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Abstract—The variable switching frequency control of LLC
converters makes the modeling and compensator design rather
a difficult task. In this paper, an extended describing function
modeling that can represent the beat frequency successfully
has been examined in detail. The small signal model of the
converter dynamics has been extracted for output current and
voltage. Two compensators have been designed to close the loop
for constant-current and constant-voltage operations considering
main operating regions. The performances of the designed
compensators have been verified under different load conditions.
It has been shown that the designed controller successfully
tracks the reference output current and voltage appropriately
by adjusting the switching frequency.

Index Terms—proportional-integral controller, LLC converter,
control, bode plot, extended describing function.

I. INTRODUCTION

Since the Li-ion battery technologies developed to drive
electric motors in Electric Vehicles (EVs) have different oper-
ating modes such as constant current and constant voltage, it is
necessary to design battery chargers that can adapt its control
loops to the state of charge of the battery. Recently, several
studies have been conducted on reliable and efficient battery
chargers for EVs and their control. Among the power converter
topologies, the LLC resonant converter is one of the widely
preferred topologies for battery chargers due to its zero-voltage
switching operation in a wide frequency and load range. This
topology is proven to achieve both high-efficiency and high-
power-density designs [1]–[4]. LLC converters can obtain ZVS
for zero to rated load with a low turn-off current for the pri-
mary switches, while achieving zero current switching (ZCS)
for the synchronous rectifiers (SRs). Soft turn-on and turn-
off features allow minimizing the electromagnetic interference
[2]. However, as it is controlled with a variable switching
frequency, control of LLC resonant converter remains as a

Fig. 1. Typical charging characteristics of a Li-ion battery cell.

difficult task, particularly for varying loads such as batteries
in electric vehicles [5].

Since a regulated output is desired in both PWM converters
and resonant converters, a feedback loop is included in the
control system to stabilize the system and regulate the output
voltage or current. In general, small signal equivalent circuit
models are used to design a robust control system for all
converter structures. There are many approaches using small
signal equivalent circuit models for PWM converters such as
voltage mode control [6], [7], current mode control including
inductor current sideband [8]–[11], V 2 control including both
inductor current sideband and capacitor voltage sideband [12]–
[14]. Since some state variables do not have dc components
and contain switching frequency harmonics, the state-space
averaging method is not preferred for resonant converters.
Owing to the oscillations that occur in resonance situations, the
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Fig. 2. Fundamental topology of LLC resonant converter.

switching frequency interacts with the resonance frequency.
This is explained with the beat frequency dynamics, where a
pair of double-poles located at the beat frequency determines
the high frequency response [15]. Therefore, using an extended
describing function method that considers the states of the
resonance frequency relative to the switching frequency pro-
vides the most successful approach for a robust LLC controller
design [16].

Constant current (CC) and constant voltage (CC) charging
is a commonly used charging strategy for battery charging
applications. The charging characteristic of a single Li-ion
battery cell is shown in Fig. 1. As shown in Fig. 1, there are
several key points in the charging process, namely, Region 1 to
Region 7. Region 1 and Region 7 correspond to the beginning
and end of the charging process, respectively. At the Region
4, the battery voltage is equal to the nominal voltage of the
battery pack. The Region 6 marks the transition from CC to
CV charging mode [17].

As seen from Fig. 1, the dynamic response of LLC converter
in battery charger changes with respect to these operation
points. This requires a closed control system design that takes
into account the battery current and battery voltage separately
in the battery charging application.

This paper proposes a closed-loop control for an LLC reso-
nant converter, shown in Fig. 2, designed for battery charging
applications, in which the output current and output voltage
are both considered. Extended describing function method
considering the states of the resonance elements relative to the
switching frequency for equivalent circuit approximation has
been proposed for modeling LLC converter. Thus, a simple
third order equivalent circuit model of the LLC resonant
converter was obtained and the beat frequency dynamics and
small signal behavior of the converter were very well predicted
with this circuit model. A proportional-integral control has
been applied to the each transfer function.

II. EXTENDED DESCRIBING FUNCTION MODELLING OF
LLC CONVERTER

The dynamic response of LLC converter changes with re-
spect to the operation points of LLC namely, “below”, “at” and
“above” resonance conditions. The simple equivalent circuit
model is derived based on and simplification of extended
describing function method with some necessary modification

Fig. 3. Small signal model of LLC for fs > fo [18].

Fig. 4. Small signal model of LLC for fs < fo [18].

Fig. 5. Unified equivalent circuit model of LLC [18].

for the case when switching frequency Fs is below resonant
frequency Fo. Therefore, the small-signal model of LLC con-
verter is derived for both above and below resonance condition
as shown in Fig. 3 and Fig. 4, respectively [16]. In Fig. 5, the
small-signal models of above and below resonance frequency
are combined and a simplified unified equivalent circuit is
obtained. Here, Le, Re, Ce represent the beat frequency
dynamics, Kv , Gv , Kd and Gd are the coefficients which are
dependent on the magnetizing inductance Lm, Lr is in series
resonant inductance, Q is quality factor and n is turn ratio of
transformer [16]. These expressions are given in (1)–(10).

ωn =
fs
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, Ln =

Lm
Lr

, Q =

√
Lr/Cr

n2 ·RL
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4Vg
π
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1
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The equation of the unified equivalent circuit is expressed in
terms of the perturbations in output voltage, input voltage,
resonant current, output current and switching frequency [17],
[18]. In order to find the expression for ir, superposition is
applied to the equivalent circuits as in (11)–(17).

