑈𝑖,𝐺)
11 𝑓 (𝑈𝑖,𝐺) ← Fitness_Eval(𝑈𝑖,𝐺)
12 if 𝑓 (𝑈𝑖,𝐺) > 𝑓 (𝑋𝑖,𝐺−1) then
13 𝑃𝐺,𝑖 ← 𝑈𝑖,𝐺

14 else
15 𝑃𝐺,𝑖 ← 𝑋𝑖,𝐺

16 𝐺 = 𝐺 + 1

3.2. Opposition-based differential evolution

In ODE [68], the opposition-based learning (OBL) is employed in
the population initialization and generation steps of DE. In this study,
we consider the classical variant of DE (DE/rand/1/bin) in ODE.

The opposition-based initialization consists of the following four
steps. (1) The initial population (𝑃0) is randomly generated. (2) The
pposite of each solution in the initial population is calculated in order
o generate the opposite population (𝑂𝑃0). The opposite of a solution

in the initial population is calculated as:

𝑂𝑃 𝑘
𝑖,0 = 𝑎𝑘 + 𝑏𝑘 −𝑋𝑘

𝑖,0,

𝑓𝑜𝑟 𝑖 ∶ {1,… , 𝑁𝑃 }; 𝑘 ∶ {1,… , 𝐷} ,
(5)

where 𝑂𝑃 𝑘
𝑖,0 is 𝑘th value of the 𝑖th individual in opposition of the initial

population, respectively; 𝑎𝑘 and 𝑏𝑘 are lower and upper bounds of the
𝑘th decision variable; 𝐷 is the number of decision variables; 𝑁𝑃 is the
population size. (3) The initial and opposite populations are merged.
(4) The best 𝑁𝑃 solutions are selected from the merged population as
the initial population (𝑃𝐺 ← 𝑠𝑒𝑙𝑒𝑐𝑡(𝑃𝐺 ∪ 𝑂𝑃𝐺)).

On the other hand, the opposition-based generation jumping step
is performed with a jumping probability (𝐽𝑅) during the generation
process. In the jumping step, the opposite population of the current
population is computed. Instead of fixed values, the opposite value of
each variable in the solution is calculated dynamically using:

𝑂𝑃 𝑘
𝑖,𝐺 = 𝑀𝑖𝑛𝑘𝐺 +𝑀𝑎𝑥𝑘𝐺 − 𝑃 𝑘

𝑖,𝐺

𝑓𝑜𝑟 𝑖 ∶ {1,… , 𝑁𝑃 }; 𝑘 ∶ {1,… , 𝐷} ,
(6)

where 𝑀𝑖𝑛𝑘𝐺 and 𝑀𝑎𝑥𝑘𝐺 denote the minimum and maximum values of
𝑘th value in population 𝑃 at generation 𝐺 (𝑃𝐺), respectively. Finally,
the current population and its opposite population are merged and
𝑁𝑃 best solutions are selected from the merged population (𝑃𝐺 ←
𝑠𝑒𝑙𝑒𝑐𝑡(𝑃𝐺 ∪ 𝑂𝑃𝐺)). The pseudo-code of ODE is given in Algorithm 2.

3.3. UNAS-Net

In this study, we consider the UNAS-Net [72] to optimize the U-Net
architecture. UNAS-Net consists of cell-based micro search space and
4

macro search space as in Efficient Multi-objective NAS framework [48]. n
Algorithm 2: Opposition-Based Differential Evolution Pseudo-
code
1 𝐺 ← 0
2 𝑃𝐺 ← Generate initial population
3 /* Generate Opposition of Initial Population */
4 for i = 0; i < 𝑁𝑃 ; i++ do
5 for k = 0; k < 𝐷; k++ do
6 O𝑃 𝑘

𝑖,𝐺 = 𝑎𝑘 + 𝑏𝑘 −𝑋𝑘
𝑖,𝐺

7 for i to 𝑁𝑃 do
8 𝑓 (𝑋𝑖,𝐺) ← Fitness_Eval(𝑋𝑖,𝐺)
9 𝑓 (𝑂𝑃𝑖,𝐺) ← Fitness_Eval(𝑂𝑃𝑖,𝐺)

0 /* Generate Opposition of Initial Population */
1 𝑃𝐺 ← {𝑃𝐺 , 𝑂𝑃𝐺} ; // Select best 𝑁𝑃 solution
2 𝐺 = 𝐺 + 1
3 while Termination condition is satisfied do

14 for i to 𝑁𝑃 do
15 𝑉𝑖,𝐺 = Mutation(𝑋𝑖,𝐺−1)
16 𝑈𝑖,𝐺 = Crossover(𝑋𝑖,𝐺−1, 𝑉𝑖,𝐺, 𝐶𝑅)
17 𝑈𝑖,𝐺 = Boundary_check(𝑈𝑖,𝐺)
18 𝑓 (𝑈𝑖,𝐺) ← Fitness_Eval(𝑈𝑖,𝐺)
19 if 𝑓 (𝑈𝑖,𝐺) > 𝑓 (𝑋𝑖,𝐺−1) then
20 𝑃𝐺,𝑖 ← 𝑈𝑖,𝐺

21 else
22 𝑃𝐺,𝑖 ← 𝑋𝑖,𝐺

23 /* Opposition Based Generation Jumping */
24 if rand(0, 1) < 𝐽𝑅 then
25 for i = 0; i < 𝑁𝑃 ; i++ do
26 for k = 0; k < 𝐷; k++ do
27 𝑂𝑃 𝑘

𝑖,𝐺 = 𝑀𝑖𝑛𝑘𝐺 +𝑀𝑎𝑥𝑘𝐺 − 𝑃 𝑘
𝑖,𝐺

28 𝑓 (𝑂𝑃𝑖,𝐺) ← Fitness_Eval(𝑂𝑃𝑖,𝐺)

29 𝑃𝐺 ← {𝑃𝐺 , 𝑂𝑃𝐺} ; // Select best 𝑁𝑃 solution

30 /* Opposition Based Generation Jumping */ 𝐺 = 𝐺 + 1

The cell-based micro search space contains the hyper-parameters that
determine the structure of a cell, while the macro search space includes
two hyper-parameters: The total number of cells in the architecture and
the number of feature maps in first cell. This subsection presents the
details of UNAS-Net including the search space and encoding scheme.

