

Turk J Math 34 (2010) , 465 - 474. © TÜBİTAK doi:10.3906/mat-0711-1

On Abelian Rings

Nazim Agayev, Abdullah Harmancı, Sait Halıcıoğlu

Abstract

Let α be an endomorphism of an arbitrary ring R with identity. In this note, we introduce the notion of α -abelian rings which generalizes abelian rings. We prove that α -reduced rings, α -symmetric rings, α -semicommutative rings and α -Armendariz rings are α -abelian. For a right principally projective ring R, we also prove that R is α -reduced if and only if R is α -symmetric if and only if R is α -semicommutative if and only if R is α -Armendariz if and only if R is α -Armendariz of power series type if and only if R is α -abelian.

Key word and phrases: α -reduced rings, α -symmetric rings, α -semicommutative rings, α -Armendariz rings, α -abelian rings.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1 and α denotes a non-zero and nonidentity endomorphism of a given ring with $\alpha(1) = 1$, and **1** denotes identity endomorphism, unless specified otherwise.

We write $R[x], R[[x]], R[x, x^{-1}]$ and $R[[x, x^{-1}]]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively. Consider

$$R[x, \alpha] = \left\{ \sum_{i=0}^{s} a_{i} x^{i} : s \ge 0, a_{i} \in R \right\},$$

$$R[[x, \alpha]] = \left\{ \sum_{i=0}^{\infty} a_{i} x^{i} : a_{i} \in R \right\},$$

$$R[x, x^{-1}, \alpha] = \left\{ \sum_{i=-s}^{t} a_{i} x^{i} : s \ge 0, t \ge 0, a_{i} \in R \right\},$$

$$R[[x, x^{-1}, \alpha]] = \left\{ \sum_{i=-s}^{\infty} a_{i} x^{i} : s \ge 0, a_{i} \in R \right\}.$$

²⁰⁰⁰ AMS Mathematics Subject Classification: 16U80.

Each of these is an abelian group under an obvious addition operation. Moreover, $R[x, \alpha]$ becomes a ring under the following product operation:

For
$$f(x) = \sum_{i=0}^{s} a_i x^i, g(x) = \sum_{i=0}^{t} b_i x^i \in R[x, \alpha]$$
$$f(x)g(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} a_i \alpha^i(b_j)\right) x^k.$$

Similarly, $R[[x, \alpha]]$ is a ring. The rings $R[x, \alpha]$ and $R[[x, \alpha]]$ are called the *skew polynomial extension* and the *skew power series extension of* R, respectively. If $\alpha \in Aut(R)$, then with a similar scalar product, $R[[x, x^{-1}, \alpha]]$ (resp. $R[x, x^{-1}, \alpha]$) becomes a ring. The rings $R[x, x^{-1}, \alpha]$ and $R[[x, x^{-1}, \alpha]]$ are called the *skew* Laurent polynomial extension and the *skew Laurent power series extension of* R, respectively.

In [8], Baer rings are introduced as rings in which the right(left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [4], a ring R is said to be quasi-Baer ring if the right annihilator of each right ideal of R is generated(as a right ideal) by an idempotent. These definitions are left-right symmetric. A ring R is called right principally quasi-Baer ring (or simply, right p.q.-Baer ring) if the right annihilator of a principally right ideal of R is generated by an idempotent. Finally, a ring R is called right principally projective ring (or simply, right p.p.-ring) if the right annihilator of an element of R is generated by an idempotent [2].

2. Abelian Rings

In this section the notion of an α -abelian ring is introduced as a generalization of an abelian ring. We show that many results of abelian rings can be extended to α -abelian rings for this general settings.

The ring R is called *abelian* if every idempotent is central, that is, ae = ea for any $e^2 = e$, $a \in R$.

Definition 2.1 A ring R is called α -abelian if, for any $a, b \in R$ and any idempotent $e \in R$, (i) ea = ae, (ii) ab = 0 if and only if $a\alpha(b) = 0$.

So a ring R is *abelian* if and only if it is **1**-abelian.

