On Abelian Rings

Nazim Agayev, Abdullah Harmancı, Sait Halıcıoğlu

Abstract

Let α be an endomorphism of an arbitrary ring R with identity. In this note, we introduce the notion of α-abelian rings which generalizes abelian rings. We prove that α-reduced rings, α-symmetric rings, α-semicommutative rings and α-Armendariz rings are α-abelian. For a right principally projective ring R, we also prove that R is α-reduced if and only if R is α-symmetric if and only if R is α-semicommutative if and only if R is α-Armendariz if and only if R is α-Armendariz of power series type if and only if R is α-abelian.

Key word and phrases: α-reduced rings, α-symmetric rings, α-semicommutative rings, α-Armendariz rings, α-abelian rings.

1. Introduction

Throughout this paper R denotes an associative ring with identity 1 and α denotes a non-zero and nonidentity endomorphism of a given ring with $\alpha(1)=1$, and $\mathbf{1}$ denotes identity endomorphism, unless specified otherwise.

We write $R[x], R[[x]], R\left[x, x^{-1}\right]$ and $R\left[\left[x, x^{-1}\right]\right]$ for the polynomial ring, the power series ring, the Laurent polynomial ring and the Laurent power series ring over R, respectively. Consider

$$
\begin{aligned}
& R[x, \alpha]=\left\{\sum_{i=0}^{s} a_{i} x^{i}: s \geq 0, a_{i} \in R\right\}, \\
& R[[x, \alpha]]=\left\{\sum_{i=0}^{\infty} a_{i} x^{i}: a_{i} \in R\right\}, \\
& R\left[x, x^{-1}, \alpha\right]=\left\{\sum_{i=-s}^{t} a_{i} x^{i}: s \geq 0, t \geq 0, a_{i} \in R\right\}, \\
& R\left[\left[x, x^{-1}, \alpha\right]\right]=\left\{\sum_{i=-s}^{\infty} a_{i} x^{i}: s \geq 0, a_{i} \in R\right\} .
\end{aligned}
$$

[^0]
AGAYEV, HARMANCI, HALICIOĞLU

Each of these is an abelian group under an obvious addition operation. Moreover, $R[x, \alpha]$ becomes a ring under the following product operation:

$$
\begin{aligned}
& \text { For } f(x)=\sum_{i=0}^{s} a_{i} x^{i}, g(x)=\sum_{i=0}^{t} b_{i} x^{i} \in R[x, \alpha] \\
& \qquad f(x) g(x)=\sum_{k=0}^{s+t}\left(\sum_{i+j=k} a_{i} \alpha^{i}\left(b_{j}\right)\right) x^{k} .
\end{aligned}
$$

Similarly, $R[[x, \alpha]]$ is a ring. The rings $R[x, \alpha]$ and $R[[x, \alpha]]$ are called the skew polynomial extension and the skew power series extension of R, respectively. If $\alpha \in \operatorname{Aut}(R)$, then with a similar scalar product, $R\left[\left[x, x^{-1}, \alpha\right]\right]$ (resp. $R\left[x, x^{-1}, \alpha\right]$) becomes a ring. The rings $R\left[x, x^{-1}, \alpha\right]$ and $R\left[\left[x, x^{-1}, \alpha\right]\right]$ are called the skew Laurent polynomial extension and the skew Laurent power series extension of R, respectively.

In [8], Baer rings are introduced as rings in which the right(left) annihilator of every nonempty subset is generated by an idempotent. According to Clark [4], a ring R is said to be quasi-Baer ring if the right annihilator of each right ideal of R is generated(as a right ideal) by an idempotent. These definitions are left-right symmetric. A ring R is called right principally quasi-Baer ring (or simply, right p.q.-Baer ring) if the right annihilator of a principally right ideal of R is generated by an idempotent. Finally, a ring R is called right principally projective ring (or simply, right p.p.-ring) if the right annihilator of an element of R is generated by an idempotent [2].

2. Abelian Rings

In this section the notion of an α-abelian ring is introduced as a generalization of an abelian ring. We show that many results of abelian rings can be extended to α-abelian rings for this general settings.

The ring R is called abelian if every idempotent is central, that is, $a e=e a$ for any $e^{2}=e, a \in R$.

Definition 2.1 A ring R is called α-abelian if, for any $a, b \in R$ and any idempotent $e \in R$,
(i) $e a=a e$,
(ii) $a b=0$ if and only if $a \alpha(b)=0$.

So a ring R is abelian if and only if it is $\mathbf{1}$-abelian.