3.3.1. Search space
The UNAS-Net is composed of encoder and decoder cells for down-

sampling and upsampling, respectively. Encoder cells perform feature
extraction by applying a series of convolution operations. The max-
pooling operation with stride 2 which is used to reduce the image size,
follows the encoder cells. On the other hand, decoder cells reconstruct
the image using the extracted features in the encoder cells and increase
the size of input using transpose convolution. At the final step, 2𝐷
onvolution with a filter size of 1 × 1 is applied to the output from the
ast decoder cell, which is followed by the sigmoid function to obtain
he segmented image. The general structure of UNAS-Net is illustrated
n Fig. 1.

Cell-based micro search method [19,20], which defines the struc-
ure of encoder and decoder cells, is used in this study. Each cell is
epresented as a directed acyclic graph (𝐺 = (𝑉 ,𝐸) where 𝑉 and 𝐸

denote the set of vertices and edges, respectively). A cell structure is
illustrated in Fig. 2. The graph consists of an input (𝑣1), an output (𝑣7)
and up to 5 intermediate vertices (𝑣2 to 𝑣6). Each intermediate vertex
𝑣 ∈ 𝑉 ⧵ {𝑣1, 𝑣7}) has a label 𝑙 ∈ 𝐿 that represents the operation,
here 𝐿 is the set of labels. Each directed edge (𝑒 ∈ 𝐸) represents

the connections between the vertices. In this study, we restrict the
number of vertices (|𝑉 | ≤ 7), the number of edges (𝐸 ≤ 9), and the
umber of possible operations (|𝐿| ≤ 14) to reduce the search space.
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Fig. 1. The general structure of UNAS-Net. Scale bar indicates 100 μm.

Fig. 2. Overview of cell-based micro search space and the general structure of encoder
and decoder cells.

Table 1
Possible 2𝐷 convolution operations in intermediate vertices based on the DARTS [20]

Operation Description

1 × 1 conv 1 × 1 Convolution
3 × 3 conv 3 × 3 Convolution
5 × 5 conv 5 × 5 Convolution
7 × 7 conv 7 × 7 Convolution
3 × 3 depconv 3 × 3 Depthwise Separable Convolution
5 × 5 depconv 5 × 5 Depthwise Separable Convolution
7 × 7 depconv 7 × 7 Depthwise Separable Convolution
3 × 3 dilconv 3 × 3 Dilated Convolution
5 × 5 dilconv 5 × 5 Dilated Convolution
7 × 7 dilconv 7 × 7 Dilated Convolution
3 × 3 asymconv 3 × 3 Asymmetric Convolution
5 × 5 asymconv 5 × 5 Asymmetric Convolution
7 × 7 asymconv 7 × 7 Asymmetric Convolution
skip Skip-Connection

Table 1 provides the fourteen possible 2𝐷 convolution operations based
on DARTS [20].

There are two hyper-parameters in the macro search space: Number
of cells and number of feature maps in the first cell (See Fig. 1). UNAS-
Net architecture has equal number of encoder and decoder cells. The
total number of cells in the architecture (𝑁𝑐) is calculated as the sum of
the number of encoder cell (𝑛𝑐), the number of decoder cells (𝑛𝑐), and
the bottleneck cell (𝑁𝑐 = 2𝑛𝑐 + 1). 𝑛𝑐 ∈ {2, 3, 4, 5} is a decision variable
to be optimized by search algorithms. On the other hand, the number of
features extracted from the given input directly affects the performance
of the network. 𝑛𝑖𝑛𝑖𝑡𝑓 ∈ {8, 16, 32} indicates the number of feature maps
to be generated as a result of operations on the first encoder cell. The
number of feature maps is doubled after each max-pooling operation.
5

3.3.2. Encoding
As mentioned before, we consider two DE-based algorithms as the

search method. In these algorithms, a real-valued vector is used to
represent a candidate solution that has 28 variables (∈ [0, 1]) used for
the structure of an encoder/decoder cell (21 variables), the convolution
operations (5 variables), and the hyper-parameters in the macro search
space (2 variables).

Since a cell is represented as a directed acyclic graph (DAG), we
consider the adjacency matrix to describe the DAG. Cell structure with
7 vertices imposes the adjacency matrix to be a 7 × 7 (|𝑉 | ≤ 7)
upper triangular matrix with entries 0 or 1 whose elements show
whether two vertices are connected or not. The first 21 variables in
the candidate solution indicate the adjacency matrix that represents
the structure of the encoder/decoder cell. Besides, in the cell structure
(see Fig. 2), there are five intermediate vertices each of which has
a label. Therefore, the next 5 elements (22nd to 26th) indicate the
selected labels among the fourteen possible ones given in Table 1.
Finally, the last two elements in the solution indicate the number of
cells (𝑛𝑐) and the number of feature maps of the first cell (𝑛𝑖𝑛𝑖𝑡𝑓 ).

