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Abstract: Parkinson’s disease (PD) is a progressive and chronic nervous system disease that impairs
the ability of speech, gait, and complex muscle-and-nerve actions. Early diagnosis of PD is quite
important for alleviating the symptoms. Cost effective and convenient telemedicine technology helps
to distinguish the patients with PD from healthy people using variations of dysphonia, gait or motor
skills. In this study, a novel telemedicine technology was developed to detect PD remotely using
dysphonia features. Feature transformation and several machine learning (ML) methods with 2-,
5- and 10-fold cross-validations were implemented on the vocal features. It was observed that the
combination of principal component analysis (PCA) as a feature transformation (FT) and k-nearest
neighbor (k-NN) as a classifier with 10-fold cross-validation has the best accuracy as 99.1%. All ML
processes were applied to the prerecorded PD dataset using a newly created program named ParkDet
2.0. Additionally, the blind test interface was created on the ParkDet so that users could detect new
patients with PD in future. Clinicians or medical technicians, without any knowledge of ML, will be
able to use the blind test interface to detect PD at a clinic or remote location utilizing internet as a
telemedicine application.

Keywords: telemedicine; Parkinson’s disease; machine learning; feature transformation; principal
component analysis; k-nearest neighbor

1. Introduction

New telecommunication technologies are increasingly being applied to healthcare resulting
in better health outcomes. Telemedicine allows rapid and accurate detection of certain diseases.
Computer-aided diagnosis has become common [1–5]. ML [6,7] and telemedicine has been
implemented in diagnosis of diseases in several therapeutic areas including cardiology [8],
chest disease [9], radiology [10], pathology [11], neurology [12], pediatrics [13], dermatology [14],
and psychiatry [15]. Additionally cellphone, image sensor or Google Glass-based medical devices
have been adapted for telemedicine and point of care applications [16–21].

Parkinson’s disease is a neurodegenerative disorder that has significant adverse effect on the
lives of patients and their families [22–24]. Early and accurate diagnosis of PD is critical for effective
treatment, but unfortunately PD diagnosis is not efficient. Computer-based smart systems can detect
PD symptoms. Wavelet transformation through web interface was used to detect the difference
between spirals drawn by PD patients and healthy participants using an ergonomic pen on a hand
computer [25]. An automatic characterization of PD was developed by measuring the ipsilateral
coordination and spatiotemporal gait patterns and using SVM [26]. Vegetative locomotor coordination,
with an automatic step detection component and template matching algorithm, was used for the
analysis of patients with PD [27].
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Little et al. measured dysphonia from patients with PD [28]. They recorded an average of six
phonations from each patient. A soundproof audiology booth produced by an industrial acoustics
company was used to record the phonations by utilizing a microphone which is mounted on the head.
Using a computerized speech laboratory, the human sound signals were recorded on a computer.
After recording the phonations, they calculated the existing traditional and nonstandard measures
and entropy of some variations. They discriminated healthy people and patients with PD using a
kernel SVM classifier. Some researchers subsequently used Little et al.’s dataset and tried to improve
the performance of their classifier. Bhattacharya et al. used the data mining tool Weka and SVM
as classifiers [29]. Das tried to select features and applied four different classifiers including neural
networks, DMneural, Regression and decision tree [30]. Sakar et al. also applied a feature selection
method and used a SVM classification algorithm [31]. Ozcift selected the features with linear SVM
then, applied IBk (a k-Nearest Neighbor variant) classifier [32]. Polat classified patients with PD
using a feature weighting method named fuzzy c-means clustering-based feature weighting (FCMFW)
and k-NN classifier [33]. Acevedo used an alpha-beta bidirectional associative memory (ABBAM)
approach to differentiate between patients with PD and healthy people [34]. Gök selected features and
used six different classifiers: Bayes net, linear SVM, radial basis SVM, k-NN, multilayer perceptron,
and K-Star [35].