Example 2.2 Let \mathbb{Z}_4 be the ring of integers modulo 4. Consider the ring $R = \left\{ \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} \mid a, b \in \mathbb{Z}_4 \right\}$ with the usual matrix operations. Let $\alpha : R \to R$ be defined by $\alpha \begin{pmatrix} a & b \\ 0 & a \end{pmatrix} = \begin{pmatrix} a & -b \\ 0 & a \end{pmatrix}$. It is easy to check that α is a homomorphism of R. We show that R is an α -abelian ring. Since R is commutative, R is abelian. To complete the proof we check that for any $r, s \in R$, rs = 0 if and only if $r\alpha(s) = 0$. We prove one way implication. The other way is similar. So let $r = \begin{pmatrix} a & b \\ 0 & a \end{pmatrix}$, $s = \begin{pmatrix} x & y \\ 0 & x \end{pmatrix} \in R$. Assume that rs = 0 and

r and s are nonzero. Then we have ax = 0 and ay + bx = 0. If a = 0, then easy calculation shows that $r\alpha(s) = 0$. So we suppose $a \neq 0$. If x = 0 then $r\alpha(s) = 0$. Assume $x \neq 0$. Then a = 2 and x = 2. It implies $r\alpha(s) = 0$. Therefore R is α -abelian.

Lemma 2.3 Let R be a ring such that for any $a, b \in R$, ab = 0 implies $a\alpha(b) = 0$, then $\alpha(e) = e$ for every idempotent $e \in R$.

Proof. Since e(1-e) = 0 and $\alpha(1) = 1$, then $0 = e\alpha(1-e) = e - e\alpha(e)$. So $e = e\alpha(e)$. Further, (1-e)e = 0. Then $(1-e)\alpha(e) = 0$. Therefore, $\alpha(e) = e\alpha(e)$. So, we have $e = e\alpha(e)$ and $\alpha(e) = e\alpha(e)$. Hence, $e = \alpha(e)$. \Box

Example 2.4 shows that there exists an abelian ring, but it is not α -abelian.

Example 2.4 Let R be the ring $\mathbb{Z} \oplus \mathbb{Z}$ with the usual componentwise operations. It is clear that R is an abelian ring. Let $\alpha : R \to R$ be defined by $\alpha(a, b) = (b, a)$. Then (1, 0)(0, 1) = 0, but $(1, 0)\alpha(0, 1) \neq 0$. Hence R is not α -abelian.

The ring R is called *semicommutative* if ab = 0 implies aRb = 0, for any $a, b \in R$. A ring R is called α -semicommutative if ab = 0 implies $aR\alpha(b) = 0$, for any $a, b \in R$. Agayev and Harmanci studied basic properties of α -semicommutative rings and focused on the semicommutativity of subrings of matrix rings (see [1]). In this note, the ring R is said to be α -semicommutative if, for any $a, b \in R$,

(i) ab = 0 implies aRb = 0,

(ii) ab = 0 if and only if $a\alpha(b) = 0$.

It is clear that a ring R is semicommutative if and only if it is 1-semicommutative. The first part of Lemma 2.5 is proved in [7]. We give the proof for the sake of completeness.

Lemma 2.5 If the ring R is α -semicommutative, then R is α -abelian. The converse holds if R is a right p.p.-ring.

Proof. If e is an idempotent in R, then e(1-e) = 0. Since R is α -semicommutative, we have ea(1-e) = 0 for any $a \in R$ and so ea = eae. On the other hand, (1-e)e = 0 implies that (1-e)ae = 0, so we have ae = eae. Therefore, ae = ea. Suppose now R is an α -abelian and right p.p.-ring. Let $a, b \in R$ with ab = 0. Then $a \in r(b) = eR$ for some $e^2 = e \in R$ and so be = 0 and a = ea. Since R is α -abelian, we have arb = earb = arbe = 0 for any $r \in R$, that is, aRb = 0. Therefore R is α -semicommutative.

Corollary 2.6 If the ring R is semicommutative, then R is abelian. The converse holds if R is a right *p.p.-ring.*

Corollary 2.7 Let R be an α -abelian and right p.p-ring. Then r(a) = r(aR), for any $a \in R$.

