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ABSTRACT Wepropose two novel surrogatemeasures to predict the validation accuracy of the classification
produced by a given neural architecture, thus eliminating the need to train it, in order to speed up neural
architecture search (NAS). The surrogate measures are based on a solution similarity network, where
distance between solutions is measured using the binary encoding of some graph sub-components of
the neural architectures. These surrogate measures are implemented within local search and differential
evolution algorithms and tested on NAS-Bench-101 and NAS-Bench-301 datasets. The results show that
the performance of the similarity-network-based predictors, as measured by correlation between predicted
and true accuracy values, are comparable to the state-of-the-art predictors in the literature, however they are
significantly faster in achieving these high correlation values for NAS-Bench-101. Furthermore, in some
cases, the use of these predictors significantly improves the search performance of the equivalent algorithm
(differential evolution or local search) that does not use the predictor.

INDEX TERMS Neural architecture search, surrogate model, similarity-based prediction, evolutionary
algorithm.

I. INTRODUCTION
In computer vision, the success of a deep neural network is
highly dependent on its architecture and hyper-parameters.
However, the process of selecting the best perform-
ing architecture along with its hyper-parameters manually
requires intense engineering efforts with high computational
costs. Neural Architecture Search (NAS) is a subfield of
AutoML [10] which aims to automate this tedious archi-
tecture design process. It has also significant overlap with
another AutoML subfield, Hyper-parameter Optimization
(HPO) which aims to optimize the training-related parame-
ters such as the learning rate and the batch size. Unlike HPO,
NAS focuses on optimizingmodel-related parameters such as
the number of layers, number of units and connection types
among those units (see [9] for a recent survey on AutoML
methods).
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Elsken et al. [7] categorize NAS methods according to
the adopted search space, selected search strategy and per-
formance prediction strategy. The search strategy selects an
architecture from a predefined search space, and the per-
formance prediction strategy returns the predicted classifi-
cation performance of the selected architecture back to the
search strategy. Elsken et al. [7] mention five main groups
of search strategies as Bayesian Optimization (BO) meth-
ods, Evolutionary Algorithms (EA), Reinforcement Learning
(RL) approaches, Gradientmethods andRandomSearch (RS)
methods. A similar grouping is also provided in [2]. The
use of EAs to evolve the neural architectures, also known
as neuro-evolution, dates back to decades ago (see [37]).
In the earlier studies, EAs were used to optimize both the
neural architecture and its weights, but were found to be
poor for contemporary architectures with millions of weights.
Therefore, gradient-based methods are used for optimizing
the weights and EAa are used solely for optimizing the neural
architecture in recent studies. Recent studies have shown that
Regularized Evolution (RE) and Differential Evolution (DE)
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are the two most successful neuro-evolutionary approaches
for NAS [1], [23], [38].

NAS can require prohibitively large computational
resources for performance prediction. For example, RL
approach of Zoph et al. [39] resulted in a state of the art
performance in the image classification domain, however,
searching for an architecture for CIFAR-10 dataset [14]
required 800 GPUs for 28 days. A strategy to reduce the
search space that has found wide acceptance in the literature
is developed by Zoph et al. [40], where the search is done over
neural building blocks instead of over whole architectures.
In their proposed NASNet search space, the building blocks,
called cells, represent a part of a fixed architecture. Using a
cell structure as the building block of the final architecture is
also adopted in the DARTS search space of [17].
Even with the reduced search space of cells, NAS is still

quite challenging, hence the design of a fast and effective
prediction strategy is essential for the success of a NAS
algorithm. Within a limited computational budget predictor-
based NAS methods train a surrogate model which is then
used to predict the final accuracy or ranking of architectures,
without fully training the architectures. Thus, they should
take less time to evaluate any given architecture, and the
predicted accuracy values should have high correlations with
the actual accuracy values in the current search space.

In this study, we present two surrogate models,
WA (weighted-average) and RG (regression-based) for NAS,
which both utilize the information in the solution similar-
ity network. Two different algorithms, Local Search (LS)
and Differential Evolution (DE), are selected as the search
algorithms, and each of those algorithms are coupled with
each of the surrogate models as their performance predictors.
New solutions generated during the search are added to the
similarity network as new nodes, where similar solutions
are connected with edges. In the solution network, some
solutions have their true accuracy values queried from the
corresponding NAS-Bench dataset, whereas the accuracy of
the others are predicted by the surrogate model, WA or RG,
using their neighbors in the solution network. The construc-
tion of the solution network and deciding whether to predict
or to evaluate a given solution’s accuracy are handled within
the search algorithm.

Our contributions are as follows:

• For fast NAS, we propose two novel surrogate mod-
els based on a solution similarity network. Each of
the surrogate models, Weighted Average-based and
Regression-based prediction methods, have been imple-
mented within Local Search (LS) and DE algorithms
and tested on the NAS-Bench-101 and NAS-Bench-301
datasets by adhering to the NAS best practices.