Example 2.2 Let \mathbb{Z}_{4} be the ring of integers modulo 4. Consider the ring $R=\left\{\left.\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right) \right\rvert\, a, b \in \mathbb{Z}_{4}\right\}$ with the usual matrix operations. Let $\alpha: R \rightarrow R$ be defined by $\alpha\left(\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right)\right)=\left(\begin{array}{cc}a & -b \\ 0 & a\end{array}\right)$. It is easy to check that α is a homomorphism of R. We show that R is an α-abelian ring. Since R is commutative, R is abelian. To complete the proof we check that for any $r, s \in R$, $r s=0$ if and only if $r \alpha(s)=0$. We prove one way implication. The other way is similar. So let $r=\left(\begin{array}{cc}a & b \\ 0 & a\end{array}\right), s=\left(\begin{array}{cc}x & y \\ 0 & x\end{array}\right) \in R$. Assume that $r s=0$ and

AGAYEV, HARMANCI, HALICIOĞLU

r and s are nonzero. Then we have $a x=0$ and $a y+b x=0$. If $a=0$, then easy calculation shows that $r \alpha(s)=0$. So we suppose $a \neq 0$. If $x=0$ then $r \alpha(s)=0$. Assume $x \neq 0$. Then $a=2$ and $x=2$. It implies $r \alpha(s)=0$. Therefore R is α-abelian.

Lemma 2.3 Let R be a ring such that for any $a, b \in R$, $a b=0$ implies $a \alpha(b)=0$, then $\alpha(e)=e$ for every idempotent $e \in R$.
Proof. Since $e(1-e)=0$ and $\alpha(1)=1$, then $0=e \alpha(1-e)=e-e \alpha(e)$. So $e=e \alpha(e)$. Further, $(1-e) e=0$. Then $(1-e) \alpha(e)=0$. Therefore, $\alpha(e)=e \alpha(e)$. So, we have $e=e \alpha(e)$ and $\alpha(e)=e \alpha(e)$. Hence, $e=\alpha(e)$.

Example 2.4 shows that there exists an abelian ring, but it is not α-abelian.
Example 2.4 Let R be the ring $\mathbb{Z} \oplus \mathbb{Z}$ with the usual componentwise operations. It is clear that R is an abelian ring. Let $\alpha: R \rightarrow R$ be defined by $\alpha(a, b)=(b, a)$. Then $(1,0)(0,1)=0$, but $(1,0) \alpha(0,1) \neq 0$. Hence R is not α-abelian.

The ring R is called semicommutative if $a b=0$ implies $a R b=0$, for any $a, b \in R$. A ring R is called α-semicommutative if $a b=0$ implies $a R \alpha(b)=0$, for any $a, b \in R$. Agayev and Harmanci studied basic properties of α-semicommutative rings and focused on the semicommutativity of subrings of matrix rings (see [1]). In this note, the ring R is said to be α-semicommutative if, for any $a, b \in R$,
(i) $a b=0$ implies $a R b=0$,
(ii) $a b=0$ if and only if $a \alpha(b)=0$.

It is clear that a ring R is semicommutative if and only if it is $\mathbf{1}$-semicommutative. The first part of Lemma 2.5 is proved in [7]. We give the proof for the sake of completeness.

Lemma 2.5 If the ring R is α-semicommutative, then R is α-abelian. The converse holds if R is a right p.p.-ring.

Proof. If e is an idempotent in R, then $e(1-e)=0$. Since R is α-semicommutative, we have $e a(1-e)=0$ for any $a \in R$ and so $e a=e a e$. On the other hand, $(1-e) e=0$ implies that $(1-e) a e=0$, so we have $a e=e a e$. Therefore, $a e=e a$. Suppose now R is an α-abelian and right p.p.-ring. Let $a, b \in R$ with $a b=0$. Then $a \in r(b)=e R$ for some $e^{2}=e \in R$ and so $b e=0$ and $a=e a$. Since R is α-abelian, we have $a r b=e a r b=a r b e=0$ for any $r \in R$, that is, $a R b=0$. Therefore R is α-semicommutative.

Corollary 2.6 If the ring R is semicommutative, then R is abelian. The converse holds if R is a right p.p.-ring.

Corollary 2.7 Let R be an α-abelian and right p.p-ring. Then $r(a)=r(a R)$, for any $a \in R$.

Corollary 2.8 Let R be an α-abelian and right p.p-ring. Then R is a right p.q.-Baer ring.
Proof. It follows from Corollary 2.7.

