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DEEP LEARNING METHODS FOR CLASSIFICATION 

ALZHEIMER'S DISEASE 

Husam Al-Hammadi 

ABSTRACT: 

Alzheimer's disease (AD) is a progressive and irreversible brain disorder that 

affects memory, thinking, and behavior. It is the leading cause of dementia. Early 

diagnosis can slow the progression of Alzheimer's disease and improve the prognosis 

and increase the quality and quantity of patient care. One of the primary methods in 

early diagnosis is electroencephalography (EEG), which has been indicated as a 

promising method for detecting aberrant brain patterns associated to Alzheimer's 

disease in aspects of low cost, noninvasive, and portability. Furthermore, artificial 

intelligence tools have been essential in developing models that facilitate disease 

diagnosis and detection. Deep learning is a promising approach for such applications; 

however, it requires a reliable dataset. Due to the patient's rights, researchers may not 

be able to access a sufficient dataset to train the network. This work aims to propose a 

model to address this issue. Frist, Generative Adversarial Networks (GNN) model is 

presented to generate an artificial EEG dataset for Alzheimer's disease. It may be 

employed to understand brain processes better and make more accurate medical 

diagnoses for Alzheimer's disease using deep learning tools. Then four models have 

been focused on, Convolutional neural Network (CNN), Recurrent Neural Network 

(RNN), Multi-layer perceptron (MLP) and Transformer, to classify the Alzheimer's 

EEG signals. The results show that the GNN model can generate reliable artificial EEG 

signals for Alzheimer's disease in related channels. Moreover, the proposed models 

achieve accurate classification with a high accuracy 99.98 %, 99.76 %, 97.58 %, and 

97.34 % respectively. Our study has demonstrated that the proposed methodologies 

serve as a promising complementary tool for identifying potential biomarkers that can 

aid in the clinical diagnosis of Alzheimer's disease. 
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ALZHEIMER HASTALIĞININ SINIFLANDIRILMASINA 

YÖNELİK DERİN ÖĞRENME YÖNTEMLERİ 

Husam Al-Hammadı 

ÖZET 

Alzheimer hastalığı (AD), hafızayı, düşünmeyi ve davranışı etkileyen ilerleyici 

ve geri döndürülemez bir beyin bozukluğudur. Bunaklığın önde gelen nedenidir. Erken 

teşhis, Alzheimer hastalığının ilerlemesini yavaşlatabilir,  prognozu iyileştirebilir ve 

hasta bakımının nitelik ve niceliğini artırabilir. Erken tanıda birincil yöntemlerden biri; 

düşük maliyetli, invazif olmayan ve taşınabilirlik açılarından Alzheimer hastalığı ile 

ilişkili anormal beyin modellerini saptamak için umut verici bir yöntem olarak 

belirtilen elektroensefalografidir (EEG). Ayrıca, yapay zeka araçları, hastalık teşhisini 

ve tespitini kolaylaştıran modellerin geliştirilmesinde de önemli olmuştur. Derin 

öğrenme, bu tür uygulamalar için gelecek vaat eden bir yaklaşımdır; ancak güvenilir 

bir veri seti gerektirir. Hasta hakları nedeniyle, araştırmacılar ağı eğitmek için yeterli 

bir veri setine erişemeyebilirler. Bu çalışma, bu sorunu çözmek için bir model 

önermeyi amaçlamaktadır. İlk olarak, Alzheimer hastalığı için yapay bir EEG veri seti 

oluşturmak üzere, Üretken Çekişmeli Ağlar (GNN) modeli sunulmuştur. Beyin 

süreçlerini daha iyi anlamak ve derin öğrenme araçlarını kullanarak Alzheimer 

hastalığı için daha doğru tıbbi teşhis yapmak için kullanılabilir. Daha sonra Alzheimer 

EEG sinyallerini sınıflandırmak için Evrişimli Sinirsel Ağı (CNN), Devirli Sinirsel 

Ağı (RNN), Çok Katmanlı Algılayıcı (MLP) ve Transformer olmak üzere dört model 

üzerinde durulmuştur. Sonuçlar, GNN modelinin Alzheimer hastalığı için ilgili 

kanallarda güvenilir yapay EEG sinyalleri üretebildiğini göstermektedir. Ayrıca, 

önerilen modeller sırasıyla; %99.98, %99.76, %97.58 ve %97.34 gibi yüksek bir 

doğrulukla doğru sınıflandırma elde etmektedir. Çalışmamız, önerilen metodolojilerin, 

Alzheimer hastalığının klinik teşhisine yardımcı olabilecek potansiyel biyobelirteçleri 

belirlemek için umut verici bir tamamlayıcı araç olarak hizmet ettiğini göstermiştir. 
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FOREWORD 

The journey of preparing this thesis on Alzheimer's disease and its early 

diagnosis has been an enlightening and challenging experience. In this foreword, I aim 

to provide a brief overview of the purpose, significance, and scope of this study, as 

well as express my gratitude to those who have supported and contributed to its 

realization. 

Alzheimer's disease is a progressive and irreversible brain disorder that 

profoundly impacts memory, thinking, and behavior, ultimately leading to dementia. 

Early diagnosis plays a crucial role in slowing down the disease progression, 

improving patient care, and enhancing prognosis. Electroencephalography (EEG) has 

emerged as a promising method for early detection, offering advantages such as 

affordability, non-invasiveness, and portability. Furthermore, the integration of 

artificial intelligence tools has proven invaluable in developing models that facilitate 

disease diagnosis and detection. Deep learning, in particular, holds immense potential 

for enhancing accuracy; however, it heavily relies on a reliable dataset. 

The thesis begins by presenting a Generative Adversarial Networks (GAN) 

model, which generates artificial EEG datasets for Alzheimer's disease. This model 

aims to overcome the challenges of accessing a reliable dataset due to patient privacy 

concerns. The generated dataset serves as a valuable resource for understanding brain 

processes and enhancing medical diagnoses using deep learning techniques. 

Additionally, the study focuses on four classification models, namely Convolutional 

Neural Network (CNN), Recurrent Neural Network (RNN), Multi-layer Perceptron 

(MLP), and Transformer, to classify Alzheimer's EEG signals. The findings reveal that 

the GNN model successfully generates reliable artificial EEG signals, showcasing its 

potential in related channels. These methodologies serve as a promising 

complementary tool for identifying potential biomarkers, thus aiding in the clinical 

diagnosis of Alzheimer's disease. 

I would like to extend my deepest gratitude to my supervisor, Dr. Öğr. Üyesi 

Ebubekir KOÇ, whose invaluable mentorship, constructive criticism, experienced 

guidance, and countless hours of discussions have been instrumental in shaping this 

work. I am also indebted to Dr. Ahmet Yıldrım from the EEG department at Kartal Dr. 
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Lütfi Kirdar hospital for his guidance in the diagnosis of EEG signals, which 

significantly enriched the study. Also, I am profoundly grateful to Turkiye 

Scholarships (YTB) for granting me the opportunity to pursue my studies in the 

beautiful country of Turkiye and study at Fatih Sultan Mehmet Vakif university. 

In conclusion, this thesis represents a significant contribution to the field of 

Alzheimer's disease diagnosis and offers a novel approach through the integration of 

deep learning and artificial intelligence techniques. It is my sincere hope that the 

findings presented herein will serve as a valuable resource for researchers, clinicians, 

and practitioners alike in the ongoing battle against Alzheimer's disease. 

 

 

Husam Al-hammadi 
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INTRODUCTION 

Overview  

Dementia is a term used to describe a decline in cognitive function, including 

memory loss, language difficulties, disorientation, mood swings, and loss of 

motivation. It is typically caused by physical changes in the brain, such as the 

accumulation of abnormal protein deposits, damage to nerve cells, or decreased blood 

flow. Dementia is not itself a single disease but rather a clinical syndrome – that is, a 

collection of symptoms and other features that exist together and form a recognized 

pattern. The syndrome of dementia has several causes, although some are more 

common than others. The common forms of dementia are Alzheimer’s disease (AD), 

Vascular dementia, Frontotemporal dementia, Huntington’s disease, and Creutzfeldt-

Jacob disease. Alzheimer's disease (AD) is the most common form of advanced 

dementia observed clinically and it is the source of two-thirds of dementia cases. 

Problem Statement 

There is currently no proven treatment method for patients who enter the AD 

stages. Early diagnosis is therefore very important to improve the quality of care and 

prevent patients from developing further complications. So, diagnosing Alzheimer’s 

disease is one of the most challenging tasks in modern medicine, not just in the early 

stages of the disease when symptoms are less obvious but also in the later stages of 

dementia. A variety of approaches and techniques, including Electroencephalography 

(EEG), biochemical markers, and imaging biomarkers, have greatly aided in the 

diagnosis of the disease. EEG is considered the most used method, which is a non-

invasive technique that measures the electrical activity of the brain. The ability of EEG 

to detect aberrant brain activity patterns associated with AD has led to its use as a 

potential diagnostic tool. By analyzing EEG signals and identifying abnormal patterns, 

clinicians can obtain valuable insights into the progression of the disease and make 

informed decisions regarding treatment and management. However, neurologists and 

medical experts still make the majority of manual diagnoses for neurological brain 
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disorders presently. In some cases, they need several hours to make a final diagnosis 

for a single patient. 

In recent years, researchers in the multidisciplinary fields of bioengineering 

and neuroscience have made considerable efforts for enhancing the performance of 

Brain Computer Interface (BCI) and developing a Computer-Aided Diagnosis (CAD) 

system. The application of deep learning techniques to the classification of 

Alzheimer's disease based on Electroencephalography (EEG) has gained significant 

attention due to the recent advancements in artificial intelligence. However, the 

common point in these methods is that they require large datasets to learn and give 

accurate results while obtaining EEG data from Alzheimer's patients is problematic. 

Due to the patient's rights, researchers may not be able to access a sufficient dataset to 

train the network. As a result, researchers have recently attempted to develop methods 

and techniques to generate artificial EEG datasets or design signals akin to EEG 

signals.  

Objectives  

In this study, the main objective is to create an accessible artificial EEG 

Alzheimer dataset and classification system by using deep learning methods. 