Since a candidate solution is represented by a real-valued vector,
we use a mapping scheme to construct an UNAS-Net architecture [56]
from the real-valued vector. Fig. 3 illustrates this scheme step by step
with an exemplary real-valued vector. These steps are given as follows:

(1) The first 21 elements in the solution are used for the adjacency
matrix. Each value in the solution indicates whether there is a
connection between vertices or not: if the value is greater than
0.5, that means there is an edge between the corresponding pair
of vertices; therefore, the corresponding entry in the adjacency
matrix should be 1. As seen in Fig. 3, the first element indicates
whether or not there is a connection between vertex 1 and vertex
2. Since the value is 0.61, the entry in the first row and the
second column of the adjacency matrix becomes 1. In addition,
the second element is used for the connection between vertex
1 and vertex 3. The corresponding value is 0.49; therefore, the
corresponding entry becomes 0. For the remaining elements, we
convert the real value to binary one in the same manner.

(2) The next 5 elements (22nd to 26th) in the solution indicate the
selected operations. Since there are fourteen possible operations
(labels), the range [0, 1] is divided into fourteen equal-sized bins:
The range [0, 0.07) corresponds to the first possible operation,
namely 1 × 1 conv given in Table 1; the range [0.07, 0.14) corre-
sponds to 3 × 3 conv; the range [0.14, 0.21) corresponds to 5 × 5
conv; and so on. The 22nd element indicates the label for vertex
2 in the cell structure. Since the corresponding value is 0.94, we
use the skip operation in vertex 2.

(3) The last two elements indicate the number of cells (𝑛𝑐) and the
number of feature maps of the first cell (𝑛𝑖𝑛𝑖𝑡𝑓 ), respectively. 𝑛𝑐 can
takes four different values, therefore the range [0, 1] is divided
into four equal-sized bins: The range [0, 0.25) corresponds to the
value of 2, the range [0.25, 0.50) corresponds to the value of 3, and
so on. On the other hand, 𝑛𝑖𝑛𝑖𝑡𝑓 can be 8, 16, or 32, so the range
[0, 1] is separated into three equal-sized bins. In Fig. 3, the value
of second last element is 0.75, which means that 𝑛𝑐 is set to 5.
Similarly, the last element is 0.96, which indicates that the value
of 𝑛𝑖𝑛𝑖𝑡𝑓 is 32.

(4) As a result of the first two steps, we create the adjacency matrix
with its labels.

(5) We generate the cell structure for the encoder/decoder cell using
adjacency matrix and labels.

(6) We construct the UNAS-Net architecture using the cell structure,
𝑛 , and 𝑛𝑖𝑛𝑖𝑡.
𝑐 𝑓
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Fig. 3. The encoding for UNAS-Net Architecture (left part) and the steps for mapping: Step 1: Create the adjacency matrix; Step 2: Select the labels; Step 3: Select the values for
two hyper-parameters; Step 4: Combine the adjacency matrix with its labels. Step 5: Create a DAG for the cells. Step 6: Construct UNAS-Net using DAG and two hyper-parameters.
Scale bar indicates 100 μm.
Fig. 4. The overview of Attention-UNAS-Net. (a) Attention-UNAS-Net Architecture, (b)
Attention Gate. Scale bar indicates 100 μm.

3.4. Attention UNAS-Net

An improved version of U-Net, namely Attention U-Net, is proposed
for the segmentation of medical images in [66]. Attention gates are
utilized into the architecture. The features learned at the encoding step
in the U-Net structure must be concatenated with other features before
the decoding step. However, the low-level features learned in the first
stages and the high-level features learned in the later stages do not have
the same significance for segmentation. Therefore, these features need
to be weighted in the concatenation stage. The attention gate is used
for weighting different features.

The Attention UNAS-Net structure based on Attention U-Net is
proposed in this study. This structure uses the same search space and
encoding as in UNAS-Net. Besides, attention gates are utilized before
decoding steps. The Attention UNAS-Net structure is shown in Fig. 4.

4. Experimental design

In this section, we present the URes-Net model proposed in [37]
for comparison. Then, we provide the dataset used in the experimen-
6

tal study, which is followed by the performance measures and the
implementation details for the approaches.

4.1. URes-Net

ResNet + U-Net network [37] used for comparison purposes consists
of two parts: the first part is called the narrowing path, and the second
part is called the expansion path. A narrowing path consists of iterating
two 3 × 3 convolutions, reducing the size of the input data across the
layers. The number of features obtained in the input layer is 64, and
this number is doubled at each step of the narrowing path. In this path,
downsampling is done with a maximum pooling operation of 2 × 2
(stride = 2). At each step of the expansion path, 2 × 2 upsampling
is performed and the resulting feature channels are concatenated with
the feature channels in the narrowing path in the same step. As the
number of features is halved after each upsampling in the growth path,
expansion and narrowing paths are symmetrical.

4.2. Dataset

Experiments were performed by combining two similar datasets.
The first dataset, vesseINN [21], is an open source volumetric cere-
brovascular system dataset obtained by two-photon microscopy. This
dataset consists of a total of 12 volumetric stacks containing images
of mouse cortex and human squamous cell carcinoma tumors. In this
study, we employed 9 stacks containing a total of 179 images with
512 × 512 px dimensions from vesseINN. The second dataset, KU-
VESG, consists of mouse cortex images taken from cleared mouse brain
samples with the 3DISCO procedure. The procedure is explained else-
where [73]. Briefly, this organic solvent-based clearing protocol uses
tetrahydrofuran for dehydration and dibenzyl ether (DBE) for match-
ing the refractive index. After completing the protocol, 1 mm thick
cleared brain slides in DBE solution were imaged with the confocal
setup of the Leica multiphoton system TCS SP8 microscopy. The brain
vasculature was visualized with premortem transcardial perfusion of
gelatin-albumin-FITC solution (Sigma, A9771). This dataset consists of
39 images of 1024 × 1024 px dimensions. We obtained 156 images of
512 × 512 px dimensions from KUVESG by dividing each image into
4 equal parts. With the combination of these two datasets, a total of
335 single-channel 8-bit grayscale images was obtained. Among these
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Fig. 5. Original and ground truth image pairs from the vesseINN (blue dashed line
border) and KUVESG datasets (red dashed line border). Scale bar indicates 100 μm.

images, 301 were used for model training and 30 for tests. Fig. 5 shows
the image pairs selected from vesseINN and KUVESG datasets [74].