AGAYEV, HARMANCI, HALICIOĞLU

For a right R-module M, consider $M[x, \alpha]=\left\{\sum_{i=0}^{s} m_{i} x^{i}: s \geq 0, m_{i} \in M\right\} . M[x, \alpha]$ is an abelian group under an obvious addition operation and becomes a right module over $R[x ; \alpha]$ under the following scalar product operation:
For $m(x)=\sum_{i=0}^{s} m_{i} x^{i} \in M[x, \alpha]$ and $f(x)=\sum_{i=0}^{t} a_{i} x^{i} \in R[x, \alpha]$

$$
m(x) f(x)=\sum_{k=0}^{s+t}\left(\sum_{i+j=k} m_{i} \alpha^{i}\left(a_{j}\right)\right) x^{k}
$$

In [12], the ring R is called Armendariz if for any $f(x)=\sum_{i=0}^{n} a_{i} x^{i}, g(x)=\sum_{j=0}^{s} b_{j} x^{j} \in R[x]$, $f(x) g(x)=0$ implies $a_{i} b_{j}=0$ for all i and j. This definition of Armendariz ring is extended to modules in [11]. A module M is called α-Armendariz if the following conditions (1) and (2) are satisfied, and the module M is called α-Armendariz of power series type if the following conditions (1) and (3) are satisfied:
(1) For $m \in M$ and $a \in R, m a=0$ if and only if $m \alpha(a)=0$.
(2) For any $m(x)=\sum_{i=0}^{n} m_{i} x^{i} \in M[x, \alpha], f(x)=\sum_{j=0}^{s} a_{j} x^{j} \in R[x, \alpha], m(x) f(x)=0$ implies $m_{i} \alpha^{i}\left(a_{j}\right)=0$ for all i and j.
(3) For any $m(x)=\sum_{i=0}^{\infty} m_{i} x^{i} \in M[[x, \alpha]], f(x)=\sum_{j=0}^{\infty} a_{j} x^{j} \in R[[x, \alpha]], m(x) f(x)=0$ implies $m_{i} \alpha^{i}\left(a_{j}\right)=0$ for all i and j.

In this note, the ring R is called α-Armendariz (α-Armendariz of power series type) if R_{R} is α Armendariz (α-Armendariz of power series type) module. Hence R is an Armendariz (Armendariz of power series type) ring if and only if R_{R} is an 1-Armendariz (1-Armendariz of power series type) module.

Theorem 2.9 If the ring R is α-Armendariz, then R is α-abelian. The converse holds if R is a right p.p.ring.
Proof. Let $f_{1}(x)=e-e a(1-e) x, f_{2}(x)=(1-e)-(1-e) a e x, g_{1}(x)=1-e+e a(1-e) x, g_{2}(x)=$ $e+(1-e) a e x \in R[x, \alpha]$, where e is an idempotent in R and $a \in R$. Then $f_{1}(x) g_{1}(x)=0$ and $f_{2}(x) g_{2}(x)=0$. Since R is α-Armendariz, we have $e a(1-e) \alpha(1-e)=0$. By Lemma 2.3, $\alpha(1-e)=1-e$ and so $e a(1-e)=0$. Similarly, $f_{2}(x) g_{2}(x)=0$ implies that $(1-e) a e=0$. Then $a e=e a e=e a$, so R is α-abelian.

Suppose now R is an α-abelian and right p.p.-ring. Then R is abelian, and so every idempotent is central. By Lemma 2.3, $\alpha(e)=e$ for every idempotent $e \in R$. From Lemma 2.5, R is α-semicommutative, i.e., $a b=0$ implies $a R b=0$ for any $a, b \in R$. Let $f(x)=\sum_{i=0}^{s} a_{i} x^{i}, g(x)=\sum_{j=0}^{t} b_{j} x^{j} \in R[x, \alpha]$. Assume $f(x) g(x)=0$. Then we have:

$$
\begin{align*}
a_{0} b_{0} & =0 \tag{1}\\
a_{0} b_{1}+a_{1} \alpha\left(b_{0}\right) & =0 \tag{2}\\
a_{0} b_{2}+a_{1} \alpha\left(b_{1}\right)+a_{2} \alpha^{2}\left(b_{0}\right) & =0 \tag{3}
\end{align*}
$$