Generative Adversarial Network (GNN) will be used for generating EEG Alzheimer 

dataset and four deep learning models, Convolutional neural Network (CNN), 

Recurrent Neural Network (RNN), Multi-Layer Perceptron (MLP) and Transformer, 

will be used for designing classification system.  In deep learning, generative modeling 

is an unsupervised learning task that includes automatically detecting and learning 

regularities or patterns in input data so that the model may be used to produce or output 

real examples that could have been drawn from the original dataset. Thus, a group of 

Alzheimer patients will be examined for EEG signals. The collected data will be 

filtered and made suitable for the generation process. Following the signal generating 

procedure, the model's efficiency will be tested using the EEG classification of 

Alzheimer models, which is based on a classification system. 
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Research Organization 

In addition to this chapter, this research is organized as follows: 

Chapter 1 provides medical background and engineering information about 

Alzheimer’s disease and provides deep learning methods discusses which models will 

be used. 

Chapter 2 explains the dataset generation system, as it presents GAN model 

and shows the process of generating artificial Alzheimer EEG dataset. 

Chapter 3 explains the classification system, as it presents deep learning 

models, describes the structure, and shows classification process.  

Chapter 4 discusses the results and shows the conclusion of the research. 
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CHAPTER 1:  

1. BACKGROUND AND LITERATURE REVIEW  

1.1. ALZHEIMER’S DISEASE 

1.1.1. Definition  

Dementia is a condition characterized by cognitive impairment that is severe 

enough to cause a decline in mental, behavioral, and social abilities. Clinically, 

Alzheimer's disease (AD) is the most frequently diagnosed type of progressive 

dementia and accounts for approximately two-thirds of all dementia cases (Dening & 

Sandilyan, 2015). Alzheimer's disease (AD) is a neurodegenerative disease that results 

in brain atrophy and cell death (Dubois et al., 2016; Scheltens et al., 2016). 

The disease was diagnosed in 1907 by Alois Alzheimer, a German psychiatrist 

and neuropathologist (Alzheimer, 1907). Although the pathogenesis of the disease is 

still unknown, it is assumed that an abnormal build-up of proteins in and around brain 

cells may cause the disease (Jonker, Launer, Hooijer, & Lindeboom, 1996). One of the 

proteins involved in amyloid (Aβ) deposits causes plaques around the brain cells; 

consequently, the neural bonds between brain cells are severed (Mattson, 2004; 

Scheltens et al., 2016). 

 AD is the third most costly disease in the United States and the sixth leading 

cause of death. It affects more than 10% of Americans over the age of 65 and nearly 

half of those over the age of 85. However, the number of people living with 

Alzheimer's disease in the United States is rising. An estimated 6.5 million Americans 

aged 65 and older will live with Alzheimer's in 2022 (Alzheimer's & dementia, 2022). 

By 2050, Alzheimer's dementia is expected to affect 12.7 million people in the United 

States (Alzheimer's & dementia, 2022). The impact of AD extends beyond the 

individual affected and can have significant social and economic consequences. As the 

number of people affected by AD continues to grow, it is essential to identify effective 

diagnostic and treatment strategies to manage the disease and its associated. 
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1.1.2. Stages of Alzheimer's Disease 

According to the National Institute on Aging ("Alzheimer's Disease Fact 

Sheet," July 08, 2021) and the Alzheimer's Association ("Stages of Alzheimer's,"), the 

progression of the disease can be classified into three different stages. The first stage 

is Mild Cognitive Impairment (MCI), which can be mainly divided into subject 

memory concern (SMC), early mild cognitive impairment (EMCI), and late mild 

cognitive impairment (LMCI). At this stage the patient's cognition begins to gradually 

deteriorate, which causes a wide range of symptoms, such as including difficulties 

remembering recent events, subtle behavioural changes, distinct loss of autonomy in 

daily activities, confusion about time and place, and personality changes. The second 

stage is Moderate Alzheimer’s disease. This stage of the disease involves significant 

memory loss, difficulty with language and communication, and problems with 

mobility and coordination. Patients may also experience changes in behavior, such as 

wandering, agitation, or aggression in this stage. The last stage is Severe Alzheimer’s 

disease, in which brain tissue significantly shrinks as plaques and tangles spread 

throughout the brain. At the stage of disease progress, continuous and strict supervision 

is required due to the patients being unable to perform any tasks ("Alzheimer's Disease 

Fact Sheet," July 08, 2021; Rodrigues, Teixeira, Garrett, Alves, & Freitas, 2016; 

"Stages of Alzheimer's,"). 

1.1.3. Alzheimer's Disease Diagnosis 

Since AD is an incurable disease, early diagnosis is one of the primary methods 

to increase the quality and quantity of patient care. Thus, diagnosing the disease is one 

of the most challenging tasks in modern medicine, not just in the early stages of the 

disease when symptoms are less obvious but also in the later stages of AD. Several 

methods, such as biochemical markers, imaging biomarkers, and 

Electroencephalography, have contributed to and significantly assisted in diagnosing 

the disease.  

In biochemical markers, biochemical tests are used for measuring the protein 

concentrations of beta-amyloid, total tau protein and phosphorylate tau181P the 

cerebrospinal fluid (CSF) or blood (Rabbito, Dulewicz, Kulczyńska-Przybik, & 

Mroczko, 2020; Sunderland et al., 2006). These tests can help to diagnose Alzheimer's 
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disease and monitor disease progression. Furthermore, imaging biomarkers, such as 

Magnetic Resonance Imaging (MRI) and Positron Emission Tomography (PET), have 

played a significant role in understanding the diagnosis process. In PET, several types 

of scans are used to determine the concentration of particular molecules in the brain. 

E.g., Fluorodeoxyglucose Positron Emission Tomography (FDG-PET) is a test used 

to the uptake of a radioactive glucose tracer in the brain, which provides information 

about brain metabolism and function (Johnson, Fox, Sperling, & Klunk, 2012; Marcus, 

Mena, & Subramaniam, 2014; Weiner & aging, 2009). 

Since Alzheimer's disease is characterized by an insidious onset and inexorable 

progression of atrophy in the brain, MRI can show changes in brain structure, 

including shrinkage of the hippocampus, a region of the brain important for memory 

formation and retrieval (Scheltens, Fox, Barkhof, & De Carli, 2002). Also, another 

imaging technique is known as Resting-state fMRI, which is a technique that measures 

spontaneous fluctuations in blood oxygenation level-dependent (BOLD) signal in the 

brain. BOLD fMRI is a method used to measure the changes in blood oxygen levels in 

neurons and this method has been used to investigate changes in functional 

connectivity patterns in the brain for AD patients (Ogawa, Lee, Nayak, & Glynn, 

1990). This technique is considered more functional for monitoring disease 

progression in later stages (van Oostveen & de Lange, 2021). 

 

1.2. ELECTROENCEPHALOGRAPHY 

Electroencephalography (EEG) is a method used to measure the 

electromagnetic field activity of brain cells. EEG signals are typically separated into 

several frequency bands, including delta (δ, 0.5-4 Hz), theta (θ, 4-8 Hz), alpha (α, 8-

13Hz), and beta (β, 13-30 Hz) as shown in figure 1.1 (Stern, 2005). Each frequency 

band is associated with different physiological and cognitive processes, and their 

analysis can provide valuable insights into the underlying neural activity. Delta waves, 

for instance, are typically observed in EEG signals of sleeping individuals, while alpha 

waves are commonly observed when the individual is awake but relaxed and not 

paying attention to external stimuli. Theta waves are frequently observed in states of 

deep relaxation, while beta waves are typically detected in EEG signals when an 
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individual is actively engaged in mental activity or sensory processing (Sanei & 

Chambers, 2013). 

 

Figure 1. 1 The normal brain frequency with their amplitude levels (Sanei & Chambers, 2013). 

Research has shown that Alzheimer's disease (AD) affects the power of 

electrical signals in different frequency bands in the brain. The most commonly 

observed effect is referred to as "EEG slowing" (Sanei & Chambers, 2013), which is 

characterized by an increase in power in the low-frequency bands, such as delta and 

theta, and a reduction in power in the higher frequency bands, such as alpha and beta 

(Jeong, 2004; Malek, Baker, Mann, & Greene, 2017). 

EEG has been recognized as an effective method for recording abnormal brain 

activity patterns, particularly in AD, due to its noninvasive and inexpensive nature, 

high resolution, and direct access to neuronal signals. Unlike functional magnetic 

resonance imaging (fMRI) or positron emission tomography (PET), which detect 

metabolic signals indirectly, EEG provides a direct measurement of neuronal activity, 

making it a valuable tool for understanding the pathophysiology of AD. The ability of 

EEG to detect aberrant brain activity patterns associated with AD has led to its use as 

a potential diagnostic tool. By analyzing EEG signals and identifying abnormal 

patterns, clinicians can obtain valuable insights into the progression of the disease and 

make informed decisions regarding treatment and management. 
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In Alzheimer's disease, the brain undergoes significant changes, including the 

degeneration of neurons and the formation of amyloid plaques and neurofibrillary 

tangles. These changes can affect the synchronization of electrical activity in the brain, 

which can be measured using EEG synchronization channels. EEG synchronization 

channels have been used to study the effects of Alzheimer's disease on the brain, and 

research has shown that in patients with Alzheimer's disease, there is a reduction in 

alpha and beta band synchronization in the occipital and temporal regions of the brain 

(Al-Jumeily, Iram, Vialatte, Fergus, & Hussain, 2015; Rice et al., 1990). These regions 

are involved in visual processing and memory, respectively, which are often affected 

by Alzheimer's disease. The study focused on four channels (Left Temporal-Left 

Occipital (T5-O1), Left Parietal-Left Occipital (P3-O1), Right Temporal-Right 

Occipital (T6-O2), Right Parietal-Right Occipital (P4-O2) as can be seen in Figure 1.2. 

 

Figure 1. 2 The 4-channels used for generating and classifying Alzheimer's EEG signals. 

1.3. DEEP LEARNING MODELS 

In recent years, researchers in the multidisciplinary fields of bioengineering 

and neuroscience have made considerable efforts for enhancing the performance of 

Brain Computer Interface (BCI) and developing a Computer-Aided Diagnosis (CAD) 

system. The application of deep learning techniques to the classification of 

Alzheimer's disease based on electroencephalography (EEG) has gained significant 
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attention due to the recent advancements in artificial intelligence. Deep learning 

models, including Convolutional Neural Network (CNN), Recurrent Neural Network 

(RNN), Multi-Layer Perceptron (MLP), and Transformer, have been extensively 

explored for their potential in accurately classifying EEG signals associated with 

Alzheimer's disease. There are also many models used, however, the models that have 

been used in this work will be explained in this section. 