Corollary 2.8 Let R be an α -abelian and right p.p-ring. Then R is a right p.q.-Baer ring. **Proof.** It follows from Corollary 2.7.

For a right *R*-module *M*, consider $M[x, \alpha] = \left\{\sum_{i=0}^{s} m_i x^i : s \ge 0, m_i \in M\right\}$. $M[x, \alpha]$ is an abelian group under an obvious addition operation and becomes a right module over $R[x; \alpha]$ under the following scalar product operation:

For
$$m(x) = \sum_{i=0}^{s} m_i x^i \in M[x, \alpha]$$
 and $f(x) = \sum_{i=0}^{t} a_i x^i \in R[x, \alpha]$
$$m(x)f(x) = \sum_{k=0}^{s+t} \left(\sum_{i+j=k} m_i \alpha^i(a_j)\right) x^k.$$

In [12], the ring R is called Armendariz if for any $f(x) = \sum_{i=0}^{n} a_i x^i, g(x) = \sum_{j=0}^{s} b_j x^j \in R[x],$ f(x)g(x) = 0 implies $a_i b_j = 0$ for all i and j. This definition of Armendariz ring is extended to modules in [11]. A module M is called α -Armendariz if the following conditions (1) and (2) are satisfied, and the module M is called α -Armendariz of power series type if the following conditions (1) and (3) are satisfied: (1) For $m \in M$ and $a \in R$, ma = 0 if and only if $m\alpha(a) = 0$.

(2) For any $m(x) = \sum_{i=0}^{n} m_i x^i \in M[x, \alpha], \ f(x) = \sum_{j=0}^{s} a_j x^j \in R[x, \alpha], \ m(x)f(x) = 0$ implies $m_i \alpha^i(a_j) = 0$ for all i and j.

(3) For any $m(x) = \sum_{i=0}^{\infty} m_i x^i \in M[[x, \alpha]], \ f(x) = \sum_{j=0}^{\infty} a_j x^j \in R[[x, \alpha]], \ m(x)f(x) = 0$ implies $m_i \alpha^i(a_j) = 0$ for all i and j.

In this note, the ring R is called α -Armendariz (α -Armendariz of power series type) if R_R is α -Armendariz (α -Armendariz of power series type) module. Hence R is an Armendariz (Armendariz of power series type) ring if and only if R_R is an 1-Armendariz (1-Armendariz of power series type) module.

Theorem 2.9 If the ring R is α -Armendariz, then R is α -abelian. The converse holds if R is a right p.p.ring.

Proof. Let $f_1(x) = e - ea(1-e)x$, $f_2(x) = (1-e) - (1-e)aex$, $g_1(x) = 1 - e + ea(1-e)x$, $g_2(x) = e + (1-e)aex \in R[x, \alpha]$, where *e* is an idempotent in *R* and $a \in R$. Then $f_1(x)g_1(x) = 0$ and $f_2(x)g_2(x) = 0$. Since *R* is α -Armendariz, we have $ea(1-e)\alpha(1-e) = 0$. By Lemma 2.3, $\alpha(1-e) = 1-e$ and so ea(1-e) = 0. Similarly, $f_2(x)g_2(x) = 0$ implies that (1-e)ae = 0. Then ae = eae = ea, so *R* is α -abelian.

Suppose now R is an α -abelian and right p.p.-ring. Then R is abelian, and so every idempotent is central. By Lemma 2.3, $\alpha(e) = e$ for every idempotent $e \in R$. From Lemma 2.5, R is α -semicommutative, i.e., ab = 0 implies aRb = 0 for any $a, b \in R$. Let $f(x) = \sum_{i=0}^{s} a_i x^i$, $g(x) = \sum_{j=0}^{t} b_j x^j \in R[x, \alpha]$. Assume f(x)g(x) = 0. Then we have:

$$a_0 b_0 = 0 \qquad (1)$$

$$a_0 b_1 + a_1 \alpha(b_0) = 0 \tag{2}$$

. . .