In this study, the PD dataset produced by Little et al. was used and a novel method for detection
of PD was developed in a different way as compared to previous studies. A new program named
the ParkDet 2.0 was created by using a MATLAB graphical user interface (GUI) to implement the
ML process on the program. Then, using the ParkDet, different combinations of ML were applied to
increase the accuracy of classifier. The principal purpose of the study is to allow clinicians or medical
technicians to detect patients with PD utilizing the easy-to-use ParkDet program and not to require
them to use complex engineering programs such as MATLAB and automatic detection methods.
Through the ParkDet program several combinations of ML processes were applied such as PCA and
factor analysis (FA) as FT, and seven classifiers such as Support Vector Machine (SVM), Boosting,
k-NN, Naive Bayes (NB), Decision Tree (DT), Linear Discriminant Analysis (LDA) and Quadratic
Discriminant Analysis (QDA) with 2-, 5- and 10-fold cross-validations and an additional blind test.
The results are encouraging since the accuracy of classification reached 99.1%, which is the highest one
reported compared to other techniques in the current literature.

2. Materials and Methods

2.1. Dataset

The dataset comprised 195 sustained vowel vocalizations from 31 people of which 23 have been
diagnosed with PD. Nineteen of the 31 people are male and the rest are female. The dataset includes
195 phonations of participants consisting of 48 healthy and 147 diagnosed with PD. A microphone was
mounted on the participant’s heads and the phonations were recorded. An average of six phonations
was recorded from each candidate. The software Praat 4.3.14 [28,36] and Kay Pentax multidimensional
voice program (MDVP), model 4337, [28,37] were used to calculate the traditional measures. Using
a computerized speech laboratory, the voice signals were recorded on a computer. The dataset has
22 dimensional features as given in Table 1 with their short definitions. The patients’ ages ranged from
46 to 85. The mean and standard deviation of the ages are 65.8 and 9.8, respectively. The dataset was
recorded at the University of Oxford, in collaboration with the National Centre for Voice and Speech
(Denver, CO, USA) and shared online in the UCI machine-learning archive [28].
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Table 1. The 22 features and short definitions of the original PD dataset.

Features Definitions

MDVP: Fo (Hz) Average vocal fundamental frequency
MDVP: Fhi (Hz) Max. vocal fundamental frequency
MDVP: Flo (Hz) Min. vocal fundamental frequency
MDVP: Jitter (%) Jitter as a percentage
MDVP: Jitter (Abs) Absolute jitter in microseconds
MDVP: RAP Relative amplitude perturbation
MDVP: PPQ Five-point period perturbation quotient
MDVP: Shimmer local shimmer
MDVP: Shimmer (dB) local shimmer in decibels
MDVP: APQ 11-point amplitude perturbation quotient
Shimmer: APQ3 Three point amplitude perturbation quotient

Shimmer: DDA Average absolute difference between consecutive
differences between the amplitudes of consecutive periods

Shimmer: APQ5 Five point amplitude perturbation quotient

Jitter:DDP Average absolute difference of differences between cycles,
divided by the average period

NHR Noise-to-harmonics ratio
HNR Harmonics-to-noise ratio
RPDE Recurrence period density entropy
DFA Signal fractal scaling exponent
D2 Correlation dimension
PPE Pitch period entropy
Spread1 Two nonlinear measures of fundamental frequency

variationSpread2

Little et al. [28] demonstrated a practical assessment of existing traditional and nonstandard
measures of dysphonia in the literature and additionally, they measured a new variation of dysphonia.
They acquired pitch pattern of the vocalization and converted it to a logarithmic halftone measure and
then built a discrete probability distribution of generation of relative halftone alteration. They then
computed the entropy of this probability distribution. They denominated the new variation as pitch
period entropy (PPE).

Entropy is used to calculate quantification of the uncertainness of a random variable X. Namely,
the entropy quantifies -the difficulty of variable prediction. The mathematical expression of Shannon’s
entropy is given by:

H pXq “ ´
ÿ

x
rp pxq log pp pxqqs (1)

where p(x) is the probability distribution function belonging X. The unevenness of the probability
distribution p is quantified by Equation (1) [38].