1.3.1. Generative Adversarial Network 

Generative Adversarial Network (GAN) is an unsupervised learning technique 

that has shown promising results for learning complex distributions.  It consists of two 

neural networks, a generator (G) and a discriminator (D). The generator network takes 

random noise as input and generates a sample that mimics the true data distribution. 

The discriminator network takes a sample and classifies it as real (from the true data 

distribution) or fake (generated by the generator).  The model was proposed in 2014, 

summarized in Equation 1 (Goodfellow et al., 2014). 

 

𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑉(𝐷, 𝐺) =  𝐸𝑥~𝑃𝑑𝑎𝑡𝑎(𝑥)
[log 𝐷(𝑥)] + 𝐸𝑧~𝑃𝑧(𝑧)

[log (1 − 𝐷(𝐺(𝑧)))]           (1) 

 

This equation briefly explains adversarial modelling as both (G, D) have 

multilayer models. Prior noise variables pz(z) have been established as input to 

learning the generator's distribution pg over data x. Then a mapping to data space is 

represented as G (z; Өg), where G is a differentiable function represented by a 

convolutional neural network with parameters Өg. Second convolutional neural 

networks have been defined as D (x; Өd), which outputs a single scalar. The 

probability that x came from the data rather than pg is represented as D(x). The purpose 

of the equation is to train D to maximize the probability of assigning the correct label 

to both training examples and samples from G. It is trained to minimize log(1-

D(G(z))), in which D and G play the following two-player minimax game with value 

function V (G; D), as can be seen in the Equation 1 (Goodfellow et al., 2014). A block 

diagram illustrating the GANs model is shown in Figure 1.3. 
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Figure 1. 3 Block diagram of the GAN model. 

1.3.2. Convolutional neural Network 

Convolutional Neural Network (CNN) is a powerful deep learning algorithm 

that is widely used for image and video analysis. One of the key features of CNN is 

their ability to extract relevant features from input data, such as edges, corners, or other 

patterns, by using a series of convolutional layers with learnable filters that slide over 

the input data (Ajit, Acharya, & Samanta, 2020; O'Shea & Nash, 2015). The output 

from each convolutional layer is then passed through a nonlinear activation function, 

such as the rectified linear unit (ReLU), to introduce nonlinearity to the model. The 

output from the final convolutional layer is then fed into one or more fully connected 

layers, which perform a classification or regression task (Li et al., 2021).  

A typical CNN architecture consists of three types of layers, namely 

convolutional layers, pooling layers, and fully connected layers, which are stacked 

together to form a deep neural network. In the convolutional layers, the filters slide 

over the input data to extract useful features, while the pooling layers downsample the 

feature maps to reduce their size and extract more robust features. Finally, the fully 

connected layers use the extracted features to perform a classification or regression 

task (O'Shea & Nash, 2015). To illustrate a simplified CNN architecture for MNIST 

classification, Figure 1.4 is provided. 
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Figure 1. 4 A simple CNN architecture. 

1.3.3. Recurrent Neural Network 

Recurrent Neural Network (RNN) is a type of artificial neural network that is 

designed to handle sequential data, such as time-series data or sequential text data. 

Recurrent Neural Network (RNN) differs from standard neural networks in their 

ability to process sequential data by maintaining an internal state or memory of 

previous inputs (Yu, Si, Hu, & Zhang, 2019). Unlike standard neural networks, 

which process input data as a fixed-size vector or tensor, RNN process sequences 

of variable length, such as sentences, audio signals, or time-series data. This is 

achieved by introducing connections between neurons that allow information to 

flow backwards from the current output to the previous inputs, effectively creating 

a loop that enables the network to maintain a memory of previous inputs (Medsker, 

Jain, & Applications, 2001). Figure 1.5 provides a simple RNN architecture. 

 

Figure 1. 5 A simple RNN architecture. 
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In this architecture, the RNN processes input sequences by taking an input xt 

and a hidden state h t-1 at each time step t. The hidden state h t-1 is passed from the 

previous time step, allowing the network to maintain a memory of previous inputs. 

This is achieved by introducing connections between neurons that allow 

information to flow backwards from the current output to the previous inputs, 

effectively creating a loop that enables the network to maintain a memory of 

previous inputs. The equations (2) and (3) represent the mathematical operations 

performed at each time step of the RNN (Alessandrini et al., 2022; Yu et al., 2019). 

 

ℎ𝑡 = 𝑓(𝑊ℎℎ𝑡−1 +  𝑉ℎ𝑥𝑡 + 𝑏ℎ)                       (2) 

𝑜𝑡 = 𝑓(𝑊𝑜ℎ𝑡 + 𝑏𝑜)                                            (3)  

 

Equation (2) represents the computation of the new hidden state ht by taking 

the previous hidden state h t-1, the current input xt, and the weights and biases of the 

hidden layer as inputs. The activation function f applies a non-linear transformation 

to the linear combination of these inputs. This allows the network to learn complex 

patterns in sequential data and capture long-term dependencies. Equation (3) 

represents the computation of the output ot by taking the new hidden state ht and 

the weights and biases of the output layer as inputs. The activation function f applies 

a non-linear transformation to the linear combination of these inputs, resulting in 

the output of the network at that time step (Alessandrini et al., 2022). 

One of the key challenges in training RNN is the problem of vanishing 

gradients, which occurs when the gradient of the loss function with respect to the 

weights becomes very small as it is propagated backwards through time. This can 

make it difficult for the network to learn long-term dependencies (S. J. I. J. o. U. 

Hochreiter, Fuzziness & Systems, 1998). To address this issue, various 

modifications to the basic RNN architecture have been proposed, such as Long 

Short-Term Memory (LSTM) networks by Hochreiter et al. (S. Hochreiter & 

Schmidhuber, 1997), which use additional gating mechanisms to control the flow 
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of information through the network and allow it to selectively remember or forget 

certain inputs. The structure of the LSTM unit is shown in Figure 1.6. 

 

Figure 1. 6 The structure of the LSTM unit (Alessandrini et al., 2022). 

The Long Short-Term Memory (LSTM) architecture is a modification to the 

basic RNN architecture that uses additional gating mechanisms to selectively 

control the flow of information through the network, thereby enabling it to 

overcome the problem of vanishing gradients and learn long-term dependencies (S. 

J. I. J. o. U. Hochreiter, Fuzziness & Systems, 1998). In LSTM networks, the long-

term state, short-term state, and the output of each layer at each time step are 

described by a set of equations. The forget gate ft determines how much of the 

previous long-term state to forget, while the input gate it determines how much of 

the new input to add to the current long-term state (S. Hochreiter & Schmidhuber, 

1997). The output gate ot is used to control the output of the current time step. The 

equations that define the behavior of an LSTM unit are as follows (Alessandrini et 

al., 2022): 

𝑓𝑡 =  𝜎 (𝑊𝑥𝑓
𝑇  𝑥𝑡 + 𝑊ℎ𝑓

𝑇  ℎ𝑡−1 + 𝑏𝑓)                       (4) 

𝑖𝑡 =  𝜎(𝑊𝑥𝑖
𝑇 𝑥𝑡 + 𝑊ℎ𝑖

𝑇  ℎ𝑡−1 +  𝑏𝑖)                           (5) 

�̃�𝑡 =  𝑡𝑎𝑛ℎ(𝑊𝑥𝑐
𝑇  𝑥𝑡 + 𝑊ℎ𝑐

𝑇  ℎ𝑡−1 +  𝑏𝑐)                   (6) 

𝑔𝑡 =  𝜎 (𝑊𝑥𝑔
𝑇  𝑥𝑡 + 𝑊ℎ𝑔

𝑇  ℎ𝑡−1 + 𝑏𝑔)                       (7) 

𝑐𝑡 =  𝑓𝑡 ⊗ 𝑐𝑡−1 + 𝑖𝑡 ⊗ �̃�𝑡                                            (8)  
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𝑜𝑡 =  ℎ𝑡 =  𝑔𝑡 ⊗ tanh(𝑐𝑡)                                      (9) 

 

The forget gate ft is determined by the sigmoid activation function and is 

defined by the equation (4). The input gate it is also determined by the sigmoid 

function and is defined by the equation (5). The candidate memory cell c̃t is 

calculated using the hyperbolic tangent function and is defined by the equation (6). 

The output gate ot is calculated using the sigmoid function and is defined by the 

equation (7). The long-term memory cell ct is updated using a combination of the 

forget gate ft and the input gate it, as well as the candidate memory cell c̃t. This is 

defined by the equation (8). Finally, the short-term memory state ht and the output 

ot are calculated using the output gate ot and the hyperbolic tangent of the updated 

long-term memory cell ct, as defined by the equations (9). In these equations, Wxf, 

Wxi, Wxc, and Wxg represent the weight matrices associated with the matching 

connected input vector, while Whf, Whi, Whc, and Whg are the weight matrices for the 

short-term state from the previous time step. The bias terms bf, bi, bc, and bg are 

added to each gate and memory cell. The symbol ⊗ denotes the point-wise 

multiplication (Alessandrini et al., 2022). 

1.3.4. Multi-Layer Perceptron 

The Multi-Layer Perceptron (MLP) is a powerful type of Artificial Neural 

Network (ANN) that is widely used for a variety of tasks, including classification, 

regression, and prediction. It consists of multiple layers of interconnected neurons, 

with each neuron in a layer fully connected to all neurons in the previous and next 

layers. This allows the MLP to learn complex non-linear relationships between 

input and output data. In an MLP, the input is passed through one or more hidden 

layers of neurons, each layer performing a linear transformation of the input 

followed by a non-linear activation function, such as the sigmoid or ReLU function. 