AGAYEV, HARMANCI, HALICIOĞLU

By hypothesis there exist idempotents $e_{i} \in R$ such that $r\left(a_{i}\right)=e_{i} R$ for all i. So $b_{0}=e_{0} b_{0}$ and $a_{0} e_{0}=0$. Multiply (2) from the right by e_{0}, we have $0=a_{0} b_{1} e_{0}+a_{1} \alpha\left(b_{0}\right) e_{0}=a_{0} e_{0} b_{1}+a_{1} \alpha\left(b_{0}\right) \alpha\left(e_{0}\right)=a_{1} \alpha\left(b_{0}\right)$. By (2) $a_{0} b_{1}=0$ and so $b_{1}=e_{0} b_{1}$. Again, multiply (3) from the right by e_{0}, we have $0=a_{0} b_{2} e_{0}+a_{1} \alpha\left(b_{1}\right) e_{0}+a_{2} \alpha^{2}\left(b_{0}\right) e_{0}=$ $a_{1} \alpha\left(b_{1}\right)+a_{2} \alpha^{2}\left(b_{0}\right)$. Multiply this equation from right by e_{1}, we have $0=a_{1} \alpha\left(b_{1}\right) e_{1}+a_{2} \alpha^{2}\left(b_{0}\right) e_{1}=a_{2} \alpha^{2}\left(b_{0}\right)$. Continuing in this way, we may conclude that $a_{i} \alpha^{i}\left(b_{j}\right)=0$ for all $1 \leq i \leq s$ and $1 \leq j \leq t$. Hence R is α-Armendariz. This completes the proof.

Corollary 2.10 If the ring R is Armendariz, then R is abelian. The converse holds if R is a right p.p.-ring.

Proposition 2.11 If the ring R is α-Armendariz of power series type, then R is α-abelian. The converse holds if R is a right p.p.-ring.

Proof. Similar to the proof of Theorem 2.9.

Recall that a ring is reduced if it has no nonzero nilpotent elements. In [11], Lee and Zhou introduced α-reduced module. A module M is called α-reduced if, for any $m \in M$ and any $a \in R$,
(1) $m a=0$ implies $m R \cap M a=0$
(2) $m a=0$ if and only if $m \alpha(a)=0$.

In this work, we call the ring $R \alpha$-reduced if R_{R} is an α-reduced module. Hence R is a reduced ring if and only if R_{R} is an 1-reduced module.

In [5], Hong et al. studied α-rigid rings. For an endomorphism α of a ring R, R is called α-rigid if $a \alpha(a)=0$ implies $a=0$ for any a in R. The relationship between α-rigid rings and α-skew Armendariz rings was studied in [6]. In fact, R is an α-Armendariz ring if and only if (1) R is an α-skew Armendariz ring and (2) $a b=0$ if and only if $a \alpha(b)=0$ for any a, b in R. Note that α-reduced ring is α-rigid. Really, let R be an α-reduced ring and $a \alpha(a)=0$ for some a in R. Then $a^{2}=0$. Since R is reduced, we have $a=0$. Further, by [5, Proposition 6], any α-reduced ring R is α-Armendariz. By Theorem 2.9, R is α-abelian. So, the first statement of Lemma 2.12 is a direct corollary of [5, Proposition 6].

Lemma 2.12 If R is an α-reduced ring, then R is α-abelian. The converse holds if R is a right p.p.-ring.
Proof. Let R be an α-abelian and right p. p-ring. Suppose $a b=0$ for $a, b \in R$. If $x \in a R \cap R b$, then there exist $r_{1}, r_{2} \in R$ such that $x=a r_{1}=r_{2} b$. Since R is right p.p-ring, $a b=0$ implies that $b \in r(a)=e R$ for some idempotent $e^{2}=e \in R$. Then $b=e b$ and $x e=a r_{1} e=r_{2} b e$. Since R is α-abelian and $a e=0$, we have $a r_{1} e=a e r_{1}=r_{2} b e=r_{2} e b=r_{2} b=0$. Hence $a R \cap R b=0$, that is, R is α-reduced.

Corollary 2.13 If R is a reduced ring, then R is abelian. The converse holds if R is a right p.p.-ring.
According to Lambek [10], a ring R is called symmetric if whenever $a, b, c \in R$ satisfy $a b c=0$, we have $b a c=0$; it is easily seen that this is a left-right symmetric concept. We now introduce α-symmetric rings as a generalization of symmetric rings.

AGAYEV, HARMANCI, HALICIOĞLU

Definition 2.14 The ring R is called α-symmetric if, for any $a, b, c \in R$,
(i) $a b c=0$ implies $a c b=0$,
(ii) $a b=0$ if and only if $a \alpha(b)=0$.

It is clear that a ring R is symmetric if and only if it is $\mathbf{1}$-symmetric.