$$a_0b_2 + a_1\alpha(b_1) + a_2\alpha^2(b_0) = 0 \qquad (3)$$

By hypothesis there exist idempotents $e_i \in R$ such that $r(a_i) = e_i R$ for all i. So $b_0 = e_0 b_0$ and $a_0 e_0 = 0$. Multiply (2) from the right by e_0 , we have $0 = a_0 b_1 e_0 + a_1 \alpha(b_0) e_0 = a_0 e_0 b_1 + a_1 \alpha(b_0) \alpha(e_0) = a_1 \alpha(b_0)$. By (2) $a_0 b_1 = 0$ and so $b_1 = e_0 b_1$. Again, multiply (3) from the right by e_0 , we have $0 = a_0 b_2 e_0 + a_1 \alpha(b_1) e_0 + a_2 \alpha^2(b_0) e_0 = a_1 \alpha(b_1) + a_2 \alpha^2(b_0)$. Multiply this equation from right by e_1 , we have $0 = a_1 \alpha(b_1) e_1 + a_2 \alpha^2(b_0) e_1 = a_2 \alpha^2(b_0)$. Continuing in this way, we may conclude that $a_i \alpha^i(b_j) = 0$ for all $1 \le i \le s$ and $1 \le j \le t$. Hence R is α -Armendariz. This completes the proof.

Corollary 2.10 If the ring R is Armendariz, then R is abelian. The converse holds if R is a right p.p.-ring.

Proposition 2.11 If the ring R is α -Armendariz of power series type, then R is α -abelian. The converse holds if R is a right p.p.-ring.

Proof. Similar to the proof of Theorem 2.9.

Recall that a ring is *reduced* if it has no nonzero nilpotent elements. In [11], Lee and Zhou introduced α -reduced module. A module M is called α -reduced if, for any $m \in M$ and any $a \in R$,

(1) ma = 0 implies $mR \cap Ma = 0$

(2) ma = 0 if and only if $m\alpha(a) = 0$.

In this work, we call the ring $R \alpha$ -reduced if R_R is an α -reduced module. Hence R is a reduced ring if and only if R_R is an 1-reduced module.

In [5], Hong et al. studied α -rigid rings. For an endomorphism α of a ring R, R is called α -rigid if $a\alpha(a) = 0$ implies a = 0 for any a in R. The relationship between α -rigid rings and α -skew Armendariz rings was studied in [6]. In fact, R is an α -Armendariz ring if and only if (1) R is an α -skew Armendariz ring and (2) ab = 0 if and only if $a\alpha(b) = 0$ for any a, b in R. Note that α -reduced ring is α -rigid. Really, let R be an α -reduced ring and $a\alpha(a) = 0$ for some a in R. Then $a^2 = 0$. Since R is reduced, we have a = 0. Further, by [5, Proposition 6], any α -reduced ring R is α -Armendariz. By Theorem 2.9, R is α -abelian. So, the first statement of Lemma 2.12 is a direct corollary of [5, Proposition 6].

Lemma 2.12 If R is an α -reduced ring, then R is α -abelian. The converse holds if R is a right p.p.-ring.

Proof. Let R be an α -abelian and right p.p-ring. Suppose ab = 0 for $a, b \in R$. If $x \in aR \cap Rb$, then there exist $r_1, r_2 \in R$ such that $x = ar_1 = r_2b$. Since R is right p.p-ring, ab = 0 implies that $b \in r(a) = eR$ for some idempotent $e^2 = e \in R$. Then b = eb and $xe = ar_1e = r_2be$. Since R is α -abelian and ae = 0, we have $ar_1e = aer_1 = r_2be = r_2eb = r_2b = 0$. Hence $aR \cap Rb = 0$, that is, R is α -reduced.

Corollary 2.13 If R is a reduced ring, then R is abelian. The converse holds if R is a right p.p.-ring.

According to Lambek [10], a ring R is called *symmetric* if whenever $a, b, c \in R$ satisfy abc = 0, we have bac = 0; it is easily seen that this is a left-right symmetric concept. We now introduce α -symmetric rings as a generalization of symmetric rings.