−Kd · ŵS + I1 ·
(

Re
SCeRe + 1

+ sLe

)
= 0 (11)
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(
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)
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(
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4
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After finding the small signal expression of ir, the relation-
ships of output voltage and current can be found by

v̂o =
2a

π
· ı̂r ·

RL
sCfRL + 1

(18)

ı̂r = ı̂o ·
(
1 + sCf
RL

· π
2a

)
(19)

A simplified notation for the output current can be written
as below.

ı̂o(s) ≈ Gvg(s)v̂g(s) +Gvsω̂s(s) +Gvo(s)v̂o(s) (20)

Gvg =
ı̂o(s)

v̂g(s)

∣∣∣∣
v̂o=0,ω̂s=0

(21)

Gvs =
ı̂o(s)

ω̂s(s)

∣∣∣∣
v̂g=0,v̂o=0

(22)

Gvo =
ı̂o(s)

v̂o(s)

∣∣∣∣
v̂g=0,ω̂s=0

(23)

The control block diagram of the LLC resonant converter with
a CC and CV regions are shown in Fig. 6. The transfer function
of v̂o/ω̂s for the CV region and the transfer functions of ı̂o/ω̂s
for the CC region are given in (24)–(25).

v̂o
ŵs

=

(
Kd+( Re

sCeRe+1 )·Gd

( Re
sCeRe+1+sLe)

)
(
sCfRL+1

RL
· π
2a + 4
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) (24)

ı̂o
ŵs

= (
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)
(
1 + 8RLa2

( Re
sCeRe+1+sLe)·(sCfRL+1)·π2

)
·
(

1+sCf

RL
· π
2a

) (25)

III. COMPENSATOR DESIGN AND RESULTS

For a battery charging application with specifications of
370V-430V/36V-54V 3700W LLC converter with resonance
frequency of 400 kHz, the magnetization inductance, resonant
inductance, and resonant capacitor of 34.7 µH , 8.68 µH , and
18.25 nF , respectively, were considered in this study.

In order for the control loop system to operate at CC op-
erating points effectively, the system was designed according
to the Region 4 condition 400V/48V 3288W with 405kHz
switching frequency. For the CV region, the control system
was designed according to Region 6 400V/54V 3700W with
325kHz switching frequency.

The obtained transfer functions for the CC and CV regions
were given in (26)-(27) for Region 4 and Region 6 respec-
tively. Fig. 7 and Fig. 8 show the open loop Bode plots for
every operating region.

Fig. 6. Control block diagram of LLC for each region.
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v̂o(s)

ω̂s(s)
=

−
(
9.893× 1011

)
(8.153)s3 + (1.729× 107) s2 + (1.072x1011) s+ (1.045× 1017)

(26)

ı̂o(s)

ω̂s(s)
=

−
(
1.413× 1012

)
(8.153)s3 + (1.729× 107) s2 + (1.072× 1011) s+ (1.045× 1017)

(27)

a)

b)

Fig. 7. Bode diagram of transfer functions a) ı̂o/ω̂s, b) v̂o/ω̂s.

Fig. 8. Bode diagram of closed loop Region 4 and Region 6.
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Fig. 9. Battery charger results of a) output voltage and current b) switching
frequency variation.

By using the obtained transfer functions, the closed-loop
equivalent transfer function of the system is obtained for CC
and CV region, and the transfer functions of the designed
integral compensator were Iio = −28190666 and Ivo =
−20750500 respectively. Several simulations were performed
by setting references with different frequencies at the control
input, measuring the system response and calculating its mag-
nitude and phase by means of open PID Tuner in MATLAB
environment. The control loop is composed of only an integral
(I) compensator. The reason why the integral compensator gain
was achieved so large is the amount of switching frequency.
The bode diagrams of the closed loop transfer functions are
shown in Fig. 8.

Fig. 9(a) shows the response of the CC and CV control
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Fig. 10. Different load condition results in CC region a) output voltage, b)
output current, c) switching frequency.

loops according to the given load profile. The whole charging
process has been shortened to 5ms to save the simulation
time. In the CC region, the closed loop current controller
successfully regulates the current at 68A. In the CV region,
the closed loop CV controller is activated and battery voltage
is regulated at 54V, while the current slowly decreases as
battery is being charged. The variation of the control variable
switching frequency with respect to the varying load profile
is shown in Fig. 9(b). The system starts with high switching
frequency and the frequency decreases as the battery is being
charged.

The control structure designed according to certain oper-
ating points should be able to perform well and track the
reference output voltages and currents under different oper-
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Fig. 11. Different load condition results in CV region a) output voltage, b)
switching frequency variation.

ating points and instantaneous loading conditions. Fig. 10(a)-
(b) shows the response of the CC control loop for 6 different
loading situations in favor of the output voltage and currents.
These curves represent the worst loading conditions for each
operating point where 68A reference was provided to the
controller from a reference of 0 A. As it can be seen from
Fig. 10(c), the controller ensures a stable system by adjusting
the switching frequency to below or above the resonance
frequency in different load conditions.

Fig. 11(a) shows that the designed control structure ensures
regulated output voltage. Likewise, the control variable switch-
ing frequency variation under different load conditions in CV
region is shown in Fig. 11(b).

IV. CONCLUSION

In this study, a CC and CV control scheme for a LLC
resonant converter was presented in detail for battery charging
applications. The small-signal model of the LLC converter is
derived for both above and below resonance condition in order
to obtain more accurate dynamic model.

A simple third order equivalent circuit model of the LLC
resonant converter was derived and the beat frequency dynam-
ics and small signal behavior of the converter were very well
predicted with this circuit model.
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The designed compensators for CC and CV operations
at output voltage of 48V and 54V, respectively, have been
simulated at different operating points. It has been shown
that the output current and voltage references have been
successfully tracked for whole load profiles.
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