2.2. Telemedicine Application with the Created ParkDet 2.0

A new program called ParkDet was created to apply multiple ML algorithms to the dataset of
prerecorded PD. Interfaces of the program, created in MATLAB GUI, were transformed to a user
friendly program. The interfaces consist of three pages called “Main menu”, “All data application” and
“Blind test”. The relationship between these interfaces is shown as Figure 1. Prerecorded dataset can
be accessed through internet or USB memory, and then ML processes can be applied, using ParkDet,
to distinguish patients with PD from healthy people. ParkDet was employed by installing it on a
Windows-based tablet. When the program is run, the main menu interface is seen (Figure 2a), and users
can switch to the other screens through the pushbuttons.
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On the main screen there are two buttons named “All data application” and “Blind test”. In the
meantime, users can return to the main menu screen from the other screens, using “Main Menu”
pushbutton at the bottom of the all data application and blind test screens. When a user pushes
the “All data application” button on the main menu interface, the screen shown in Figure 2b is seen.
All data application interface consists of two sections called “Steps of ML”, “Results of ML” and also,
“Run” and “Main Menu” buttons. The interface is designed as a flow chart to enable user-friendly use.
Users will be able to use the ParkDet by starting from the top of the interface proceeding to the bottom.
At the “Steps of ML” section, there are four sub-steps to apply ML process: 1. Select data. 2. The feature
transformation methods. 3. The numbers of k-fold for cross-validation. 4. The classifier(s).

2.2.1. Feature Transformation

The user selects the prerecorded dataset in the tablet and PCA or FA can be chosen as a FT
method. FT is useful for dimension reduction of features and creates new predictor features. FT is
practiced on the PD dataset by creating new reduced features that represent information entropy
of the original dataset. Principal Component Analysis (PCA) is a statistical method to transform
variations from probably correlated features of the observations to the uncorrelated features called
principal components. One of the utilization areas of PCA is reducing variations to create predictive
new features [39]. Factor analysis is a statistical approach and a useful method to eliminate redundant
of features. FA redesigns the features as linear combinations of the potential factors [40].

2.2.2. Cross-Validation

K-fold is created in the cross-validation. K-equal sized subsamples are created from the original
samples. In this study, 2-, 5- and 10-fold can be selected using check boxes in the ParkDet interface.
Test data is created using a single subsample of the k subsamples and the rest of subsamples constitute
the training data. Throughout each of k times repetition of cross-validation procedure, individual k
subsamples are used as the test data. To achieve a single prediction, k accuracy results, which are
obtained from the all folds, of implemented classifiers in this study were averaged [41].

2.2.3. Classification Algorithms

Users can elect to apply SVM, boosting, k-NN, NB, DT, LDA or QDA as the classifiers using check
box(es). The maximum margin hyperplane, which is defined by the SVM, is used for the purpose of
differentiating between two classes of patterns. Margin means the width of the slab parallel to the
hyperplane which has no interior data points [42]. In this study, radial basis SVM was used. Boosting
reduces bias primarily and also variance as a machine learning ensemble meta-algorithm, the aim of
boosting is to convert weak learners to strong ones [43]. There are many boosting algorithms. In this
study the adaptive boosting (AdaBoost) algorithm was used. The k-NN classification is one of the most
fundamental and simple classification methods and finds a group of k that is the number of nearest
neighbor objects which are closest to the test object. The number of nearest neighbors, labeled objects
and similarity measurements to calculate distance between the value of k, and objects, are significant
parameters to gain high accuracy of k-NN. The distance between unlabeled objects and labeled object
is calculated to determine the classes of unlabeled objects. After identifying the k-nearest neighbors,
the class label of the objects are achieved by using the class labels of the k-nearest neighbors [44].
The Naive Bayesian classifier, which is based on Bayes Theorem, is simply realizable and includes
no complexity of iterative parameter estimation which makes it ideal to use for sizeable datasets [45].
A decision tree is a prevalent method for decision analysis and classification in machine learning
and comprises a root and a number of nodes, branches representing conjunctions of features and
leaves representing class labels and the elements of decision tree constitute a tree-shaped schematic
representation. Classification process is realized by starting at the root of the tree and proceeded to
a leaf node [46]. Linear and quadratic discriminant analysis acquires a hyperplane to separate two
classes. This method is based on the mean and pooled matrix of the data. It must be that all variables