4.3. Performance measures

Performance evaluation of a deep-learning based segmentation
method requires multiple performance measures which are typically di-
vided into six categories [75,76]. Overlap-based measures like the Dice
Coefficient and the Intersection Over Union are frequently used because
they are easily interpretable, implementable, and comparable [77–79].
Other measure categories such as volume, pair counting, probabilistic
and spatial distance-based are used less frequently. The boundary and
alignment of vessels are more important for our problem. Therefore, for
precise performance evaluations of our methods we consider twenty-
one performance measures belonging to five categories (excluded the
volume based) as recommended in [75]. These performance measures
are listed in Table 2.

4.4. Implementation details

In order to measure the actual performance of deep learning net-
works, the network must be trained with the entire training set during
long training epochs and evaluated on the test set that is not included
in the learning process. However, there are many candidate networks
in NAS studies whose performance should be evaluated on GPU. It is
infeasible to train all of these candidate networks with whole training
data over long training periods. Therefore, the study is divided into two
steps: Short-term evaluation and long-term evaluation.

In the short-term evaluation step, the candidate networks generated
during the running of the heuristic method are evaluated (lines 4 and
6 in Algorithm 1, and lines 8, 9, 18 and 27 in Algorithm 2). At this
step, a subset consisting of half of the training dataset is used to train
the generated candidate networks, and the quality of a network is
evaluated on the validation set created using 10% of this subset. When
creating these sets, the images are randomly selected and the same im-
ages are used for a fair evaluation of the generated networks. We have
implemented the EarlyStopping process in order to use the total training
time more efficiently. In the short-term evaluation step, each candidate
network is trained for a maximum of 36 training epochs [19]. However,
if the validation loss value obtained by a network on the validation set
7

Table 2
A summary of the performance measures selected in this study. The category column
indicates the performance measure group to which each performance measure belongs

Category Performance measure

Overlap Based

Dice (DICE)
Intersection over Union (IoU)
Jaccard Index (JAC)
Sensitivity (SNS)
Specificity (SP)
Sensibility (SB)
Global consistency error (GCE)
Conformity (CNF)
Accuracy (ACC)
Precision (PRC)

Pair
Counting Based

Rand Index (RI)
Adjusted Rand Index (ARI)

Information
Theoretic Based

Mutual information (MI)
Variation of information (VOI)

Probabilistic
Based

Interclass correlation (ICC)
Probabilistic distance (PBD)
Cohen’s kappa (KAP)
Area under ROC Curve (AUC)

Spatial
Distance Based

Hausdorff distance (HD95)
Average Hausdorff distance (AHD)
Mahalanobis Distance (MHD)

does not improve over three consecutive training epochs, the training
is interrupted at that step. This way, we were able to evaluate more
candidate networks in less time. The best dice score obtained at the
end of the training determines the quality of this candidate network
and is used as the fitness value of the solution. The selected heuristics
are terminated after training 500 network architectures on the GPU.

In the long-term evaluation step, the actual performance of the top
five networks obtained as a result of running heuristics is evaluated. At
this step, the best networks are initialized with random weights (the
weights learned in the short-term evaluation step are not used to make
a fair evaluation) and trained with the whole training dataset over 200
training epochs. These trained networks are evaluated on the test set,
which has never been included in the training before (including the
short-term evaluation step), and the actual performance of the network
is obtained. Data augmentation is not applied at any stage of the study.

We consider the following parameter settings of DE and ODE as
recommended in [56,69]: the population size (𝑁𝑃 ) is set to 20; the
scaling factor 𝐹 is 0.5; the crossover probability (𝐶𝑅) is set to 0.5.
Besides, the jumping probability (𝐽𝑅) in ODE is 0.3.

The Pytorch library was used for the networks generated during
the NAS study. The URes-Net network is implemented with the Ten-
sorflow 2 library. The following parameters are used in common for
UNAS-Net and URes-Net: Optimizer: Adam, Loss Function: Dice loss,
Learning Rate: 1e-3 and Batch Size: 2 (This value has chosen due to
memory problem) [48]. The following hardware has been used for the
experimental studies: Ryzen 5600X processor, 12 GB RTX 3060 GPU,
16 GB RAM. The source code and dataset are available at Github.

5. Results and discussion

5.1. Comparison of U-Net models

Both high segmentation performance and short inference time were
achievement goals for the generated models. For this reason, numerical
comparisons are performed in two different ways: Segmentation perfor-
mance and model complexity. While 21 different measures described
in Section 4.3 are used to evaluate the segmentation performance, the
floating point operations (FLOPs) measure is used for accurate and
reliable evaluation of model complexity [80].