Definition 2.14 The ring R is called α -symmetric if, for any $a, b, c \in R$, (i) abc = 0 implies acb = 0, (ii) ab = 0 if and only if $a\alpha(b) = 0$.

It is clear that a ring R is symmetric if and only if it is 1-symmetric.

Theorem 2.15 Let R be a right p.p-ring. Then the following are equivalent:

(1) R is α -reduced.

(2) R is α -symmetric.

(3) R is α -semicommutative.

- (4) R is α -Armendariz.
- (5) R is α -Armendariz of power series type.
- (6) R is α -abelian.

Proof. $(1) \Leftrightarrow (6)$ From Lemma 2.12.

 $(4) \Leftrightarrow (6)$ Clear from Theorem 2.9.

- $(3) \Leftrightarrow (6)$ From Lemma 2.5.
- $(5) \Leftrightarrow (6)$ From Proposition 2.11.

 $(2) \Rightarrow (3)$ Let $a, b \in R$ with ab = 0. By hypothesis, abc = 0 implies acb = 0 for all $c \in R$. Hence aRb = 0 and so R is α -semicommutative.

 $(3) \Rightarrow (2)$ Assume that abc = 0, for any $a, b, c \in R$. Since R is right p.p.-ring, $c \in r(ab) = eR$ for some idempotent $e \in R$. Then c = ec and abe = 0, so acbe = 0. We have already proved that semicommutativity implied being abelian, then acbe = aecb. Now acb = aecb = acbe = 0. It completes the proof. \Box

Corollary 2.16 Let R be a Baer ring. Then the following are equivalent:

- (1) R is α -reduced.
- (2) R is α -symmetric.
- (3) R is α -semicommutative.
- (4) R is α -Armendariz.
- (5) R is α -Armendariz of power series type.
- (6) R is α -abelian.

One may suspect that if R is an abelian ring, then $R[x, \alpha]$ is abelian also. But this is not the case.

 $\begin{aligned} \mathbf{Example \ 2.17 \ Let \ } F \ be \ any \ field, \ R &= \left\{ \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u \end{pmatrix} \mid a, b, u, v \in F \right\} \ and \ \alpha : R \to R \ be \ defined \ by \\ \alpha \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u \end{pmatrix} \\ &= \begin{pmatrix} u & v & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a \end{pmatrix}, \ where \ \begin{pmatrix} a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u \end{pmatrix} \in R \end{aligned}$

Since R is commutative, R is abelian. We claim that $R[x, \alpha]$ is not an abelian ring. Let e_{ij} denote the 4×4 matrix units having alone 1 as its (i, j)-entry and all other entries 0. Consider $e = e_{11} + e_{22}$ and $f = e_{33} + e_{44} \in R$ and $e(x) = e + fx \in R[x; \alpha]$. Then $e(x)^2 = e(x)$, ef = fe = 0, $e^2 = e$, $f^2 = f$, $\alpha(e) = f$, $\alpha(f) = e$. An easy calculation reveals that $e(x)e_{12} = e_{12} + e_{34}x$, but $e_{12}e(x) = e_{12}$. Hence $R[x, \alpha]$ is not an abelian ring.

Lemma 2.18 If R is an α -abelian ring, then the idempotents of $R[x, \alpha]$ belong to R, therefore $R[x, \alpha]$ is an abelian ring.

Proof. Let R be α -abelian and $e(x) = \sum_{i=0}^{t} e_i x^i$ be an idempotent in $R[x, \alpha]$. Since $e(x)^2 = e(x)$, we have

$$e_0^2 = e_0$$
 (1)
 $e_0e_1 + e_1\alpha(e_0) = e_1$ (2)
 $e_0e_2 + e_1\alpha(e_1) + e_2\alpha^2(e_0) = e_2$ (3)

Since R is α -abelian, R is abelian, and so every idempotent is central. By Lemma 2.3, $\alpha(e) = e$ for every idempotent $e \in R$. Then (2) becomes $e_0e_1 + e_1e_0 = e_1$ and so $e_1 = 0$. Since e_0 is central idempotent, (3) becomes $e_0e_2 + e_2e_0 = e_2$ and so $e_2 = 0$. Similarly, it can be shown that $e_i = 0$ for i = 1, 2, ..., t. This completes the proof.