Theorem 2.15 Let R be a right p.p-ring. Then the following are equivalent:
(1) R is α-reduced.
(2) R is α-symmetric.
(3) R is α-semicommutative.
(4) R is α-Armendariz.
(5) R is α-Armendariz of power series type.
(6) R is α-abelian.

Proof. $\quad(1) \Leftrightarrow(6)$ From Lemma 2.12.
$(4) \Leftrightarrow(6)$ Clear from Theorem 2.9.
$(3) \Leftrightarrow(6)$ From Lemma 2.5.
(5) \Leftrightarrow (6) From Proposition 2.11.
$(2) \Rightarrow(3)$ Let $a, b \in R$ with $a b=0$. By hypothesis, $a b c=0$ implies $a c b=0$ for all $c \in R$. Hence $a R b=0$ and so R is α-semicommutative.
$(3) \Rightarrow(2)$ Assume that $a b c=0$, for any $a, b, c \in R$. Since R is right p.p.-ring, $c \in r(a b)=e R$ for some idempotent $e \in R$. Then $c=e c$ and $a b e=0$, so $a c b e=0$. We have already proved that semicommutativity implied being abelian, then $a c b e=a e c b$. Now $a c b=a e c b=a c b e=0$. It completes the proof.

Corollary 2.16 Let R be a Baer ring. Then the following are equivalent:
(1) R is α-reduced.
(2) R is α-symmetric.
(3) R is α-semicommutative.
(4) R is α-Armendariz.
(5) R is α-Armendariz of power series type.
(6) R is α-abelian.

One may suspect that if R is an abelian ring, then $R[x, \alpha]$ is abelian also. But this is not the case.

Example 2.17 Let F be any field, $R=\left\{\left.\left(\begin{array}{cccc}a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u\end{array}\right) \right\rvert\, a, b, u, v \in F\right\}$ and $\alpha: R \rightarrow R$ be defined by
$\alpha\left(\begin{array}{cccc}a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u\end{array}\right)=\left(\begin{array}{cccc}u & v & 0 & 0 \\ 0 & u & 0 & 0 \\ 0 & 0 & a & b \\ 0 & 0 & 0 & a\end{array}\right)$, where $\left(\begin{array}{cccc}a & b & 0 & 0 \\ 0 & a & 0 & 0 \\ 0 & 0 & u & v \\ 0 & 0 & 0 & u\end{array}\right) \in R$

AGAYEV, HARMANCI, HALICIOĞLU

Since R is commutative, R is abelian. We claim that $R[x, \alpha]$ is not an abelian ring. Let $e_{i j}$ denote the 4×4 matrix units having alone 1 as its (i, j)-entry and all other entries 0 . Consider $e=e_{11}+e_{22}$ and $f=e_{33}+e_{44} \in R$ and $e(x)=e+f x \in R[x ; \alpha]$. Then $e(x)^{2}=e(x), e f=f e=0, e^{2}=e, f^{2}=f, \alpha(e)=f$, $\alpha(f)=e$. An easy calculation reveals that $e(x) e_{12}=e_{12}+e_{34} x$, but $e_{12} e(x)=e_{12}$. Hence $R[x, \alpha]$ is not an abelian ring.

Lemma 2.18 If R is an α-abelian ring, then the idempotents of $R[x, \alpha]$ belong to R, therefore $R[x, \alpha]$ is an abelian ring.
Proof. Let R be α-abelian and $e(x)=\sum_{i=0}^{t} e_{i} x^{i}$ be an idempotent in $R[x, \alpha]$. Since $e(x)^{2}=e(x)$, we have

$$
\begin{array}{r}
e_{0}^{2}=e_{0} \\
e_{0} e_{1}+e_{1} \alpha\left(e_{0}\right)=e_{1} \\
e_{0} e_{2}+e_{1} \alpha\left(e_{1}\right)+e_{2} \alpha^{2}\left(e_{0}\right)=e_{2} \tag{3}
\end{array}
$$

Since R is α-abelian, R is abelian, and so every idempotent is central. By Lemma 2.3, $\alpha(e)=e$ for every idempotent $e \in R$. Then (2) becomes $e_{0} e_{1}+e_{1} e_{0}=e_{1}$ and so $e_{1}=0$. Since e_{0} is central idempotent, (3) becomes $e_{0} e_{2}+e_{2} e_{0}=e_{2}$ and so $e_{2}=0$. Similarly, it can be shown that $e_{i}=0$ for $i=1,2, \ldots, t$. This completes the proof.