Entropy 2016, 18, 115 6 of 14

have a normal distribution. In the meantime, for all groups, the variance and covariance of matrix
must be homogeneous to practice the discriminant analysis. QDA and LDA are similar methods.
However, QDA of a covariance matrix must be predicted for each class as differently [47,48].

The “Results of ML” section has two sub-steps. After the check boxes of the ML steps are selected,
if a user pushes the “Run” pushbutton, the accuracies of all classifiers instantaneously appear at the
first step of the Results in the ML section. At the same time, the area under the Receiver Operating
Characteristic (ROC) curve (AUC) can be seen at the second step of the Results of ML section if a user
selects all classifiers and clicks the “Show AUC” check box. To plot ROC curves, true positive and
false positive rates with different threshold values are used. By utilizing the area under the ROC curve,
an AUC value is calculated and plotted. The AUC value is accepted to be a significant benchmark of
comparison for performances of classification algorithms [49]. After all processes are finished, the user
can close the program or go back to the main menu by pushing the “Main Menu” button.

2.2.4. Experimental Implementations

Using the “All data application” interface of the ParkDet, the prerecorded dataset was selected
and several ML combinations were applied. The original dataset without FT, 2-fold cross-validation
and all classifiers were chosen and the program was run. Accuracies of results were saved and AUC
was observed for comparison of classifications. This process was repeated choosing 5- and 10-fold
cross-validation for original dataset and accuracies of all classifiers were saved.

After these three processes, PCA was applied to the dataset and feature reduction was performed.
The relationship between random variables is observed with multivariate statistics. A multivariate
data matrix of X is the set of observations of the random variables. The sample mean of the kth variable
is as Equation (2):

xk “
1
n

n
ÿ

i“1

xik , k “ 1, 2, . . . , 22 (2)

where, k and n are the number of variations and observations respectively. The variance is defined by
Equation (3) and covariance is calculated with Equation (4):

σk
2 “

1
n

n
ÿ

i“1

pxik ´ xkq
2 , k “ 1, 2, . . . , 22 (3)

Cik“

1
n

n
ÿ

j“1

`

xji ´ xi
˘ `

xjk ´ xk
˘

, i “ 1, 2, . . . , 22, k “ 1, 2, . . . , 22 (4)

Figure 3 shows the total variance of the first eight components (instead of the total twenty two)
as 95.68%.
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First principal component (PC) possesses the biggest variance. Using PCA, 22 features were
now reduced by eight principal components. When the new reduced features are used, only 4.32%
of information is excluded since the total variance is 95.68%. Through PCA, the original data can be
easily visualized. After reducing the data dimensions, a visual representation of the data is observed.
The comparison of samples and variables for PC1 versus PC2, PC2 versus PC3, PC1 versus PC3 and PC1
versus PC2 versus PC3 as 3D are shown in Figure 4a–d, respectively.
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All twenty two variables are represented by a vector in Figure 4. The contribution of each variable
to the two or three principal components can be seen by the direction and magnitude of that vector.
Each blue line represents the 22 corresponding features as labeled. The significance of that feature
can be observed with the magnitude of the associated line. The most significant variable having the
largest negative coefficient for PC1 is 16th variable corresponding to the HNR since the location of
variable is far from origin. 1st variable MDVP Fo(Hz) is the most significant feature for PC2 and 18th
feature DFA is the most significant variable for PC3 having the largest positive coefficients. Figure 4d
as 3D image provides a good comparison of significant variables. 1st, 2nd, 3rd, 16th, 17th, 19th, 20th,
21st, 22nd variables as MDVP Fo(Hz), MDVP Fhi(Hz), MDVP Flo(Hz), HNR, RPDE, D2, PPE, Spread1,
Spread2 are more significant separator than the other ones. When the 3D figure is viewed from other
angles in Figure 4d, the 18th variable’s DFA is clearly seen to be a significant feature. Using the new
predictor features achieved via PCA, all classifiers with 2-, 5-, 10-fold cross-validation were chosen on
the ParkDet, respectively. For these new three processes, all accuracies of classifiers were saved and
the AUC was analyzed for comparison of the classifiers.
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After analyzing the original dataset and the reduced dataset with PCA, the new transformed
dataset was created by applying factor analysis technique. Three principal factors are extracted from
the PD dataset. The covariance matrix of the dataset is calculated via Equation (5):