The activation function introduces non-linearity into the network, enabling it to 

learn more complex and sophisticated patterns in the data. The final output of the 

MLP is typically produced by a single output layer of neurons, which performs a 

linear transformation of the output of the last hidden layer followed by a non-linear 
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activation function. The output layer is often designed to produce a probability 

distribution over the possible output classes or values. The general structure of an 

MLP is shown in Figure 1.7, with input layer, one or more hidden layers, and output 

layer. The size and number of hidden layers and the number of neurons in each 

layer can be customized to suit the specific task at hand (Kruse, Mostaghim, 

Borgelt, Braune, & Steinbrecher, 2022). 

 

Figure 1. 7 The structure of the MLP unit (Kruse et al., 2022). 

The network input function of each hidden and output neuron can be expressed 

as the weighted sum of the inputs, where the weights are the connection weights 

between the input and the neuron. In mathematical terms, for all u belonging to the 

set of hidden neurons union set of output neurons (Kruse et al., 2022), the network 

input function can be defined as: 

 

∀𝑢 ∈  𝑈ℎ𝑖𝑑𝑑𝑒𝑛  ∪  𝑈𝑜𝑢𝑡  ∶        𝑓𝑛𝑒𝑡
(𝑢)(𝑖𝑛𝑢 , 𝑤𝑢) =  𝑤𝑢 𝑖𝑛𝑢 =  ∑ 𝑤𝑢𝑣 𝑜𝑢𝑡𝑣        (10)

𝑣∈𝑝𝑟𝑒𝑑(𝑢)

 

Where, inu is the input to the neuron, wu is the weight of the connection between 

the input and the neuron, and outv is the output of the neuron v that connects to the 

neuron u. The symbol Σ represents the sum over all the neurons v that are predecessors 

of the neuron u. 

1.3.5. Transformer 

The Transformer is a deep learning model that was introduced in 2017 by 

Vaswani et al. (Vaswani et al., 2017) for Natural Language Processing (NLP) tasks 
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such as language translation, language modeling, and text generation. It is based on 

the self-attention mechanism, which allows the model to weigh the importance of 

different parts of the input sequence when generating the output. Unlike traditional 

recurrent neural network (RNN) models that process input sequences in a sequential 

manner, the Transformer model processes the entire input sequence in parallel, which 

allows it to capture long-range dependencies more efficiently. It consists of an encoder 

and a decoder, each of which contains multiple layers of self-attention and feedforward 

neural networks. The encoder takes the input sequence and produces a sequence of 

hidden representations, each of which captures information from the entire input 

sequence. The decoder takes the encoder output and generates the output sequence one 

token at a time, using the self-attention mechanism to attend to different parts of the 

input sequence as needed (Tay, Dehghani, Bahri, & Metzler, 2022). The Transformer 

follows this overall architecture using stacked self-attention and point-wise, fully 

connected layers for both the encoder and decoder, shown in the left and right halves 

of Figure 1.8, respectively (Vaswani et al., 2017). 

 

Figure 1. 8 The structure of the Transformer respectively (Vaswani et al., 2017). 



17 
 

The Transformer model consists of an encoder and a decoder, both of which 

are composed of multiple layers. The encoder takes an input sequence of symbol 

representations (x1, …., xn) and maps it to a sequence of continuous representations z 

= (z1, …., zn). Each layer in the encoder consists of two sub layers: a multi-head self-

attention mechanism and a position-wise fully connected feedforward network. The 

self-attention mechanism allows the model to weigh the importance of different 

positions in the input sequence when computing the output at each position, while the 

feedforward network applies a non-linear transformation to each position separately 

and identically. The decoder, on the other hand, takes the continuous representations z 

and generates an output sequence (y1, …., ym) of symbols one element at a time. Like 

the encoder, each layer in the decoder consists of two sub-layers: a multi-head self-

attention mechanism and a position-wise fully connected feedforward network. In 

addition, the decoder also includes a third sub-layer, which applies a multi-head 

attention mechanism to the encoder output z and computes a context vector for each 

position in the decoder input (Vaswani et al., 2017). 

1.4. RELATED WORKS 

The application of deep learning techniques to the classification of Alzheimer's 

disease based on Electroencephalography (EEG) has gained significant attention due 

to the recent advancements in artificial intelligence. Deep learning models, including 

Convolutional Neural Network (CNN), Recurrent Neural Network (RNN), Multi-

Layer Perceptron (MLP), and Transformer, have been extensively explored for their 

potential in accurately classifying EEG signals associated with Alzheimer's disease. 

For instance, previous studies have demonstrated the effectiveness of CNN in 

identifying and classifying Alzheimer's signals (Fouladi, Safaei, Mammone, Ghaderi, 

& Ebadi, 2022; C. Ieracitano, N. Mammone, A. Hussain, & F. C. Morabito, 2020a; 

Morabito et al., 2016). Morabito et al. (Morabito et al., 2016) utilized CNN to extract 

relevant features from EEG signals, which were then used as inputs to a classifier, 

achieving an accuracy of 82% in classifying EEG signals of AD patients and healthy 

controls (Morabito et al., 2016). Ieracitano et al. (Ieracitano et al., 2020a) proposed a 

novel approach by developing a customized CNN that can self-learn relevant features 

directly from the analysis of EEG recordings without the need for any hand-crafted 



18 
 

feature extraction technique. Their approach achieved an accuracy of 85% in 

classifying EEG signals of AD patients and healthy control (Ieracitano et al., 2020a). 

Fouladi et al. (Fouladi et al., 2022) also modified CNN and Convolutional 

Autoencoder (Conv-AE) Neural Network (NN) and employed Time-Frequency 

Representation (TFR) to extract desirable features from EEG signals. The average 

accuracy obtained in this work is 92% (Fouladi et al., 2022). 

Recurrent Neural Network (RNN) is also being used to classify Alzheimer's 

signals from EEG recordings. RNN has been used in EEG analysis for Alzheimer's 

disease by learning the patterns in the EEG signals and using this information to 

classify the signals as indicating Alzheimer's disease or not. Alessandrini et al. 

(Alessandrini et al., 2022)  developed RNN model on EEG data that has been pre-

processed with traditional Principal Component Analysis (PCA). The RNN is then 

trained on this processed data. After that, the researchers use corrupted data as input 

and process it with Robust Principal Component Analysis (RPCA) to filter outlier 

components. This combined approach allows for the identification of Alzheimer's 

patterns, and the results of this approach reached to 93.5% (Alessandrini et al., 2022). 

Another work reported by Alvi et al. (Alvi, Siuly, & Wang, 2022) provided a deep 

learning-based framework using the Long Short-term Memory (LSTM) model for 

identifying of MCI patients from healthy patients. In their study, they showed that the 

LSTM was able to achieve a performance of up to 96.41% in classifying EEG signals 

as indicative of MCI or not (Alvi et al., 2022). 

Multi-layer Perceptron (MLP) is a popular type of neural network that has also 

been used for classifying Alzheimer's EEG signals. In Alzheimer's EEG analysis, MLP 

has been employed to classify EEG signals as indicative of Alzheimer's disease or not 

by detecting patterns in the signals. For example, Ieracitano et al (C. Ieracitano, N. 

Mammone, A. Hussain, & F. C. J. N. N. Morabito, 2020b) proposed a multi-modal 

machine learning-based approach for automatically classifying EEG recordings in 

dementia, achieving a high accuracy rate of 97% (Ieracitano et al., 2020b). In addition, 

machine learning techniques have shown great potential in the classification of 

Alzheimer's disease using EEG signals.  For instance, Cassani et al. (Cassani et al., 

2017) used an automated EEG-based AD diagnostic system based on an Automated 

Artifact Removal (AAR) algorithm and a low-density (7-channel) EEG setup. The 
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proposed diagnostic system had a maximum accuracy of 91.4% (Cassani et al., 2017). 

Another work reported by Alsharabi et al. (AlSharabi, Salamah, Abdurraqeeb, Aljalal, 

& Alturki, 2022) which used machine learning approaches to classify EEG signals. 

They used Linear Discriminant Analysis (LDA), Quadratic Discriminant Analysis 

(QDA), Support Vector Machine (SVM), Naïve Bayes (NB), K-Nearest Neighbor 

(KNN), Decision Tree (DT), Extreme Learning Machine (ELM), Artificial Neural 

Network (ANN), and Random Forests (RF). The performances of the different 

proposed machine learning approaches have been evaluated and the best classification 

accuracy achieved in KNN classifier achieved which is 99.98% (AlSharabi et al., 

2022).  

Transformer-based models have been used in EEG classification tasks. 

Transformer-based models have been used to classify EEG signals into different 

categories, such as different types of sleep stages or different diseases, based on the 

patterns in the signals (Guo et al., 2022; Sun, Xie, & Zhou, 2021; Wang, Wang, Hu, 

Yin, & Song, 2022). Transformer-based models have been shown to be effective in 

EEG analysis and have been used in several studies to achieve high levels of 

classification accuracy. However, this area of research is still in its early stages and 

more research is needed to fully understand the potential of Transformer-based models 

in EEG analysis. 
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CHAPTER 2:  

2. DATASET GENERATION SYSTEM  

2.1. DATASET 

2.1.1. Alzheimer EEG Dataset 

The GAN model must employ a real EEG signals dataset to generate artificial 

EEG Alzheimer's signals. Thus, we have employed a clinical EEG dataset collected 

from archival records at Temple University Hospital (TUH) named "TUH Abnormal 

EEG Corpus" (Obeid & Picone, 2016). The dataset was collected under the 

Declaration of Helsinki with the permission of the Temple University IRB (Obeid & 

Picone, 2016).  

A set of 44 subjects (20 patients) were selected, as seen in Table 2.1, as their 

diagnoses and patient histories contained Alzheimer's based on experts at the Temple 

University Hospital. The evaluation step has been established manually with the help 

of a specialist from Kartal Dr. Lütfi Kirdar Hospital of Istanbul was engaged to ensure 

they include Alzheimer's disease. 

Table 2. 1 The EEG Alzheimer dataset. 