Lemma 2.19 If $R[x, \alpha]$ is an abelian ring, then $\alpha(e) = e$ for every idempotent $e \in R$. **Proof.** Since $R[x, \alpha]$ is abelian, we have f(x)e(x) = e(x)f(x) for any $f(x), e(x)^2 = e(x) \in R[x, \alpha]$. In particular, xe = ex for every idempotent $e \in R$. Hence $xe = ex = \alpha(e)x$ and so $\alpha(e) = e$.

Lemma 2.20 If $R[x, \alpha]$ is an abelian ring, then the idempotents of $R[x, \alpha]$ belong to R. **Proof.** Similar to the proof of Lemma 2.18.

Theorem 2.21 If R is an α -abelian ring, then $R[x, \alpha]$ is abelian. The converse holds if $R[x, \alpha]$ is a right p.p.-ring.

Proof. If R is α -abelian, by Lemma 2.18, $R[x, \alpha]$ is abelian. Suppose that $R[x, \alpha]$ be an abelian and right p.p.-ring. It is clear that ae = ea for any $a, e^2 = e \in R$. Suppose ab = 0 for any $a, b \in R$. Since R is right p.p.-ring, we have $b \in r(a) = eR$, b = eb. So $a\alpha(b) = a\alpha(eb) = ae\alpha(b) = 0$. Conversely, let $a\alpha(b) = 0$. Then axb = 0. Since $R[x, \alpha]$ is right p.p.-ring, we have $b \in r_{R[x,\alpha]}(ax) = eR[x, \alpha]$ for some idempotent $e \in R[x, \alpha]$. So b = eb, axe = 0. By Lemma 2.20, $e \in R$. Hence ae = 0 and ab = aeb = 0. Therefore R is α -abelian. \Box

Lemma 2.22 Let R be an α -abelian ring. If for any countable subset X of R, r(X) = eR, where $e^2 = e \in R$, then

(1) $R[[x, \alpha]]$ is a right p.p.-ring.

(2) If α is an automorphism of R, then $R[[x, x^{-1}, \alpha]]$ is a right p.p.-ring.

Proof. Let $a \in R$. Since $\{a\}$ is countable subset of R, r(a) = eR, i.e., R is a right p.p.-ring. Then from Theorem 2.15, R is α -Armendariz of power series type. By [11, Theorem 2.11.(1)(c), Theorem 2.11.(2)(c)], $R[[x, \alpha]]$ and $R[[x, x^{-1}, \alpha]]$ are right p.p.-rings.

Theorem 2.23 Let R be an α -abelian ring. Then we have:

(1) R is a right p.p.-ring if and only if $R[x, \alpha]$ is a right p.p.-ring.

(2) R is a Baer ring if and only if $R[x, \alpha]$ is a Baer ring.

(3) R is a right p.q.-Baer ring if and only if $R[x, \alpha]$ is a right p.q.-Baer ring.

(4) R is a Baer ring if and only if $R[[x, \alpha]]$ is a Baer ring.

Let $\alpha \in Aut(R)$.

(5) R is a Baer ring if and only if $R[x, x^{-1}, \alpha]$ is a Baer ring.

(6) R is a right p.p.-ring if and only if $R[x, x^{-1}, \alpha]$ is a right p.p.-ring.

(7) R is a Baer ring if and only if $R[[x, x^{-1}, \alpha]]$ is a Baer ring.