The proposed methods are compared with the U-Net and Attention
U-Net architectures which are considered as state-of-the-art baseline

https://github.com/zekikus/Differential-Evolution-based-Neural-Architecture-Search-for-BrainVessel-Segmentation
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Table 3
Performance results obtained by different approaches based on different measures. Each values obtained for five different seed
values. In each row, the best approach is marked in bold.
Performance measure U-Net UNAS-Net Attention U-Net Attention-UNAS-Net URes-Net

DE ODE DE ODE

DICE 76.93 78.80↑ 79.57↑ 76.36 78.86↑ 79.36↑ 79.38
IoU 63.84 65.72↑ 66.74↑ 63.01 65.78↑ 66.49↑ 66.81
JAC 64.54 66.36↑ 67.42↑ 63.65 65.74↑ 66.27↑ 67.60
SNS 74.55 81.14↑ 81.48↑ 76.49 76.93↑ 78.56↑ 80.32
SP 98.39 97.52↓ 97.81↓ 97.71 98.02↑ 97.90↑ 97.85
SB 83.67 75.71↓ 77.81↓ 77.84 81.94↑ 79.79↑ 79.77
GCE 7.07 7.46↓ 6.97↑ 7.74 7.02↑ 7.15↑ 6.71
CNF 27.92 44.87↑ 47.70↑ 31.01 43.05↑ 44.58↑ 47.04
ACC 95.96 95.84↓ 96.19↑ 95.56 96.12↑ 96.04↑ 96.34
PRC 83.45 79.09↓ 79.85↓ 79.90 82.32↑ 81.36↑ 80.83
RI 92.39 92.15↓ 92.75↑ 91.69 92.63↑ 92.50↑ 93.01
ARI 71.14 72.38↑ 73.66↑ 69.88 72.34↑ 72.62↑ 73.97
MI 25.85 27.07↑ 27.65↑ 25.47 26.62↑ 26.83↑ 27.78
VOI 38.41 40.32↑ 38.65↑ 41.30 38.83↓ 39.11↓ 37.84
ICC −3.44 −3.64↓ −3.36↑ −3.78 −3.40↑ −3.47↑ −3.21
PBD 36.04 27.57↑ 26.15↑ 34.49 28.47↑ 27.71↑ 26.48
KAP 75.15 76.79↑ 77.78↑ 74.27 76.46↑ 76.82↑ 77.89
AUC 86.47 89.33↑ 89.64↑ 87.10 87.48↑ 88.23↑ 89.09
HD95 26.63 14.72↑ 15.93↑ 30.81 13.79↑ 11.33↑ 10.56
AHD 9.73 9.38↑ 8.94↑ 10.22 9.40↑ 9.52↑ 9.02
MHD 13.64 13.54↑ 12.05↑ 14.48 12.00↑ 12.48↑ 10.93
Table 4
Comparison of different approaches in terms of model complexity, inference time in
CPU and size. FLOPs in gigabytes; Time in seconds; #Params and Model Size on Disk
in megabytes.

Method FLOPs
(G)

# Params
(M)

Model size
(M)

Time

U-Net 436 31 121 32.72
UNAS-Net + DE 220 3 14 27.10
UNAS-Net + ODE 84 6 25 20.72

Attention U-Net 531 34 136 39.56
Attention-UNAS-Net + DE 58 5 21 13.86
Attention-UNAS-Net + ODE 175 10 40 27.55

URes-Net 436 34 407 32.46

methods for medical image segmentation. The principal goal of this
study is to use DE and ODE heuristics in order to obtain models
better that the baseline methods in terms of segmentation performance
and model complexity. Segmentation performance results are shown
in Table 3. The results shown in this table are the averages of the results
from five independent runs of each method. The ↑ and ↓ signs shown
n Table 3 indicate whether the proposed method provides improve-
ent for the corresponding performance criterion on the baseline. As a

aseline, we used the U-Net for the UNAS-Net and the Attention U-Net
or the Attention-UNAS-Net.

Table 3 shows that the best UNAS-Net network generated using
E and ODE heuristics outperforms the segmentation performance of
-Net in most of the segmentation measures. UNAS-Net + DE and
NAS-Net + ODE outperform U-Net in 14 of 21 and 18 of 21 mea-

ures, respectively. Comparing the UNAS-Net + DE and UNAS-Net +
DE results reveals that UNAS-Net + ODE has better segmentation
erformance in 19 of the 21 measures. The model complexities of the
ethods are compared in Table 4 which shows that UNAS-Net + DE and
NAS-Net + ODE perform 1.98 and 5.19 times less FLOPs than U-Net,

espectively. In terms of model complexity, it is clear that the UNAS-
et + ODE technique uses 2.62 times less floating point operations than
NAS-Net + DE. As a result, it has been observed that the ODE heuristic

or UNAS-Net gives better results than U-Net and UNAS-Net + DE in
erms of both segmentation performance and model complexity. Based
n this, we can say that the ODE heuristic for UNAS-Net investigates
he search space better than DE.

Another proposed NAS-based method, Attention-UNAS-Net, is com-
ared with Attention U-Net and the segmentation performance of the
8

Attention U-Net network is improved. Table 3 shows that Attention-
UNAS-Net + DE and Attention-UNAS-Net + ODE achieved better seg-
mentation performance than baseline Attention-UNet for all measures
except the VOI. There is no clear difference between the DE and ODE
heuristics for Attention-UNAS-Net, as in UNAS-Net. The best network
generated with the ODE heuristic outperformed the DE heuristic in
terms of 12 measure. The Attention-UNAS-Net + DE and Attention-
UNAS-Net + ODE methods produced 9.15 and 3.03 times less complex
models compared to Attention-UNAS-Net, respectively. DE generates a
less complex model than ODE for Attention-UNAS-Net, whereas ODE
gives better segmentation results.