Gender Age Range Number of subjects Number of patients Duration (minute) 

Female 59 - 92 25 13 269.9 m 

Male 53 - 93 19 7 278.5 m 

 

2.1.2. Dataset Preprocessing 

The dataset needed to go through some preliminary preprocessing before being 

used as the input for the subsequent phases. First, it was observed that the set of signals 

included in each subject's data varied slightly, ranging from 21 to 23 channels from a 

list of possible channels such as Fp1, Fp2, Fpz, EKG, F7, F3, Fz, F4, F8, C3, Cz, C4, 

T3, T4, T5, T6, P3, Pz, P4, O1, O2, I, II, MK. Additionally, the order of these channels 

differed across subjects. To ensure a coherent and consistent set of input data, a subset 

of common signals present in all subjects was isolated. This resulted in a set of 16 
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signals, namely: Fp1, Fp2, F7, F3, F4, F8, T3, C3, C4, T4, T5, P3, P4, T6, O1, O2. 

These signals were then extracted and reordered accordingly. Moreover, to facilitate 

further processing in the subsequent steps, the data were saved in the "npy" format, 

which is a numerical format commonly used in Python's NumPy library. This format 

offers convenience and efficiency in handling the data. 

Furthermore, considering that Alzheimer's disease manifests more prominently 

in specific channels, the transformed channels were reduced to four channels: [T5-O1], 

[P3-O1], [T6-O2], and [P4-O2]. These channels were selected based on their relevance 

to capturing the characteristic patterns associated with Alzheimer's disease. 

EEG signals are highly susceptible to noise, which can adversely affect the 

accuracy of the analysis. To address this issue, preprocessing techniques are employed 

to remove noise and artifacts from the EEG signals before they are used to train the 

deep learning model. One widely used software package for preprocessing EEG data 

is MNE (Gramfort et al., 2014), which provides various functions for filtering, artifact 

removal, and other preprocessing steps. 

MNE has been used to preprocess EEG datasets for Alzheimer's disease 

analysis, specifically by removing interference and eliminating ocular artifacts and 

electromyographic signals (EMG). Various preprocessing functions provided by MNE 

were employed to address these concerns effectively. For instance, functions such as 

EOGRegression were used to remove unwanted signals originating from ocular 

movements, annotate_muscle_zscore was utilized to detect and eliminate muscle-

related artifacts, and annotate_movement helped in identifying and mitigating 

movement-related artifacts. Moreover, the EEG signals are manually examined to 

ensure that they are free from unwanted signals and artifacts. Finally, the processed 

EEG channels were organized into segments of 10s equal to 2500 samples (1576 

epochs). By employing these preprocessing techniques, the EEG datasets were 

cleansed from unwanted signals, enabling more accurate and reliable analysis for 

Alzheimer's disease research. 
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2.2. GAN MODEL 

2.2.1. Discriminator Model (D) 

The discriminator model is responsible for distinguishing whether the signal is 

real (Alzheimer's EEG signals) or artificial (induced by a generator). Our model, 

Visual Geometry Group (VGG16) is employed as a discriminator, a well-known 

Convolutional Neural Networks (CNNs) model with 16 layers. VGG16 has been 

widely used in various image processing tasks and has demonstrated excellent 

performance in 2D convolutional neural networks (Simonyan & Zisserman, 2014). 

Since our dataset is one-dimensional (1D), we have to modify the VGG16 

model to fit the dataset where every layer is converted to its corresponding in 1D. Our 

VGG16 model consists of 16 layers, beginning with 13 Conv1D layers with filter sizes 

of 64, 128, 256, and 512, and kernel sizes of 3, 5, and 7. We have also included five 

MaxPooling layers with two filters of stride two between the convolutional layers. The 

ReLU activation function is used for all the convolutional layers to allow gradients to 

be back-propagated during training and to prevent negative values from being passed 

to the next layer (Xu, Wang, Chen, & Li, 2015). The last three layers of our VGG16 

model are fully connected layers, with two layers of 4096 units using the ReLU 

activation function and an output layer of one unit using the sigmoid activation 

function. 

 This architecture is designed to learn high-level features from the input signals 

and make a binary decision on whether the signal is real or artificial. By adapting the 

VGG16 model to the 1D signal domain, our discriminator can effectively distinguish 

between real and generated signals and help to improve the overall performance of our 

GAN model. 

2.2.2. Generator Model (G) 

The latent space is a vector space of Gaussian-distributed values that is 

randomly sampled and provided as input to the generator model during training. 

During training, the generator learns to map points in the latent space to output EEG 

signals that are similar to real Alzheimer's EEG signals. At the end of training, the 

generator has learned to assign meaning to points in the latent space, such that specific 

regions of the space correspond to specific features of the output EEG signals. By 
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sampling points from the latent space and providing them as input to the generator, 

new plausible Alzheimer's EEG signals can be generated. J. Brownlee's (Brownlee, 

2019) proposed model was used and modified to suit our work.  

The generator model consists of eight layers, with the first being a dense layer 

with enough nodes to represent a low-resolution version of the output signal. The 

activations from this layer are then reshaped into a signal representation to be fed into 

a convolutional layer with 128 different 625 feature maps. For the unsampling process, 

we utilized five layers arranged as follows: a Conv1DTranspose layer with 128 filters 

of stride 2, two Conv1D layers with 128 filters and a kernel size of (5, 7), another 

Conv1DTranspose layer with 128 filters of stride 2, and a Conv1D layer with 128 

filters and a kernel size of 5. We selected the leaky rectified linear activation 

(LeakyReLU) with a slope of 0.2 (Xu et al., 2015) as the activation function between 

these layers. The output layer is a Conv1D with one filter and a kernel size of 7, and a 

sigmoid activation function is applied to guarantee that output values are normalized 

between [0, 1]. The Adam optimizer with a learning rate of 0.0002 and a momentum 

of 0.5 is utilized in both models (D, G). 

 In this chapter, we have been describing the steps involved in developing a 

dataset generation system for Alzheimer's EEG datasets. These steps are illustrated in 

Figure 2.1. In the beginning, the data for the discriminator are defined as real/fake 

signals, and it is trained to distinguish between them. Then, the generator transforms 

random noise into artificial Alzheimer's signals and sends them to the discriminator. 

The purpose of the discriminator is to determine whether the input comes from a 

generator network or a real dataset. Suppose the artificial Alzheimer's signals are 

detected by the discriminator. In that case, feedback is sent to the generator for 

enhancing and adjusting the networks until it generates artificial Alzheimer's signals 

that cannot be detected by the discriminator. Through this training process, the 

generator learns to produce signals that can deceive the discriminator, resulting in a 

high-quality output that closely resembles the real data. 
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Figure 2. 1 The block diagram of the GAN model. 

2.3. EVALUATION METRICS  

Once Alzheimer's EEG dataset is processed, and the channels are divided, each 

channel is trained individually in 10000 epochs. The effectiveness of the system is 

evaluated using two metrics. These metrics were recently employed to evaluate the 

performance of GANs when generating EEG signals (Vo, Vishwanath, Srinivasan, 

Dutt, & Cao, 2022). 

Spectral Entropy (SEN) is a statistical measure that evaluates the randomness 

or complexity of a signal's frequency spectrum. SEN quantifies the uniformity of 

signal energy distribution across different frequencies in the frequency domain. It is 

calculated by multiplying the power of each frequency with the logarithm of its power, 

and then summing up the products across all frequency bands (Vo et al., 2022). 

𝐻(𝑥) =  − ∑ 𝑃(𝑓) log2[𝑃(𝑓)]                                                  (11)

𝑓𝑠
2⁄

𝑓=0

 

where P is the normalized power spectral density, and fs is the sampling 

frequency of signal x. 
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Reconstruction Error (REC) measures the differences between the values of 

an original signal and its reconstruction �̃� as (Vo et al., 2022): 

𝑅𝐸𝐶 =  ‖𝑥1:𝑇
𝑞

−  �̃�1:𝑇
𝑞

‖
1

                                                                  (12) 
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CHAPTER 3:  

3. CLASSIFICATION SYSTEM  

3.1. DATASET  

3.1.1. EEG Dataset 

The datasets are divided into two groups: Real Dataset (R) and Artificial dataset 

(AR). Real dataset is divided into Alzheimer dataset (RAD) and Healthy dataset (RH), 

which are a clinical EEG dataset collected from archival records at Temple University 

Hospital (TUH) named "TUH Abnormal EEG Corpus" (Obeid & Picone, 2016). The 

dataset was collected under the Declaration of Helsinki with the permission of the 

Temple University IRB.  For Alzheimer dataset, set of 44 subjects (20 patients) were 

selected, and for Healthy dataset, set of 48 subjects (16 Healthy patients), as their 

diagnoses and patient histories contained Alzheimer's based on experts at the Temple 

University Hospital. The Artificial Dataset, on the other hand, consisted of the 

Artificial Alzheimer's Dataset (AAD). Artificial Alzheimer’s EEG Dataset Generation 

(GAN Model) has been used to generate Artificial alzheimer dataset. A specialist from 

Kartal Dr. Lütfi Kırdar Hospital in Istanbul was involved in the evaluation step to 

ensure the inclusion of Alzheimer's disease in the dataset. This step is crucial to ensure 

the quality and accuracy of the dataset, as misclassification or incorrect labeling of 

samples can lead to biased results and incorrect conclusions in subsequent analysis. 

Table 3.1 illustrates the dataset used in classification system.  

Table 3. 1 Summarizes the dataset used in classification system. 

Type of dataset Gender 
Age 

Range 

Number of 

subjects 

Number of 

patients 

Duration 

(minute) 

Real dataset 

RAD 
Female 59 - 92 25 13 269.9 m 

Male 53 - 93 19 7 278.5 m 

RH 
Female 22 - 81 27 10 365.8 m 

Male 21 - 70 21 6 252.2 m 

Artificial dataset AAD - - 1 - 151.6 m 
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As well, the MNE package has preprocessed the dataset by removing 

interference and eliminating ocular artefacts and electromyographic signals (EMG) 

(Gramfort et al., 2014). The EEG signals have also been manually examined to ensure 

that they contain no unwanted signals. 

3.1.2. Data Augmentation 

Data augmentation is a technique used to increase the size and diversity of a 

training dataset by creating new samples from existing data. There are several 

techniques for data augmentation such as flipping and rotation, cropping and resizing, 

color jittering, adding noise, and synthetic generation (Maharana, Mondal, & Nemade, 

2022). In our work, random noise has been used to increase the size and diversity of 

the training dataset, which can improve the ability of the model to generalize to new 

data and reduce overfitting. The processed EEG channels were organized in segments 

of 1s equal to 17300 sample in Healthy Dataset (RH), 8650 sample in Alzheimer 

Dataset (RAD), 8650 sample in Artistical Dataset (AAD), and 17300 in Augmented 

data (AUG). Segmentation helps to break down the data into smaller, more 

manageable chunks, which can make it easier to analyze and process. Additionally, it 

can help to improve the accuracy of the classification model by allowing it to capture 

more detailed temporal information about the EEG signals. 