Lemma 2.19 If $R[x, \alpha]$ is an abelian ring, then $\alpha(e)=e$ for every idempotent $e \in R$.
Proof. Since $R[x, \alpha]$ is abelian, we have $f(x) e(x)=e(x) f(x)$ for any $f(x), e(x)^{2}=e(x) \in R[x, \alpha]$. In particular, $x e=e x$ for every idempotent $e \in R$. Hence $x e=e x=\alpha(e) x$ and so $\alpha(e)=e$.

Lemma 2.20 If $R[x, \alpha]$ is an abelian ring, then the idempotents of $R[x, \alpha]$ belong to R.
Proof. Similar to the proof of Lemma 2.18.

Theorem 2.21 If R is an α-abelian ring, then $R[x, \alpha]$ is abelian. The converse holds if $R[x, \alpha]$ is a right p.p.-ring.

Proof. If R is α-abelian, by Lemma 2.18, $R[x, \alpha]$ is abelian. Suppose that $R[x, \alpha]$ be an abelian and right p.p.-ring. It is clear that $a e=e a$ for any $a, e^{2}=e \in R$. Suppose $a b=0$ for any $a, b \in R$. Since R is right p.p.-ring, we have $b \in r(a)=e R, b=e b$. So $a \alpha(b)=a \alpha(e b)=a e \alpha(b)=0$. Conversely, let $a \alpha(b)=0$. Then $a x b=0$. Since $R[x, \alpha]$ is right p.p.-ring, we have $b \in r_{R[x, \alpha]}(a x)=e R[x, \alpha]$ for some idempotent $e \in R[x, \alpha]$. So $b=e b$, axe $=0$. By Lemma 2.20, $e \in R$. Hence $a e=0$ and $a b=a e b=0$. Therefore R is α-abelian.

AGAYEV, HARMANCI, HALICIOĞLU

Lemma 2.22 Let R be an α-abelian ring. If for any countable subset X of $R, r(X)=e R$, where $e^{2}=e \in R$, then
(1) $R[[x, \alpha]]$ is a right p.p.-ring.
(2) If α is an automorphism of R, then $R\left[\left[x, x^{-1}, \alpha\right]\right]$ is a right p.p.-ring.

Proof. Let $a \in R$. Since $\{a\}$ is countable subset of $R, r(a)=e R$, i.e., R is a right p.p.-ring. Then from Theorem 2.15, R is α-Armendariz of power series type. By [11, Theorem 2.11.(1)(c), Theorem 2.11.(2)(c)], $R[[x, \alpha]]$ and $R\left[\left[x, x^{-1}, \alpha\right]\right]$ are right p.p.-rings.

Theorem 2.23 Let R be an α-abelian ring. Then we have:
(1) R is a right p.p.-ring if and only if $R[x, \alpha]$ is a right p.p.-ring.
(2) R is a Baer ring if and only if $R[x, \alpha]$ is a Baer ring.
(3) R is a right p.q.-Baer ring if and only if $R[x, \alpha]$ is a right p.q.-Baer ring.
(4) R is a Baer ring if and only if $R[[x, \alpha]]$ is a Baer ring.

Let $\alpha \in \operatorname{Aut}(R)$.
(5) R is a Baer ring if and only if $R\left[x, x^{-1}, \alpha\right]$ is a Baer ring.
(6) R is a right p.p.-ring if and only if $R\left[x, x^{-1}, \alpha\right]$ is a right p.p.-ring.
(7) R is a Baer ring if and only if $R\left[\left[x, x^{-1}, \alpha\right]\right]$ is a Baer ring.