ÿ

“ ΛΛT ` Ψ (5)

where Λ is the matrix of loadings that are coefficients, and Ψ is the specific variances. Each column
of Λ is a factor. The estimated loadings and the estimated specific variances provide to analyze the
variables. When the non-rotated factors are observed, the factors representation is found to be difficult
to interpret. The factors are then rotated to find a solution of the representation problem. Factor
rotation provides to compute new loadings in the rotated factor coordinate system to fit the variations
on the factor axis. After rotating the factors, the visual representation of the fitted data is observed by
plotting the latent factors (LF). In Figure 5a–d LF1 versus LF2, LF2 versus LF3, LF1 versus LF3 and LF1
versus LF2 versus LF3 as 3D are shown.
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The magnitude and direction of the vectors line indicate how each variable depends on the
factors. Especially, it is observed that the 9th, 10th, 12th 13th, 14th variations have positive, 16th has
negative loadings on the LF1 and 4th, 5th, 6th, 15th features have positive loadings on the LF2. 19th,
20th, 22nd have positive, 1st, 3rd have negative loadings on the LF3. Rests are around the origin.
Using these new reduced predictor features via FA, all processes were repeated one more time and
all accuracies of the classifiers with 2-, 5-, and 10-fold cross-validation were saved observing AUC to
compare the classifications.
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2.2.5. Blind Test Implementation

When users push the blind test button on the main menu interface, Figure 2c will be displayed.
The blind test interface consists of two sections, named “Blind Test” and “Results of Blind Test”,
in addition to, a “Run”, “Main Menu” and “Save the Results” buttons. In the blind test section,
there are two pushbuttons. Using the first button, training data predetermined as the best is selected.
Using the second button, test data is selected. When a user pushes the “Run” button, the results of
ten patients can be seen as positive or negative in the “Results of Blind Test” section. For results of more
than 10 patients, the user has to push “Show next results” button. The table was designed and limited
to show ten patients because of screen size. However a user can process data for many more than
ten patients and save the positive or negative results as a table in an Excel worksheet or notepad file.

In the all data application section the best training data was determined. The data with PCA
and k-NN classifier with 10-fold cross-validation yielded the best accuracy. Cross-validation creates
10 different folds and uses all of them sequentially as a test dataset. Their obtained average accuracy
is reported at 99.1% as the highest accuracy in the literature up to now. For the 10 different test data,
10 different accuracies were examined and the highest one, which was observed as 100%, was chosen.
In the loop which has the highest accuracy, 176 of 195 data was saved and selected as the best training
data, the remaining 19 of 195 data were saved as test data. The blind test interface was then used.
The saved best training and test data were selected using the pushbuttons separately and the program
was run. The results of patients were observed as positive or negative with 100% accuracy and were
saved as an excel sheet (Figure 6b). Using the mentioned blind test interface with the best training
data, it is thought that new candidates of patient with PD can be examined in future.
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3. Results