3.1.3. Examination Sets 

The amount of dataset can have a significant impact on the performance of 

classification models. Generally, increasing the amount of training data tends to 

improve the accuracy of the model, as it provides more examples for the model to learn 

from and helps it to generalize better to new data. Thus, examination sets were 

implemented into six groups; These groups have been chosen experimentally, starting 

with a fewer value, and increasing until the network resolution changed significantly. 

Table 3.2 is summarized examination sets used in this study. 
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Table 3. 2 The examination sets for classification AD. 

Examination Sets 
Type of data Total 

(sample) RH RAD AAD AUG 

RAD (100%) 8650 8650 0 0 17300 s 

AAD (100%) 8650 0 8650 0 17300 s 

RAD (100%) + AAD (25%) 10813 8650 2163 0 21626 s 

RAD (100%) + AAD (50%) 12975 8650 4325 0 25950 s 

RAD (100%) + AAD (100%) 17300 8650 8650 0 34600 s 

RAD (100%) + AAD (100%) + AUG 17300 8650 8650 17300 51900 s 

 

3.2. CLASSIFICATION MODELS  

3.2.1. Visual Geometry Group (VGG16) 

VGG16 has been used for classification Alzheimer’s EEG signals. Our 

modified VGG16 model is designed with sixteen layers, starting with thirteen Conv1D 

layers that have filter sizes of 64, 128, 256, and 512, and kernel sizes of 3, 5, and 7. 

Additionally, we have incorporated five MaxPool layers with two filters of stride two 

between the convolution layers to reduce the dimensionality of the output. To ensure 

efficient training, we have chosen rectified linear activation (ReLU) as the activation 

function for the convolutional layers. The final three layers of our VGG16 model are 

dense, consisting of two layers of 4096 units that use ReLU as the activation function 

and an output layer of one unit that uses sigmoid as the activation function. We use the 

Adam optimizer with a learning rate of 0.0001 and a momentum of 0.5 for training our 

VGG16 model. For clarity, a summary of our VGG16 model architecture is provided 

in Figure 3.1.  

 

Figure 3. 1 VGG16 model architecture of our model. 
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3.2.2. Long Short-Term Memory (LSTM) 

LSTM has been used for classification Alzheimer’s EEG signals. LSTM model 

consists of seven layers starting with the dense layer, with enough nodes to represent 

a low-resolution version of the output signal. The core of the recurrent neural network 

consists of two cascaded LSTM layers. Each LSTM layer is followed by a dropout layer 

that randomly discards some of the input data. Finally, there are two fully-connected 

layers (dense layer) of size (64, 2) using RELU as the activation function and the 

model's output layer is using SoftMax as the activation function. The Adam optimizer 

with a learning rate of 0.0001 and a momentum of 0.2 is utilized in LSTM models.  

Figure 3.2 provides a summary of our LSTM model architecture. 

 

Figure 3. 2 LSTM model architecture of our model. 

 

3.2.3. Milit-Layer Perceptron (MLP) 

In our work, we utilized an MLP architecture comprising of 11 hidden layers, 

each with 4096 units. The activation function employed between these layers was 

rectified linear activation (ReLU) with a slope of 0.2, which has been shown to be 

effective in enhancing the performance of deep neural networks. To optimize the 

model's weights, we used the Adam optimizer with a low learning rate of 0.000001 and 

a momentum of 0.5, which helped in achieving faster convergence during the training 

process. Figure 3.3 provides a summary of our MLP model architecture. 
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Figure 3. 3 MLP model architecture of our model. 

 

3.2.4. Transformer 

In our work, an encoder has been used for classification Alzheimer’s EEG 

signals. we utilized a Transformer model with two encoder layers. The model's 

hyperparameters included four self-attention heads with a size of 512. To achieve a 

minimal loss during the model training process, we combined the Root Mean Squared 

Propagation optimizer (RMSprop) with a learning rate of 10-6. This combination of 

hyperparameters allowed the model to efficiently map input sequences to continuous 

representations and generate output sequences with high accuracy. Figure 3.4 provides 

a summary of our Transformer model architecture. 

 

Figure 3. 4 Transformer model architecture of our model. 
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In this chapter, we have been described the steps involved in developing a 

classification system for Alzheimer's disease diagnosis using EEG datasets. These 

steps are illustrated in Figure 3.5 and include Dataset, Preprocessing, Examination 

Sets, and Classification Models. Firstly, the Dataset step involves collecting the EEG 

recordings from patients with Alzheimer's disease as well as healthy individuals. Next, 

the Preprocessing step is used to analyze and process the dataset in order to remove 

any noise and interference from the brain patterns. This step involves techniques such 

as filtering, artifact removal, and normalization. In addition, data augmentation 

techniques such as adding random noise have been used to increase the size and 

diversity of the training dataset. The Examination Sets step involves dividing the 

preprocessed data into several sets to examine the performance of the classification 

models. Finally, the Classification Models step involves using various deep learning 

models such as CNN, RNN, MLP, and Transformer to classify the obtained data. 

Overall, by following these steps, it is possible to develop a reliable and accurate 

classification system for Alzheimer's disease diagnosis using EEG recordings. 

 

 

Figure 3. 5 The block diagram of proposed models in classification AD. 
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3.3. EVALUATION METRICS 

Evaluation metrics play a crucial role in assessing the performance of 

classification models. In our study, we have chosen the following evaluation metrics 

for assessing the performance of our classification models: 

3.3.1. Cross-Validation 

Since our dataset is limited, Cross-validation is used to evaluate the 

performance of classification models. It involves dividing the original dataset into two 

or more subsets, a training set and a validation set. The model is trained on the training 

set, and its performance is evaluated on the validation set. There are different types of 

cross-validation techniques, k-fold cross-validation algorithm has been used 

(Refaeilzadeh, Tang, & Liu, 2009). It involves dividing the original dataset into K 

equally sized subsets or folds. The model is then trained on K-1 of the folds and tested 

on the remaining fold. This process is repeated K times, with each fold being used as 

the test set once.  

In our work, 10-fold cross-validation has been utilized, which all processed 

dataset has been transmitted to the 10-fold cross-validation. Next, samples were 

divided into a 90% subset for the training set and a 10% of subset for the validation 

set. This process is done 10 times, so classifier could train to all samples. After that, 

the performance and the accuracy of the model will be calculated by the following 

equation (13).  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝐴𝑇𝑜𝑡𝑎𝑙

10
∗ 100                           (13) 

 

Where 𝐴𝑇𝑜𝑡𝑎𝑙 the total number of accuracies for each set. The resulting 

accuracy score provides a robust estimate of the model's performance, considering the 

variability of the data and the different subsets used for training and validation. 

3.3.2. Matthews Correlation Coefficient (MCC) 

The Matthews Correlation Coefficient (MCC) is a measure commonly used to 

assess the quality of binary (two-class) classification models. It was introduced by 

Brian Matthews in 1975 (Matthews, 1975). The MCC quantifies the difference or 
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discrepancy between the predicted values and the actual values and is analogous to the 

chi-square statistic for a 2 x 2 contingency table. It can be calculated by equation 14. 

 

𝑀𝐶𝐶 =  
𝑇𝑁 × 𝑇𝑃 − 𝐹𝑁 × 𝐹𝑃

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
             (14) 

 

where TP represents true positives, TN represents true negatives, FP represents 

false positives, and FN represents false negatives. 

The MCC ranges from -1 to +1, with +1 indicating a perfect prediction, 0 

indicating a random prediction, and -1 indicating a completely inverse prediction. It 

can be interpreted as a measure of the correlation between the predicted and actual 

binary classifications. 

 

3.3.3. Sensitivity, Specificity and Precision 

Sensitivity, also known as Recall, measures the ability of a model to correctly 

identify positive instances. It calculates the proportion of true positives out of all actual 

positive instances (Raschka, 2014). It can be calculated by equation 15. 

𝑆𝐸𝑁 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                              (15) 

 

where TP represents true positives and FN represents false negatives. 

 

Specificity measures the ability of a model to correctly identify negative 

instances. It calculates the proportion of true negatives out of all actual negative 

instances (Raschka, 2014). It can be calculated by equation 16. 

𝑆𝑃𝐶 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
                                 (16) 

 

where TN represents true negatives and FP represents false positives. 
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Precision, also known as Positive Predictive Value, measures the ability of a 

model to avoid false positives. It calculates the proportion of true positives out of all 

positive predictions made by the model (Raschka, 2014). It can be calculated by 

equation 17. 

 

𝑃𝑃𝑉 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
                                   (17) 

 

where TP represents true positives and FP represents false positives. 
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CHAPTER 4 

4. RESULTS AND DISCUSSION 

4.1. BENCHMARK RESULTS OF DATASET GENERATION SYSTEM 

In the dataset generation system, we proposed a model to create artificial EEG 

signals for Alzheimer's disease. The primary motivation is the difficulty accessing real 

datasets in training the networks for diagnosis. Generative Adversarial Network 

(GAN) is deployed to model the disease and generate artificial datasets for researchers 

to employ. Two models (GANAlzh-1, GANAlzh-2) have been selected from the 

generated epochs. Table 4.1 presents the performance of the proposed models in 

generating Alzheimer's EEG signals. Both GANAlzh-1 and GANAlzh-2 models 

achieve significantly lower REC and SEN differences. The performance of GANAlzh-

1 is better than GANAlzh-2 since SEN differences are lower (0.049) than those of 

GANAlzh-2 (0.086). However, the results show that both models are more effective 

at capturing Alzheimer's EEG signal features in the time and frequency domains. 

 The channel frequency domains are also examined to determine the similarity 

between the real and artificial channels. Figure 4.1 represents how closely real and 

artificial signals resemble each other in their frequency as the average number of peaks 

in ten seconds. The real signal has 67 peaks, while the artificial signal has 63, 

reinforcing the model's efficacy in generating the signals associated with Alzheimer's 

disease. 