Proof. (1) " \Rightarrow ": Let $f(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t} \in R[x, \alpha]$. We claim that $r_{R[x, \alpha]}(f(x))=e R[x, \alpha]$, where $e=e_{0} e_{1} \ldots e_{t}, e_{i}^{2}=e_{i}$ and $r_{R}\left(a_{i}\right)=e_{i} R, i=0,1, \ldots, t$. By hypothesis and Lemma 2.3, $f(x) e=$ $a_{0} e_{0} e_{1} \ldots e_{t}+a_{1} e_{1} e_{0} e_{2} \ldots e_{t} x+\ldots+a_{t} e_{t} e_{0} e_{1} \ldots e_{t-1} x^{t}=0$. Then $e R[x] \subseteq r_{R[x, \alpha]}(f(x))$. Let $g(x)=b_{0}+b_{1} x+$ $\ldots+b_{n} x^{n} \in r_{R[x, \alpha]}(f(x))$. Then $f(x) g(x)=0$. Since R is an abelian and right p.p.-ring, by Theorem 2.9, R is Armendariz. So $a_{i} b_{j}=0$ and this implies $b_{j} \in r_{R}\left(a_{i}\right)=e_{i} R$, and then $b_{j}=e_{i} b_{j}$ for any i. Therefore $g(x)=e g(x) \in e R[x, \alpha]$. This completes the proof of (1) " \Rightarrow ".
$" \Leftarrow "$: Let $a \in R$. Then there exists $e(x)^{2}=e(x) \in R[x, \alpha]$ such that $r_{R[x, \alpha]}(a)=e(x) R[x, \alpha]$. Then the constant term, e_{0} say, of $e(x)$ is non-zero, and e_{0} is an idempotent in R. So $e_{0} R \subset r_{R}(a)$. Now let $b \in r_{R}(a)$. Since $r_{R}(a) \subset r_{R[x, \alpha]}(a), a b=0$ implies that $b=e(x) b$ and so $b=e_{0} b$. Hence $r_{R}(a) \subset e_{0} R$, that is, $r_{R}(a)=e_{0} R$. Therefore R is a right p.p.-ring.
(2) " $\Rightarrow "$: Since R is Baer, R is a right p.p.-ring. By Lemma 2.5, R is Armendariz. Then from [11, Theorem 2.5.1(a)], $R[x, \alpha]$ is Baer.
$" \Leftarrow "$: Let $R[x, \alpha]$ be a Baer ring and X be a subset of R. There exists $e(x)^{2}=e(x)=e_{0}+e_{1} x+\ldots+e_{n} x^{n} \in$ $R[x, \alpha]$ such that $r_{R[x ; \alpha]}(X)=e(x) R[x, \alpha]$. We claim that $r_{R}(X)=e_{0} R$. If $a \in r_{R}(X)$, then $a=e(x) a$ and so $a=e_{0} a$. Hence $r_{R}(X) \subset e_{0} R$. Since $X e(x)=0$, we have $X e_{0}=0$, that is, $e_{0} R \subset r_{R}(X)$. Then R is a Baer ring.
(3) " \Rightarrow ": Let $f(x)=a_{0}+a_{1} x+\ldots+a_{t} x^{t} \in R[x, \alpha]$. We prove $r_{R[x, \alpha]}(f(x) R[x, \alpha])=e(x) R[x, \alpha]$, where $e(x)=e_{0} e_{1} \ldots e_{t}, r_{R}\left(a_{i} R\right)=e_{i} R$. Since R is abelian, for any $h(x) \in R[x, \alpha] f(x) h(x) e(x)=0$. Then $e(x) R[x, \alpha] \subset r_{R[x, \alpha]}(f(x) R[x, \alpha])$. Let $g(x)=b_{0}+b_{1} x+\ldots+b_{n} x^{n} \in r_{R[x, \alpha]}(f(x) R[x, \alpha])$. Then $f(x) R[x, \alpha] g(x)=0$ and so, $f(x) R g(x)=0$. From last equality we have $a_{0} R b_{0}=0$. Hence $b_{0} \in r_{R}\left(a_{0} R\right)=$ $e_{0} R$. It follows that $b_{0}=e_{0} b_{0}$. Also for any $r \in R$, the coefficient of x is equal to $a_{0} r b_{1}+a_{1} \alpha\left(r b_{0}\right)$.