Using the created three interfaces of ParkDet program, different combinations of ML were applied.
All classifiers with 2-, 5-, and 10-fold cross-validations were applied to the original dataset, and the
dataset were transformed using PCA and FA sequentially. Nine different combinations of ML processes
were implemented and all accuracies of all classifiers were saved. 2-Fold cross-validation allows 50% of
dataset to be used for training and 50% for test data. 2-Fold cross-validation accuracies of the datasets
that are original, with PCA and FA, can be seen at Table 2. There are no significant improvements
among the accuracies of classifiers in the original dataset and reduced dataset except SVM and k-NN
classifier. There is a significant improvement with the k-NN classifier. The accuracy is obtained as
82.58% when original dataset is used, it is 94.87% when FA feature transformation is used and 95.02%
when PCA is used.
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Table 2. Accuracies of classifiers with 2-fold cross-validation.

Dataset SVM Boosting k-NN NB DT LDA QDA

Original 0.8615 0.8462 0.8258 0.7446 0.8087 0.8465 0.8539
with FA 0.9338 0.8636 0.9487 0.7690 0.8097 0.8696 0.8563

with PCA 0.9385 0.8705 0.9502 0.7903 0.8227 0.8723 0.8539

5-Fold cross-validation allows 80% of the dataset to be used for training and 20% for test data.
The accuracies of classifiers with 5-fold cross-validation can be seen in Table 3. Similarly, there is no
improvement at this step, except for SVM and k-NN which are the best ones. The dataset with PCA
has a higher accuracy at 96.72% than both original dataset and the dataset with FA. In the same way,
it has higher accuracy than those of 2-fold experiments.

Table 3. Accuracies of classifiers with 5-fold cross-validation.

Dataset SVM Boosting k-NN NB DT LDA QDA

Original 0.8728 0.8697 0.8395 0.7534 0.8215 0.8592 0.8642
with FA 0.9461 0.8961 0.9649 0.7930 0.8365 0.8698 0.8686

with PCA 0.9376 0.8765 0.9672 0.8125 0.8497 0.8764 0.8608

10-Fold cross-validation allows the use of 90% of the dataset for training and a 10% test dataset.
The accuracies of classifiers with 10-fold cross-validation can be seen in Table 4. This experiment has a
best accuracy of 99.1% using PCA, k-NN classifier with 10-fold cross-validation.

Table 4. Accuracies of classifiers with 10-fold cross-validation.

Dataset SVM Boosting k-NN NB DT LDA QDA

Original 0.8735 0.8882 0.8532 0.7702 0.8210 0.8710 0.8847
with FA 0.9439 0.9026 0.9832 0.7928 0.8417 0.8713 0.8712

with PCA 0.9441 0.9098 0.9910 0.8215 0.8638 0.8862 0.8937

In this experiment, PCA, 10-fold cross-validation, all classifiers and “Show AUC” were chosen
and the program was run. All classifier results can be observed on the first step of “Result of ML”
section and at the same time the AUC plot can be seen to compare the accuracy results as shown
in Figure 6a. Additionally, to see the difference between 2-, 5- and 10-fold cross-validation results,
the AUCs were created as shown in Figure 7a–c using all classifiers via the original dataset, reduced
dataset with PCA and FA, respectively.

When the Original PD dataset is used, achieved accuracy values of classifiers are less than 90%
(Figure 7a). After feature reduction with both FA and PCA, it is observed that the accuracies of SVM
and k-NN show a significant improvement. There are also slight accuracy improvements for boosting,
NB, LDA and QDA after feature reduction, but the best one is k-NN. Additionally, Figure 7b,c enable
comparison of the FA and PCA feature reduction methods with respect to the PD dataset. PCA gave
the best reduced features and FA also gave good reduced features. Their performance is similar, but is
not the same as they are related to each other but are not identical.
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Using the best combinations of ML, the blind test interface was created. The best training
data and test data were chosen from the experiment using PCA, k-NN with 10-fold cross-validation.
The reported best accuracy, 99.1%, is the average of the results from 10-fold cross-validation. Some
of the 10-fold results had 100% accuracy. One of them was chosen and its training and test datasets
were saved as the best ones. Using the blind test interface, saved training and test data were selected
and the program was run. The results of 10 patients were seen as positive or negative as shown in
Figure 6b. There were 19 test data so, the next results of nine patients were observed by pushing
“Show next results” button and the results were saved as a excel sheet having 100% accuracy by
pushing “Save the Results”.