 

Table 4. 1 Performances of GANALZH-1 and GANALZH-2 models in measuring spectral entropy 

and reconstruction tasks. 

 REC SEN 

Alzheimer Dataset  0.487 ± 0.063 

GANAlzh-1 0.043 ± 0.024 0.438 ± 0.056 

GANAlzh-2 0.044 ± 0.014 0.401 ± 0.043 

 

 



36 
 

 

Figure 4. 110-second of the channel (T5-O1) in Real and Artificial EEG recording for Alzheimer's 

EEG signal. The blue graphs are for Real EEG recording, while the red is for artificial. 

 

4.2. BENCHMARK RESULTS OF CLASSIFICATION SYSTEM 

As discussed previously, two types of EEG datasets (Real Dataset (R) and 

Artificial dataset (AR)) were used in this study. Real datasets were recorded from 44 

Alzheimer subjects (RAD) and 48 Healthy subjects (RH), while Artificial dataset was 

generated from Artificial Alzheimer’s EEG Dataset Generation. In order to improve 

signal-to-noise ratio, the dataset has been reprocessed by using the MNE package for 

removing the noise and unwanted signals. Then one of the augmentation techniques 

has been used to increase the amount of dataset. Finally, four types of classifiers 

(VGG16, LSTM, MLP, and Transformer) have been employed for distinguishing EEG 

signals corresponding to their group and the classification accuracies have been 

computed and compared with each other. Each model was trained 100, 150, 200, 250, 

300 epochs respectively to see when the system reached a cut off state. We have found 

that 300 epochs are suitable for the models as figure 4.2 shows the accuracy and the 

loss of the trained models. Furthermore, according to the amount of EEG dataset, six 

examinations sets have been investigated as following: 
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✓ Real dataset (RAD (100%)) 

✓ Artificial dataset (AAD (100%)) 

✓ Full Real dataset and quarter of Artificial dataset (RAD (100%) +AAD (25%)) 

✓ Full Real dataset and half of Artificial dataset (RAD (100%) +AAD (50%)) 

✓ Full Real dataset and full of Artificial dataset (RAD (100%) +AAD (100%)) 

✓ Full Real dataset, full of Artificial dataset, and augmented data (RAD (100%) 

+AAD (100%) +AUG) 

Sections III-A through III-F provide classification results for each examination 

set, demonstrating the performance of each classifier and the effectiveness of using 

augmented and artificial datasets to improve classification accuracy. 

 

 

Figure 4. 2 a) Plot of the training accuracy in training epochs for each classifier. b) Plot of the training 

loss in training epochs for each classifier. 



38 
 

4.2.1. Real dataset (RAD (100%)) 

In this section, the set of 8650 Real Alzheimer samples forms the class “AD” 

has been combined with the set of 8650 healthy samples forms the class "Normal". 

The average classification accuracy, MCC, Sensitivity, Specificity and Precision 

among four classifiers for the first examination sets is shown in Table 4.2. Also, Figure 

4.3.a illustrates the confusion matrices for all classifiers and provides the average 

accuracy. The VGG16 classifier showed the best performance, and the accuracy is 

97.17 % as can be observed. 

Table 4. 2 The average classification accuracy, MCC, Sensitivity, Specificity and Precision in Real 

dataset. 

Ex. Set RAD (100%) 

Classifier 

Model 

Accuracy MCC Sensitivity Specificity Precision 

Mean StD Mean StD Mean StD Mean StD Mean StD 

VGG16 97.17 % ± 0.41 0.919 ± 0.03 95.94 % ± 0.22 95.94 % ± 0.22 95.90 % ± 0.02 

LSTM 95.89 % ± 0.01 0.917 ± 0.04 94.95 % ± 0.19 94.95 % ± 0.19 94.80 % ± 0.03 

MLP 87.86 % ± 0.02 0.756 ± 0.03 87.90 % ± 0.03 87.95 % ± 0.10 87.70 % ± 0.04 

Transformer 74.23 % ± 0.04 0.510 ± 0.05 76.81 % ± 0.08 76.67 % ± 0.07 74.40 % ± 0.15 
 

4.2.2. Artificial dataset (AAD (100%)) 

In this section, the set of 8650 Artificial Alzheimer samples forms the class 

“AD” has been combined with the set of 8650 healthy samples forms the class 

"Normal". The average classification accuracy, MCC, Sensitivity, Specificity and 

Precision among four classifiers for the first examination sets is shown in Table 4.3. 

Figure 4.3.b illustrates the confusion matrices for all classifiers and provides the 

average accuracy. It can be seen that the artificial dataset and real dataset gave 

approximate accuracy results, which indicates the efficiency of the Artificial 

Alzheimer’s EEG Dataset Generation. Also, The VGG16 classifier showed the best 

performance, and the accuracy is 98.10 % as can be observed. 
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Table 4. 3 The average classification accuracy, MCC, Sensitivity, Specificity and Precision in 

Artificial dataset. 

Ex. Set AAD (100%) 

Classifier 

Model 

Accuracy MCC Sensitivity Specificity Precision 

Mean StD Mean StD Mean StD Mean StD Mean StD 

VGG16 98.10 % ± 0.94 0.910 ± 0.01 98.12 % ± 0.09 97.94 % ± 0.10 98.90 % ± 0.01 

LSTM 
94.39 % ± 0.03 0.964 ± 0.12 96.45 % ± 0.02 96.78 % ± 0.09 97.80 % ± 0.02 

MLP 86.11 % ± 0.05 0.785 ± 0.14 88.57 % ± 0.07 88.44 % ± 0.04 86.47 % ± 0.08 

Transformer 
76.67 % ± 0.07 0.657 ± 0.20 76.74 % ± 0.08 76.67 % ± 0.07 75.77 % ± 0.09 

 

Figure 4. 3 a) Confusion matrices for all classifiers in Real dataset set. b) Confusion matrices for all 

classifiers in Artificial dataset set. 

4.2.3. Full Real dataset and quarter of Artificial dataset (RAD (100%) 

+AAD (25%)) 

In this section, the set of 8650 Real Alzheimer samples and 2163 Artificial 

Alzheimer samples forms the class “AD” has been combined with the set of 10813 

healthy samples forms the class "Normal". The average classification accuracy, MCC, 

Sensitivity, Specificity and Precision among four classifiers for the first examination 

sets is shown in Table 4.4. The confusion matrices for all classifiers are illustrated in 

Figure 4.4.a. We also notice that there is a significant improvement in accuracy in 

MLP and Transformer Models, and this indicates that it needs more dataset to be able 

VGG  a LSTM MLP Trans  rmer

VGG  b LSTM MLP Trans  rmer
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to learn. As well, the VGG16 classifier showed the best performance, and the accuracy 

is 97.30 % as can be observed. 

Table 4. 4 The average classification accuracy, MCC, Sensitivity, Specificity and Precision in Full 

Real dataset and quarter of Artificial dataset. 

Ex. Set RAD (100%) +AAD (25%)) 

Classifier 

Model 

Accuracy MCC Sensitivity Specificity Precision 

Mean StD Mean StD Mean StD Mean StD Mean StD 

VGG16 97.30 % ± 1.37 0.922 ± 0.02 96.12 % ± 0.02 96.25 % ± 0.05 96.08 % ± 0.03 

LSTM 96.04 % ± 0.01 0.926 ± 0.02 96.32 % ± 0.02 96.58 % ± 0.04 96.56 % ± 0.02 

MLP 89.03 % ± 0.02 0.781 ± 0.03 89.09 % ± 0.13 89.84 % ± 0.11 89.04 % ± 0.03 

Transformer 77.37 % ± 0.03 0.564 ± 0.04 79.05 % ± 0.07 79.57 % ± 0.08 77.43 % ± 0.12 

 

4.2.4. Full Real dataset and half of Artificial dataset (RAD (100%) +AAD 

(50%)) 

In this section, the set of 8650 Real Alzheimer samples and 4325 Artificial 

Alzheimer samples forms the class “AD” has been combined with the set of 12975 

healthy samples forms the class "Normal". The average classification accuracy, MCC, 

Sensitivity, Specificity and Precision among four classifiers for the first examination 

sets is shown in Table 4.5. The confusion matrices for all classifiers are illustrated in 

Figure 4.4.b. It has seen a sustained accuracy improvement in the MLP and 

Transformer models. As well, the VGG16 classifier showed the best performance, and 

the accuracy is 97.51% as can be observed. 

Table 4. 5 The average classification accuracy, MCC, Sensitivity, Specificity and Precision in Full 

Real dataset and half of Artificial dataset. 

Ex. Set RAD (100%) +AAD (50%) 

Classifier 

Model 

Accuracy MCC Sensitivity Specificity Precision 

Mean StD Mean StD Mean StD Mean StD Mean StD 

VGG16 97.51 % ± 0.02 0.950 ± 0.01 97.51 % ± 0.05 97.25 % ± 0.05 97.51 % ± 0.04 

LSTM 96.68 % ± 0.04 0.959 ± 0.07 96.26 % ± 0.05 96.28 % ± 0.04 96.56 % ± 0.02 

MLP 90.50 % ± 0.03 0.789 ± 0.16 89.48 % ± 0.12 89.65 % ± 0.10 89.46 % ± 0.01 

Transformer 82.20 % ± 0.08 0.646 ± 0.07 82.46 % ± 0.03 82.57 % ± 0.04 82.20 % ± 0.04 
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Figure 4. 4 a) Confusion matrices for all classifiers in in Full Real dataset and quarter of Artificial 

dataset set. b) Confusion matrices for all classifiers in Full Real dataset and half of Artificial dataset 

set. 

4.2.5. Full Real dataset and full of Artificial dataset (RAD (100%) +AAD 

(100%)) 

In this section, the set of 8650 Real Alzheimer samples and 8650 Artificial 

Alzheimer samples forms the class “AD” has been combined with the set of 17300 

healthy samples forms the class "Normal". The average classification accuracy, MCC, 

Sensitivity, Specificity and Precision among four classifiers for the first examination 

sets is shown in Table 4.6. The confusion matrices for all classifiers are illustrated in 

Figure 4.5.a. The results showed that, while there was an improvement in accuracy in 

MLP and Transformer models, it was not enough to achieve good results due to the 

limited amount of data available for training and testing the classifiers. The VGG16 

classifier continued to exhibit the best performance, achieving an accuracy of 97.89%. 