The NAS methods proposed in this study are also compared with
the URes-Net architecture proposed by [37]. The segmentation perfor-
mance of U-Net and Attention-UNet has been enhanced by URes-Net for
all measures (except VOI for U-Net and Attention-UNet; SP, SB, PRC for
U-Net). It performs the same number of floating-point operations as U-
Net but 1.21 times less than Attention-UNet. Although URes-Net shows
better segmentation performance overall than UNAS-Net and Attention-
UNAS-Net-based methods, it is up to 7 times more complex in terms of
computational complexity.

All methods are also compared visually in Fig. 6. The number of
overlapping pixels on the ground truth and output, which is called true
positive pixels, is not sufficient to evaluate the performance of medical
segmentation studies. In addition, the network model should not mark
areas that are not vessels on the ground truth. This type of error is
called a False Positive (FP) Error. Finally, the areas that vessels on
the ground truth may not be marked on the output. This is called a
False Negative (FN) Error. According to these definitions, TP pixels are
expected to be more on the output obtained by the network, and FP and
FN pixels are expected to be as few as possible. Fig. 6 confirms that
UNAS-Net models perform more accurate segmentation than baseline
U-Net network in terms of TP, FP and FN pixels. However, it seems that
UNAS-Net is not as successful in segmentation of thin vessels as thick
vessels. Attention-UNAS-Net models are compared with the baseline
Attention-UNet in Fig. 6. Images segmented by the Attention-UNAS-
Net models have more TP pixels and fewer FP and FN pixels than
Attention-UNet.

As a result, the UNAS-Net + DE and UNAS-Net + ODE methods
outperformed the baseline U-Net in 14 of 21 and 18 of 21 measures,
respectively. Additionally, these NAS methods require 1.98 and 5.19
times fewer FLOPs than U-Net. The Attention-UNAS-Net + DE and
Attention-UNAS-Net + ODE methods also achieved better segmentation
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Fig. 6. Comparison of different medical image segmentation models visually. The first row shows the error maps (White: True positive pixels; Red: False negative pixels; Blue:
False positive pixels) for each method, and the second row indicates the segmentation result of these methods. Scale bar indicates 100 μm.
performance with up to 9.15 less complex models than the base-
line Attention-UNet, except for the VOI measure. The NAS methods
are compared to the state-of-the-art URes-Net architecture proposed
by [37], which shows better segmentation performance overall but is
up to 7 times more complex in terms of computational complexity. In
summary, the proposed NAS methods outperform the baseline models
in terms of segmentation performance and model complexity, achieving
highly competitive results with up to 7 times less complex networks
than state-of-the-art URes-Net.

5.2. Ablation studies

In this section, ablation studies are performed for the best UNAS-
Net ODE (U-ODE) and Attention-UNAS-Net (Att-ODE) networks (results
are shown in Table 3). The impact of the loss function, 𝑛𝑐 (number
of cell) parameter, and threshold value on segmentation performance
is examined. We train the models with all training images during 200
epochs, except for the threshold comparison. Then, we test it with all
images in the test set as in the long-term evaluation for all ablation
study experiments. The results tables show the average values of five
performance metrics obtained as a result of training the best models
(see Table 3) with five different seed values and testing them on all
test images.

5.2.1. Loss function
In this part, we explore the effect of loss function since it has a

direct impact on the segmentation performance. To determine the best
loss function, the performances of UNAS-Net ODE and Attention-UNAS-
Net ODE are evaluated on test sets with different loss functions: Dice,
Jaccard, Binary Cross Entropy (BCE), Dice + BCE and Dice + BCE +
Jaccard [75,81]. Table 5 presents the results of different loss functions
for both UNAS-Net ODE and Attention-UNAS-Net ODE. For UNAS-Net
ODE, Dice + BCE + Jaccard gives the best results in terms of DICE,
IoU and ACC, while BCE gives the best results in terms of SP. Besides,
Dice gives the best results in terms of SNS. All loss functions except
BCE improve the performance of the baseline loss functions (Dice loss)
9

Table 5
Performance results of different loss functions for UNAS-Net ODE and Attention-UNAS-
Net ODE.

Performance Metrics

UNAS-Net ODE

Loss function DICE IoU SNS SP ACC

Dice 79.57 66.74 81.48 97.81 96.19
Jaccard 79.87 67.31 78.19 98.46 96.49
BCE 77.94 64.82 76.14 98.54 96.52
Dice + BCE 79.66 67.03 77.92 98.35 96.40
Dice + BCE + Jaccard 80.13 67.68 78.60 98.38 96.54

Attention-UNAS-Net ODE

Dice 79.36 66.49 78.56 97.90 96.04
Jaccard 78.79 66.13 76.90 98.36 96.41
BCE 78.13 65.14 76.20 98.52 96.60
Dice + BCE 78.45 65.63 75.75 98.48 96.35
Dice + BCE + Jaccard 79.53 66.91 77.05 98.47 96.48

in terms of DICE, IoU, SP and ACC values. The selection of the loss
function provides a minimum of 0.35 and a maximum of 0.94 points
of improvement.

On the other hand, for Attention-UNAS-Net ODE, Dice + BCE +
Jaccard gives the best results in terms of DICE and IoU, while BCE gives
the best results in terms of SP and ACC. Selecting the appropriate loss
function can enhance the segmentation performance between 0.17 and
0.62 points. As a result, the selection of loss function positively impacts
segmentation performance. Using a combined loss instead of a single
loss function gives optimal results for this study.