4. Discussions

A comparison of the accuracy of the method proposed in this study and the accuracy of the
previous studies is provided in Table 5. Little et al. [28] recorded the voice of PD candidates and
using kernel SVM, they distinguished the patients with PD from healthy people with 91.4% accuracy.
Using their dataset, several researchers have tried to improve the accuracy of the ML classifier.
Battacharya et al. [29] and Sakar et al. [31] have used SVM and achieved 65.22% and 92.75% accuracies,
respectively, Das [30] achieved 92.9% accuracy using a neural network. Polat [33] tried a new method
named fuzzy c-means clustering-based feature weighting and Acevedo et al. [34] tried an alpha-beta
bidirectional associative memory approach and they reported the accuracies of their classifiers as
97.93% and 97.17%, respectively. Ozcift [32] applied the IBk (a k-Nearest Neighbor variant) method
and attained 96.93% and Gök [35] used k-NN classifier and reached 98.46% accuracy. The accuracy of
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this study is the highest at 99.1% when 10-fold cross-validation was used with PCA. Using FA feature
reduction technique with 10-fold cross-validation, 98.32% accuracy was achieved. This accuracy value
is also greater than some other studies in the literature [28–34]. Moreover, when 2-fold cross validation
with PCA and k-NN are implemented, it is observed that the accuracy at 95.02% is better than some
studies [28–31]. The 2-fold cross-validation process uses 50% training and 50% test data. For ML,
classifying the features with 50% training and 50% test data is more difficult than with 90% training
and 10% test data achieved by using 10-fold cross-validation. When this condition is considered,
the result of this study is better than the studies in the literature. Additionally, using the automatic
detection program ParkDet via an easy-to-use blind test interface, clinicians or medical technicians can
run ML without any codes to distinguish the patient with PD from the healthy people.

Table 5. The comparison of the previous studies.

Reference Classifier Accuracy (%)

Developed method k-NN using the created ParkDet 2.0 99.1
Little [28] Kernel SVM 91.4

Battacharya [29] SVM 65.22
Das [30] Neural Network 92.9

Sakar [31] SVM 92.75
Polat [33] FCMFW 97.93

Acevedo [34] ABBAM 97.17
Ozcift [32] IBk 96.93
Gök [35] k-NN 98.46

5. Conclusions

In this study, a novel telemedicine technology for automatic detection of PD was developed by
creating a new program named ParkDet 2.0. The main goal of the ParkDet program is for clinicians or
medical technicians (without knowing ML code) to easily apply ML processes, to distinguish patients
with PD from healthy people using prerecorded voice features. In order to be a user friendly program,
ParkDet was designed as a flow chart. The user proceeds through the program by starting from the top
of the interface to the bottom sequentially. Using the ParkDet, several ML combinations were applied
to the prerecorded PD dataset. The highest accuracy achieved was 99.1%. Additionally, via the blind
test interface, new patients with PD can be distinguished from healthy people during real-time medical
examinations as soon as the data is recorded at a clinic or remote location utilizing the internet as a
telemedicine application. As a distinctive and novel application program ParkDet is an ongoing project
for future improvements and updates. Two new interfaces can be added. One of them might provide
that the voices of patients are recorded to the tablet directly. Another one can process regression
methods to be analyzed gait or motor skill variations differently. It is thought that the developed
automatic PD detection technique with created telemedicine application named ParkDet will help the
clinicians to diagnose the patients with PD.
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