AGAYEV, HARMANCI, HALICIOĞLU

Hence $a_{0} r b_{1}+a_{1} \alpha\left(r b_{0}\right)=0$. Multiplying the equation $a_{0} r b_{1}+a_{1} \alpha\left(r b_{0}\right)=0$ from the right by e_{0}, we have $a_{1} \alpha\left(r b_{0} e_{0}\right)=0$, that is, $a_{1} \alpha\left(r b_{0}\right)=0$. Since R is α-abelian, $a_{1} r b_{0}=0$. This implies $a_{1} R b_{0}=0$. Then $b_{0} \in r_{R}\left(a_{1} R\right)=e_{1} R$ and $b_{1} \in r_{R}\left(a_{0} R\right)=e_{0} R$. So, $b_{0}=e_{1} b_{0}$ and $b_{1}=e_{0} b_{1}$. Again for any $r \in R$, $a_{0} r b_{2}+a_{1} r b_{1}+a_{2} r b_{0}=0$. Multiplying this equality from right by $e_{0} e_{1}$ and using previous results, we have $a_{2} r b_{0}=0$. Then $b_{0} \in r_{R}\left(a_{2} R\right)=e_{2} R$. So $b_{0}=e_{2} b_{0}$. Continuing this process we have $b_{i}=e_{j} b_{i}$ for any i, j. This implies $g(x)=e_{0} e_{1} \ldots e_{t} g(x)$. So, $R[x, \alpha]$ is a right p.q.-Baer ring.
$" \Leftarrow "$: Let $a \in R$. Then $r_{R[x, \alpha]}(a R[x, \alpha])=e(x) R[x, \alpha]$, where $e(x)^{2}=e(x) \in R[x, \alpha]$. By Lemma 2.18, $e(x)=e_{0} \in R$. Since $a R[x, \alpha] e(x)=0, a R[x, \alpha] e_{0}=0$ and $a R e_{0}=0$. So, $e_{0} R \subset r_{R}(a R)$. Let $r \in r_{R}(a R)=r_{R}(a R[x, \alpha]) \subset r_{R[x, \alpha]}(a R[x, \alpha])=e(x) R[x, \alpha]$. Then $e(x) r=r$. This implies $e_{0} r=r$ and so $r \in e_{0} R$. Therefore $r_{R}(a R[x, \alpha])=e_{0} R$, i.e., R is a right p.q.-Baer ring.
(4) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, so the proof follows from [11, Theorem 2.5 (1)(b)].
(5) By Corollary 2.16, R is α-Armendariz, then proof follows from [11, Theorem 2.5 (2)(a)].
(6) Since every α-abelian and right p.p.-ring is α-Armendariz by Theorem 2.9, the proof follows from [11, Theorem 2.11 (2)(a)].
(7) By Corollary 2.16, every abelian and Baer ring is Armendariz of power series type, it follows from [11, Theorem 2.5 (2)(b)].

Acknowledgment The authors express their gratitudes to the referee for (his/her) valuable suggestions.

References

[1] Agayev, N., Harmanci, A.: On semicommutative modules and rings, Kyungpook Math. J., 47, 21-30 (2007).
[2] Birkenmeier, G.F., Kim, J.Y., Park, J.K.: On extensions of Baer and quasi-Baer Rings, J. Pure Appl. Algebra, 159, 25-42 (2001).
[3] Buhphang, A.M., Rege, M.B.: Semi-commutative modules and Armendariz modules, Arab. J. Math. Sci., 8, 53-65 (2002).
[4] Clark, E.W.: Twisted matrix units semigroup algebras, Duke Math. J., 34, 417-424 (1967).
[5] Hong, C.Y., Kim, N.K., Kwak, T.K.: Ore extensions of Baer and p.p.-rings, J. Pure and Appl. Algebra, 151(3), 215-226 (2000).
[6] Hong, C.Y., Kim, N.K., Kwak, T.K.: On skew Armendariz rings, Comm. Algebra, 31(1), 103-122 (2003).
[7] Huh, C., Lee, Y., Smoktunowicz, A.: Armendariz Rings and Semicommutative Rings, Comm. Algebra, 30(2), 751-761 (2002).
[8] Kaplansky, I.: Rings of Operators, Math. Lecture Note Series, Benjamin, New York, 1965.
[9] Kim, N.K., Lee, Y.: Armendariz rings and reduced rings, J. Algebra, 223, 477-488 (2000).
[10] Lambek, J.: On the representation of modules by sheaves of factor modules, Canad. Math. Bull., 14(3), 359-368 (1971).

AGAYEV, HARMANCI, HALICIOĞLU

[11] Lee, T.K., Zhou, Y.: Reduced modules, Rings, modules, algebras, and abelian groups, 365-377, Lecture Notes in Pure and Appl. Math., 236, Dekker, New York, 2004.
[12] Rege, M.B., Chhawchharia, S.: Armendariz Rings, Proc. Japan Acad. Ser. A Math.Sci., 73, 14-17 (1997).

Nazim AGAYEV
Received 05.11.2007
Department of Computer Engineering, European University of Lefke, Gemikonagi-Lefke, Mersin 10, Cyprus e-mail: nagayev@ eul.edu.tr
Abdullah HARMANCI
Mathematics Department
Hacettepe University
06550 Ankara, Turkey
e-mail: harmanci@hacettepe.edu.tr
Sait HALICIOĞLU
Department of Mathematics
Ankara University
06100 Ankara, Turkey
e-mail: halici@science.ankara.edu.tr

[^0]: 2000 AMS Mathematics Subject Classification: 16U80.