5.2.2. Model pruning
Network parameters and number of floating point operations

(FLOPs) play a crucial role in determining model performance and
inference time. Table 4 demonstrates that networks generated by the
proposed search space have less complex structures compared to base-
line networks. However, the impact of the 𝑛 hyper-parameter, which
𝑐
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Table 6
The performance comparison for the different number of cells.

Performance metrics

UNAS-Net ODE

#Cells FLOPs (G) DICE IoU SNS SP ACC

2 46 65.89 51.67 60.10 98.26 94.01
3 65 73.03 60.42 70.36 97.94 95.22
4 84 79.57 66.74 81.48 97.81 96.19
5 103 72.68 58.94 70.16 98.12 95.31

Attention-UNAS-Net ODE

2 91 74.67 61.11 75.70 97.29 95.23
3 133 73.67 60.01 72.97 97.48 95.02
4 175 79.36 66.49 78.56 97.90 96.04
5 217 74.59 61.16 76.15 97.24 95.12

directly affects the complexity of the generated networks, on segmen-
tation performance and complexity should be examined separately. We
have gradually increased the complexity of the network by changing
the number of cell hyper-parameter. Results presented in Table 6 show
that the number of floating point operations changes between 41%
and 124% from 𝑛𝑐 = 2 to 𝑛𝑐 = 5 for UNAS-Net ODE and change
between 46% and 138% for Attention-UNAS-Net ODE. However, it is
observed that the segmentation performance also decreases. For com-
plex networks such as Attention-UNAS-Net, 𝑛𝑐 selection has a smaller
impact on results, whereas for less complex networks such as UNAS-
Net, 𝑛𝑐 selection has a greater effect. Also, DICE, IoU, SNS metrics
are more affected by 𝑛𝑐 than SP and ACC metrics. The results indicate
that while the number of cell (𝑛𝑐) has a direct relationship with model
omplexity, there is no clear correlation between 𝑛𝑐 and segmentation
erformance. In fact, increasing the number of cell value (𝑛𝑐 = 5) leads
o a degradation of results. Therefore, more than just optimizing the
etwork structure inside the encoder and decoder cell is required, as
een in Table 6. At the same time, the simultaneous optimization of
he 𝑛𝑐 (micro and macro search spaces) values also positively affects
he performance. Tables 3 and 6 also reveal that the optimal result is
chieved by selecting 𝑛𝑐 = 4 using the proposed DE-based heuristics.
his shows the effectiveness of the proposed methods.

.2.3. Threshold comparison
Research indicates that accurately selecting the threshold value

as a substantial impact on the detection of both thin and thick
essels [81]. In order to create segmented binary images, a certain
hreshold value must be applied to the probability maps (∈ (0, 1)) that

are given as the network’s output. However, choosing high threshold
values causes loss of thin vessel information in these images. There-
fore, the threshold value should be chosen carefully so that neither
information about thin vessels nor information about thick vessels is
lost.

In the ablation study, we employ two fixed threshold values referred
to as high and low thresholds, as well as the Otsu threshold method
which dynamically calculates the threshold value based on the input
image. The high threshold value is set to be 0.5 in accordance with the
comparison study shown in Section 5.1. On the other hand, the low
threshold value is set as 0.3 in accordance with the recommendation
in the literature [81]. The results for performance comparisons with
different threshold settings are provided in Table 7.

The results show that choosing the low threshold value for UNAS-
Net ODE led to an improvement in all metrics except SNS. For the
Attention-UNAS-Net ODE, it has been found that the results are not
better than those obtained with the default threshold value of 0.5.
Additionally, we visualized the effects of the different threshold values,
as depicted in Fig. 7. The results indicate that utilizing a low threshold
value yields an output similar to the ground truth image. Conversely, a
high threshold value results in the loss of delicate vessel information.
However, using a low threshold value can lead to incorrect separation
10
Table 7
Threshold comparison results.

Performance metrics

UNAS-Net ODE

Threshold DICE IoU SNS SP ACC

0.3 80.01 67.43 81.29 97.84 96.20
0.5 79.57 66.74 81.48 97.81 96.19
Otsu 80.01 67.42 81.48 97.81 96.19

Attention-UNAS-Net ODE

0.3 79.16 66.23 78.40 97.92 96.04
0.5 79.36 66.49 78.56 97.90 96.04
Otsu 79.19 66.27 78.56 97.90 96.04

Table 8
Performance results of proposed methods on Optofil dataset. Red and blue colors
indicate the best two values for each measure. U-ODE: UNAS-Net ODE; Att-ODE:
Attention-UNAS-Net ODE.

Method FLOPs (G) ACC SNS SP F1 IoU

Kus et. al [72] 4.18 98.99 78.06 99.74 82.97 72.67
U-ODE 2.64 98.78 83.04 99.40 79.93 70.15
Att-ODE 5.48 99.10 80.90 99.75 84.60 71.13

of vessels, as demonstrated by the green rectangle in Fig. 7. As a result,
it can be concluded that the threshold value effects the segmentation
performance, and utilizing dual-threshold values, as proposed in [81],
could enhance the accuracy of the segmented results.

5.2.4. Generalization performance
It is crucial to evaluate the performance of deep learning models on

new images and tasks to determine their capability. This is especially
important for medical images as they can vary greatly, and a model that
works well on one dataset may not perform as well on new data. Our
study evaluates the generalization performance of the best models that
are searched using ODE (UNAS-Net ODE and Attention-UNAS-Net ODE)
on the KUVESG dataset. We have tested these models on two extra
datasets: DRIVE [82] and Optofil [72]. The NAS steps are not performed
again for these two extra datasets. We train the searched models (best
models that are searched using ODE) on these two datasets and evaluate
these on the test set. Also, this procedure is named fine-tuning. The
Optofil dataset includes a total of 4914 images of cell cultures, which
are represented in gray-scale format, and the DRIVE dataset consists of
40 colored retinal blood vessel images.