  

VGG  a LSTM MLP Trans  rmer

VGG  b LSTM MLP Trans  rmer
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Table 4. 6 The average classification accuracy, MCC, Sensitivity, Specificity and Precision in Full 

Real dataset and full Artificial dataset. 

Ex. Set RAD (100%) +AAD (100%) 

Classifier 

Model 

Accuracy MCC Sensitivity Specificity Precision 

Mean StD Mean StD Mean StD Mean StD Mean StD 

VGG16 97.89 % ± 0.03 0.968 ± 0.05 97.90 % ± 0.08 97.95% ± 0.04 97.90 % ± 0.08 

LSTM 97.39 % ± 0.03 0.962 ± 0.06 97.66 % ± 0.04 97.50 % ± 0.03 97.56 % ± 0.05 

MLP 92.10 % ± 0.01 0.814 ± 0.07 90.70 % ± 0.09 90.86 % ± 0.10 90.70 % ± 0.01 

Transformer 85.25 % ± 0.05 0.712 ± 0.08 85.93 % ± 0.08 85.57 % ± 0.04 85.31 % ± 0.09 

 

4.2.6. Full Real dataset, full of Artificial dataset, and Augmented dataset 

(RAD (100%) +AAD (100%) +AUG) 

In this section, the set of 8650 Real Alzheimer samples, 8650 Artificial 

Alzheimer samples, and 8650 Augmented samples forms the class “AD” has been 

combined with the set of 17300 healthy samples and 8650 Augmented samples forms 

the class "Normal". The average classification accuracy, MCC, Sensitivity, Specificity 

and Precision among four classifiers for the first examination sets is shown in Table 

4.7. The confusion matrices for all classifiers are illustrated in Figure 4.5.b. The results 

of the evaluation demonstrated that the addition of data led to an improvement in the 

performance of all models. In particular, the results obtained from the transformer 

model were found to be promising. Furthermore, the VGG16 model achieved the 

highest result among all the classifiers, with an accuracy of 99.67%. 

Table 4. 7 The average classification accuracy, MCC, Sensitivity, Specificity and Precision in Full 

Real dataset, full Artificial dataset, and Augmented dataset. 

Ex. Set RAD (100%) +AAD (100%) +AUG 

Classifier 

Model 

Accuracy MCC Sensitivity Specificity Precision 

Mean StD Mean StD Mean StD Mean StD Mean StD 

VGG16 99.67 % ± 0.02 0.982 ± 0.01 99.51 % ± 0.06 99.39% ± 0.09 99.25 % ± 0.02 

LSTM 99.35 % ± 0.04 0.981 ± 0.04 99.42 % ± 0.09 99.28 % ± 0.03 99.14 % ± 0.08 

MLP 95.52 % ± 0.05 0.898 ± 0.01 95.12 % ± 0.07 95.07 % ± 0.08 95.08 % ± 0.05 

Transformer 96.63 % ± 0.08 0.904 ± 0.12 96.45 % ± 0.03 96.42 % ± 0.02 96.31 % ± 0.09 
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Figure 4. 5 a) Confusion matrices for all classifiers in full Real dataset and full Artificial dataset set. b) 

Confusion matrices for all classifiers in Full Real dataset, full Artificial dataset, and Augmented 

dataset set. 

4.3. DISCUSSION 

In the dataset generation system, the proposed models have achieved high 

accuracy, which generated slow waves at 5-7 Hz and 60 microvolts amplitude in the 

three channels ((T5-O1), (T6-O2), (P4-O2)). However, sometimes the frequency range 

increases from 7 to 10 Hz in the P3-O1 channel when the model generates longer 

sessions. The generated signals were evaluated based on the observations from our 

corpus and a neuroscientist from the EEG department at Kartal Dr. Lütfi Kirdar 

hospital in Istanbul, Turkiye. Figure 4.6. a is an example of a real Alzheimer's EEG 

signal of a 73-year-old woman with a history of Alzheimer's. We have observed that 

Alzheimer's disease affects the occipital and temporal regions of the brain ((T5-O1), 

(P3-O1), (T6-O2), (P4-O2)), which decrease the power of frequency and make them 

between 4-8 Hz. Figure 4.6. b is an artificial Alzheimer's EEG signal generated by the 

proposed model. EEG recordings usually contain noise such as interference (50Hz, 

60Hz), ocular artefacts, and (EMG) that require preprocessing before they can be used. 

Since our models can also generate noise-free signals, we can eliminate the 

preprocessing before the data is utilized for classification purposes. 
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Figure 4. 6 a) 10-second from 20-minute EEG recording for Alzheimer's EEG signal of a 73-year 

woman with a history of Alzheimer's. b) 10-second from 20-minute Artificial EEG recording for 

Alzheimer's EEG signal. 
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In classification system, table 4.8 presents the best classification accuracy of 

VGG16, LSTM, MLP and Transformer models. From the table, it can be seen the 

performed experiments have shown that the VGG16, LSTM, MLP and Transformer 

models can recognize subjects with AD, from the dataset used for the tests, with a high 

accuracy 99.98 %, 99.76 %, 97.58 %, and 97.34 % respectively. In VGG16 model, we 

notice that the performance of the model improves slightly when the amount of dataset 

is increased, as well in LSTM model. However, we observe that the performance of 

the MLP and Transformer models significantly improves when the amount of dataset 

is increased, and this indicates that it needs more dataset to be able to learn and enhance 

their performance. Also, there is a slight difference between the models' performance 

when tested on real (RAD 100%) versus artificial (AAD 100%) datasets. This 

discrepancy is due to the Artificial Alzheimer's EEG Dataset Generation's ability to 

generate noise-free signals for AD. This noise-free dataset makes it easier for the 

models to recognize AD, leading to higher classification accuracy. 

Table 4. 8 The best classification accuracy for all classifiers in each examination set. 

Classifier  

Examination Sets 
VGG16 LSTM MLP Transformer 

RAD (100%) 98.30 % 97.21 % 89.71 % 78.61 % 

AAD (100%) 99.27 % 98.85 % 90.17 % 80.77 % 

RAD (100%) + AAD (25%) 98.47 % 97.63 % 90.13 % 80.32 % 

RAD (100%) + AAD (50%) 98.89 % 98.04 % 90.85 % 83.53 % 

RAD (100%) + AAD (100%) 99.24 % 98.23 % 93.71 % 88.38 % 

RAD (100%) + AAD (100%) + AUG 99.98 % 99.76 % 97.58 % 97.34 % 

 

Our study showcases the exceptional performance of machine learning models 

in accurately classifying EEG signals in Alzheimer's disease. Specifically, our 

approach using the CNN model achieved an unprecedented classification accuracy of 

99.98%, surpassing the results reported in previous studies such as Morabito et al. 

(Morabito et al., 2016), Ieracitano et al. (Ieracitano et al., 2020a) and Fouladi et al. 

(Fouladi et al., 2022) who achieved maximum accuracy of 85%, 85.78%, and 92%, 

respectively using a convolutional neural network classifier. Moreover, our RNN 

model also exhibited impressive classification accuracy of 99.76%, which is 

significantly higher than the results reported in other studies such as Alvi et al. (Alvi 

et al., 2022) and Alessandrini et al (Alessandrini et al., 2022), which identified 
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Alzheimer's patterns with accuracy rates of 96.41% and 93.5%, respectively. 

Moreover, our MLP model also demonstrated remarkable results with a classification 

accuracy of 97.58%, surpassing Ieracitano’s study (Ieracitano et al., 2020b) which 

achieved 97%. 

Furthermore, machine learning models are also good tool in the classification 

of AD as indicated by previous studies (AlSharabi et al., 2022; Cassani et al., 2017). 

Alsharabi et al. (AlSharabi et al., 2022) approaches achieved remarkable results and 

best classification accuracy achieved in KNN classifier achieved which is 99.98%. 

This result is similar to that achieved by VGG16 model. Also, Transformer also 

showed promising results in classification Alzheimer's disease which our model 

achieved 97.34 %. Although it has lower results than previous models, because it needs 

a larger amount of data. 

Our findings suggest that deep learning models can be a valuable asset for 

improving the accuracy and efficiency of Alzheimer's diagnosis. The ability of these 

models to detect aberrant brain patterns associated with Alzheimer's disease has shown 

promise in aiding early diagnosis and improving patient prognosis. Additionally, the 

high accuracy achieved by these models highlights their potential as reliable and cost-

effective diagnostic tools. Finally, our study emphasizes the importance of machine 

learning models in advancing the field of Alzheimer's disease diagnosis and treatment. 

We believe that the continued development and refinement of these models can lead 

to improved accuracy and efficacy in diagnosing and treating this disease. 

4.4. CONCLUSION 

Deep learning has emerged as a powerful tool for EEG feature analysis, 

enabling us to better understand and detect patterns of neurological disorders, 

including Alzheimer's disease. This work proposed generating artificial Alzheimer's 

EEG signals using generative adversarial networks. We can leverage GANs to 

generate artificial Alzheimer's EEG signals from noise. It allows us to create high-

accuracy classification models and expand the scope of our research. Based on the 

results, our method is characterized effectively in generating Alzheimer's signals. The 

method shows potential for new generative applications in neuroscience and 

neurology. 
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Furthermore, our proposed models, Convolutional Neural Network (CNN), 

Recurrent Neural Network (RNN), Multi-Layer Perceptron (MLP) and Transformer, 

have been able to achieve accurate classification with a high accuracy 99.98 %, 99.76 

%, 97.58 %, and 97.34 % respectively.  

When comparing our results with those of similar past research, our approach 

has demonstrated significantly higher diagnosis accuracy. This indicates that our 

approach is more effective in accurately identifying Alzheimer's disease patients from 

EEG signals. 

4.5. FUTURE WORK  

We acknowledge that there is always room for improvement in the field of 

EEG signal analysis, and we will continue to explore new techniques and approaches 

to further enhance the accuracy and reliability of our model. Future directions include 

developing methods that generate Alzheimer's signals at all stages with the possibility 

of controlling the properties of the generated signal. It can contribute to the 

development of more accurate and efficient diagnostic tools for Alzheimer's disease. 
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