Proof. (1) " \Rightarrow ": Let $f(x) = a_0 + a_1x + \ldots + a_tx^t \in R[x, \alpha]$. We claim that $r_{R[x,\alpha]}(f(x)) = eR[x, \alpha]$, where $e = e_0e_1\ldots e_t$, $e_i^2 = e_i$ and $r_R(a_i) = e_iR$, $i = 0, 1, \ldots, t$. By hypothesis and Lemma 2.3, $f(x)e = a_0e_0e_1\ldots e_t + a_1e_1e_0e_2\ldots e_tx + \ldots + a_te_te_0e_1\ldots e_{t-1}x^t = 0$. Then $eR[x] \subseteq r_{R[x,\alpha]}(f(x))$. Let $g(x) = b_0 + b_1x + \ldots + b_nx^n \in r_{R[x,\alpha]}(f(x))$. Then f(x)g(x) = 0. Since R is an abelian and right p.p.-ring, by Theorem 2.9, R is Armendariz. So $a_ib_j = 0$ and this implies $b_j \in r_R(a_i) = e_iR$, and then $b_j = e_ib_j$ for any i. Therefore $g(x) = eg(x) \in eR[x, \alpha]$. This completes the proof of (1) " \Rightarrow ".

" \Leftarrow ": Let $a \in R$. Then there exists $e(x)^2 = e(x) \in R[x, \alpha]$ such that $r_{R[x,\alpha]}(a) = e(x)R[x, \alpha]$. Then the constant term, e_0 say, of e(x) is non-zero, and e_0 is an idempotent in R. So $e_0R \subset r_R(a)$. Now let $b \in r_R(a)$. Since $r_R(a) \subset r_{R[x,\alpha]}(a)$, ab = 0 implies that b = e(x)b and so $b = e_0b$. Hence $r_R(a) \subset e_0R$, that is, $r_R(a) = e_0R$. Therefore R is a right p.p.-ring.

(2) " \Rightarrow ": Since R is Baer, R is a right p.p.-ring. By Lemma 2.5, R is Armendariz. Then from [11, Theorem 2.5.1(a)], $R[x, \alpha]$ is Baer.

" \leftarrow ": Let $R[x, \alpha]$ be a Baer ring and X be a subset of R. There exists $e(x)^2 = e(x) = e_0 + e_1 x + ... + e_n x^n \in R[x, \alpha]$ such that $r_{R[x;\alpha]}(X) = e(x)R[x, \alpha]$. We claim that $r_R(X) = e_0R$. If $a \in r_R(X)$, then a = e(x)a and so $a = e_0a$. Hence $r_R(X) \subset e_0R$. Since Xe(x) = 0, we have $Xe_0 = 0$, that is, $e_0R \subset r_R(X)$. Then R is a Baer ring.

(3) " \Rightarrow ": Let $f(x) = a_0 + a_1x + \ldots + a_tx^t \in R[x,\alpha]$. We prove $r_{R[x,\alpha]}(f(x)R[x,\alpha]) = e(x)R[x,\alpha]$, where $e(x) = e_0e_1\ldots e_t$, $r_R(a_iR) = e_iR$. Since R is abelian, for any $h(x) \in R[x,\alpha]$ f(x)h(x)e(x) = 0. Then $e(x)R[x,\alpha] \subset r_{R[x,\alpha]}(f(x)R[x,\alpha])$. Let $g(x) = b_0 + b_1x + \ldots + b_nx^n \in r_{R[x,\alpha]}(f(x)R[x,\alpha])$. Then $f(x)R[x,\alpha]g(x) = 0$ and so, f(x)Rg(x) = 0. From last equality we have $a_0Rb_0 = 0$. Hence $b_0 \in r_R(a_0R) = e_0R$. It follows that $b_0 = e_0b_0$. Also for any $r \in R$, the coefficient of x is equal to $a_0rb_1 + a_1\alpha(rb_0)$. Hence $a_0rb_1 + a_1\alpha(rb_0) = 0$. Multiplying the equation $a_0rb_1 + a_1\alpha(rb_0) = 0$ from the right by e_0 , we have $a_1\alpha(rb_0e_0) = 0$, that is, $a_1\alpha(rb_0) = 0$. Since R is α -abelian, $a_1rb_0 = 0$. This implies $a_1Rb_0 = 0$. Then $b_0 \in r_R(a_1R) = e_1R$ and $b_1 \in r_R(a_0R) = e_0R$. So, $b_0 = e_1b_0$ and $b_1 = e_0b_1$. Again for any $r \in R$, $a_0rb_2 + a_1rb_1 + a_2rb_0 = 0$. Multiplying this equality from right by e_0e_1 and using previous results, we have $a_2rb_0 = 0$. Then $b_0 \in r_R(a_2R) = e_2R$. So $b_0 = e_2b_0$. Continuing this process we have $b_i = e_jb_i$ for any i, j. This implies $g(x) = e_0e_1...e_tg(x)$. So, $R[x, \alpha]$ is a right p.q.-Baer ring.