First, we train the searched models on the Optofil training set and
evaluate these on the test set, following the same process described
in [72]. However, we recalculate all measures using the best model
from [72] to ensure a fair comparison. Average results are presented
in Table 8. Attention-UNAS-Net + ODE performs best for ACC, SPE and
F1 measures, giving second-best results for SNS and IoU with a minor
(1.31 times) complexity increase. Also, UNAS-Net outperforms other
methods with 1.58 times fewer FLOPs in terms of SNS and gives highly
competitive results for other measures except for F1.

We also compares the searched models with NAS studies on DRIVE
dataset in terms of model complexity and segmentation performance.
We train the searched models on the DRIVE training set and evaluate
these on the test set. The same pre-processing steps are performed like
in [81]. The literature only contains a few number of NAS research
that were conducted for DRIVE. In their research, Popat et al. [83]
and HNAS [64] used various models with different parameter sizes.
We compare two of their models, v1 and v2, which have the fewest
and most parameters, respectively. Additionally, the Genetic U-Net [84]
present two different results, one with the binary field of view (v1) and
one without (v2). We compare our results to those of recent studies [64,
83–85] by using the results that are reported in the corresponding pa-
pers. Results are shown in Table 9. Attention-UNAS-Net ODE gives best

results in all metrics (except F1). Furthermore, it outperforms HNAS
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Fig. 7. Graphical representation of the outcomes of low and high threshold analysis on the vesselNN dataset. We magnify the four highlighted rectangle in the images to display
the details.
Table 9
Performance results of different NAS studies on DRIVE dataset. Red and blue colors
indicate the best two values for each performance measure. U-ODE: UNAS-Net ODE;
Att-ODE: Attention-UNAS-Net ODE.

Method Param (M) ACC SNS SP F1

Popat et al. v1 [83] 0.18 93.56 59.67 98.50 –
Popat et al. v2 [83] 8.10 95.34 75.01 98.31 –
HNAS v1 [64] 157 95.42 77.07 98.10 81.08
HNAS v2 [64] 2.90 95.46 77.44 98.09 81.29
Genetic U-Net v1 [84] 0.27 95.77 83.00 97.58 83.14
Genetic U-Net v2 [84] 0.27 97.07 83.00 98.43 83.14
BTU-Net [85] 16.80 96.89 – 98.44 81.78

U-ODE 6.60 97.00 83.74 98.31 82.04
Att-ODE 10.32 97.08 89.71 98.95 82.03

v1 and BTU-Net for all metrics despite having 1.62 and 15.21 times
fewer parameters, respectively. The UNAS-Net ODE model performs the
second-best results for ACC and SP Moreover, it achieves better results
with 2.54 times fewer parameters for ACC and F1 than BTU-Net. It
outperforms all models in terms of ACC, SNS and F1 (except Genetic
U-Net) with fewer parameters. As a result, the searched models can
generalize well to new cell segmentation and blood vessel segmentation
tasks, even without performing NAS.

6. Conclusion

In this study, we propose two DE-based NAS approaches to opti-
mize U-Net and Attention U-Net architectures. These approaches called
as UNAS-Net and Attention UNAS-Net architectures consist of cell-
based micro search space and macro search space that combine the
advantages of widely used search spaces [19,20]. Proposed approaches
find networks that give better segmentation performance for 2D ves-
sel segmentation problem and search micro and macro search spaces
simultaneously. We performed the experiments on two datasets in-
cluding a public dataset vesseINN and our own dataset KUVESG. The
architectures generated outperform the U-Net and Attention U-Net
architectures in terms of segmentation performance and computational
complexity. UNAS-Net network generated using DE and ODE heuristics
outperforms the segmentation performance of U-Net in most of the
segmentation measures and has up to 5.19 times fewer FLOPs. Sim-
ilarly, Attention UNAS-Net gives better results than Attention U-net
and generates up to 9.15 times less complex models. Such significant
improvements in segmentation performance and computational com-
plexity are important in wide usage of our algorithms by lay users.
Additionally, it is known that results of ablation studies can provide
valuable insights into the design of improved models and can guide
future research in the field. Therefore, we employed ablations studies
investigating the effects of loss function, model pruning, and threshold
11
values on the segmentation performance. The ablation results demon-
strate that the combination of loss functions improves the segmentation
performance. Furthermore, we observe that a low threshold value
improves the preservation of thin vessel information and enhances
the segmentation performance. Additionally, it is concluded that the
number of cells plays a crucial role in determining the model com-
plexity and must be optimized simultaneously with the cell structure.
Moreover, the results of generalization experiments show that the
proposed methods perform well on various datasets, which suggests
that the results are generalizable. However, results also showed that
the proposed models are less successful in segmenting thin vessels than
thick vessels. Also, the best models searched using ODE on KUVESG
only achieve good segmentation results with fine-tuning on unseen test
datasets (domains) that are different from train examples. These models
need fine-tuning steps to get good generalization performance. In future
works, discrete search space can be used in order to optimize UNAS-Net
structure. The pre-processing techniques such as contrast enhancement
and post-processing techniques like Dilation and Erosion can substan-
tially improve medical image segmentation. These essential steps can
augment both accuracy and appearance for the segmented regions.
Moreover, the performance of DE can be sensitive to the values of its
control parameters. These parameters can affect the algorithm’s ability
to find good solutions and the time it takes to converge. Therefore,
these parameters can be tuned in future works. This study can also be
easily expanded to medical image segmentation problems different than
brain vasculature analysis.
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