" \Leftarrow ": Let $a \in R$. Then $r_{R[x,\alpha]}(aR[x,\alpha]) = e(x)R[x,\alpha]$, where $e(x)^2 = e(x) \in R[x,\alpha]$. By Lemma 2.18, $e(x) = e_0 \in R$. Since $aR[x,\alpha]e(x) = 0$, $aR[x,\alpha]e_0 = 0$ and $aRe_0 = 0$. So, $e_0R \subset r_R(aR)$. Let $r \in r_R(aR) = r_R(aR[x,\alpha]) \subset r_{R[x,\alpha]}(aR[x,\alpha]) = e(x)R[x,\alpha]$. Then e(x)r = r. This implies $e_0r = r$ and so $r \in e_0R$. Therefore $r_R(aR[x,\alpha]) = e_0R$, i.e., R is a right p.q.-Baer ring.

(4) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, so the proof follows from [11, Theorem 2.5 (1)(b)].

(5) By Corollary 2.16, R is α -Armendariz, then proof follows from [11, Theorem 2.5 (2)(a)].

(6) Since every α -abelian and right p.p.-ring is α -Armendariz by Theorem 2.9, the proof follows from [11, Theorem 2.11 (2)(a)].

(7) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, it follows from [11, Theorem 2.5 (2)(b)]. \Box

Acknowledgment The authors express their gratitudes to the referee for (his/her) valuable suggestions.

References

- [1] Agayev, N., Harmanci, A.: On semicommutative modules and rings, Kyungpook Math. J., 47, 21-30 (2007).
- [2] Birkenmeier, G.F., Kim, J.Y., Park, J.K.: On extensions of Baer and quasi-Baer Rings, J. Pure Appl. Algebra, 159, 25-42 (2001).
- [3] Buhphang, A.M., Rege, M.B.: Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci., 8, 53-65 (2002).
- [4] Clark, E.W.: Twisted matrix units semigroup algebras, Duke Math. J., 34, 417-424 (1967).
- [5] Hong, C.Y., Kim, N.K., Kwak, T.K.: Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151(3), 215-226 (2000).
- [6] Hong, C.Y., Kim, N.K., Kwak, T.K.: On skew Armendariz rings, Comm. Algebra, 31(1), 103-122 (2003).
- [7] Huh, C., Lee, Y., Smoktunowicz, A.: Armendariz Rings and Semicommutative Rings, Comm. Algebra, 30(2), 751–761 (2002).
- [8] Kaplansky, I.: Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
- [9] Kim, N.K., Lee, Y.: Armendariz rings and reduced rings, J. Algebra, 223, 477-488 (2000).
- [10] Lambek, J.: On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14(3), 359-368 (1971).

[11] Lee, T.K., Zhou, Y.: Reduced modules, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.

Received 05.11.2007

[12] Rege, M.B., Chhawchharia, S.: Armendariz Rings, Proc. Japan Acad. Ser. A Math.Sci., 73, 14-17 (1997).

Nazim AGAYEV Department of Computer Engineering, European University of Lefke, Gemikonagi-Lefke, Mersin 10, Cyprus e-mail: nagayev@ eul.edu.tr

Abdullah HARMANCI Mathematics Department Hacettepe University 06550 Ankara, Turkey e-mail: harmanci@hacettepe.edu.tr

Sait HALICIOĞLU Department of Mathematics Ankara University 06100 Ankara, Turkey e-mail: halici@science.ankara.edu.tr