• We introduce a new binary encoding for NAS-Bench-
101 and NAS-Bench-301, which is an extension to the
path encoding. The encoding is used to measure the
distance between solutions in the proposed solution
similarity network, and it uses a richer set of graph

sub-components of the neural architectures in order to
distinguish them better than path encoding.

• We demonstrate that a relatively simple similarity-based
solution network can form the foundation of effective
prediction tools for NAS. Our computational experi-
ments reveal that the predictionmethods can improve the
search performance significantly, as demonstrated for
both NAS-Bench-101 and NAS-Bench-301 when used
within DE. However, their improvement in LS is not as
significant. When it comes to the predictive power of the
surrogate models, our correlation results show that these
prediction models are fast and start giving high quality
predictions quickly. For example, DE with weighted
averages as the predictor yields excellent correlation
results for NAS-Bench-101 where most powerful pre-
dictors fail.

The rest of the paper is organized as follows. In the next
section we provide a brief overview of the NAS literature.
In Section III we describe the two benchmark datasets we
have used. In Section IV, first the distance measure and the
solution encoding on which it is based on are discussed.
Then, the two surrogate models are presented. In Section V,
LS and the DE algorithms are discussed, with an emphasis
on how the surrogate models are integrated into the search
process. The results of the computational experiments are
presented in Section VI, which are followed by our conclud-
ing remarks in Section VII.

II. A BRIEF REVIEW OF THE RELATED NAS LITERATURE
Recently, the introduction of several benchmark datasets has
increased research on the development of predictor-based
NAS algorithms, which use efficient strategies to predict
the performance of partially-trained or even untrained neural
network architectures in order to find high-quality architec-
tures within a limited computational budget. Differentiable-
based [18], RL [39] and EAs [1], [23] have been applied
successfully for NAS. Real et al. [23] showed, for the first
time, that architectures generated by EAs surpass hand-
engineered architectures. They use a modified version of RE
in the NASNet search space. They state that the best archi-
tecture obtained by this method yields comparable accuracy
with respect to the baseline architecture,NASNet-A [40], with
considerably smaller number of parameters. Later, it is shown
by Awad et al. [1] that DE was able to perform better than
RE on NAS-Bench-101 benchmark. Siems et al. [26] used
10 different search algorithms to sample architectures from
a large search space to create the first surrogate benchmark,
NAS-Bench-301. They selected only two EAs, DE and RE,
as the meta-heuristics that yield a good coverage of this large
search space.

Most of the recent NAS algorithms use performance pre-
diction strategies that focus on training a model to predict the
final validation accuracy of an architecture. Neural networks,
Gaussian processes and tree-based methods are among the
most widely-usedmodels as NAS predictors.White et al. [33]
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propose a Bayesian optimization (BO) and neural predictor
framework based algorithm, BANANAS, that achieves com-
petitive results on DARTS and NAS-Bench-101 benchmarks.
It outperforms RE of Real et al. [23] which was reported
previously in [38] as the state-of-the-art on NAS-Bench-101.

Wen et al. [31] propose a two stage predictor which is a
cascade of a classifier and a regressor both of which are based
onGraphConvolutional Networks. The results show that their
approach outperforms RE on NAS-Bench-101.Wei et al. [30]
propose a predictor guided EA for NAS called NPENAS.
Two different predictors, a Bayesian optimization (BO) based
predictor and a graph-based neural network predictor, are
utilized. The results state that NPENAS with BO predictor
provides slightly better performance than BANANAS [33]
on NAS-Bench-101 and DARTS search space and achieves a
test error close to the performance of the predictor in [31] on
NAS-Bench-201. In [36], a few weak predictors are used to
fit small local spaces and to progressively shrink the search
space towards a subspace where good architectures reside.
The proposed method, WeakNAS, in which multilayer per-
ceptron, regression tree and random forest models are used as
weak predictors, is said to be very cost efficient and able to
find some of the best performing architectures on both NAS-
Bench-101 and NAS-Bench-201 with fewer database queries
than RE in [23].

White et al. [35] present a large-scale comparative study
of performance predictors used in NAS algorithms. 31
predictors that fall into four different categories, namely,
(i) model-based methods, (ii) learning curve-based methods,
(iii) zero-cost methods, and (iv) one-shot (weight sharing)
methods, are compared across a variety of initialization time
and query time budgets by measuring the Pearson corre-
lation and rank correlation metrics. Based on the experi-
mental results, they provide recommendations for the best
predictors to use under different initialization and query-time
budgets. Moreover, they state that using a more complex
predictor that combines complementary information from
three families of predictors leads to significant performance
improvement. In another study, Ru et al. [24] propose to
predict the final test performance based on training speed
estimation.

III. BENCHMARK DATASETS
In this section, we provide brief descriptions of the two
benchmark datasets, NAS-Bench-101 and NAS-Bench-301,
that have been used in this study. There are also other bench-
marks in the literature such as NAS-Bench-201 [6] and NAS-
HPO-Bench [13], but they are not included in this study due
to their limited search space sizes.

NAS-Bench-101 is the first large scale tabular NAS archi-
tecture dataset identifying 423k unique convolutional archi-
tectures [38]. The search space is restricted to the space
of small feed forward structures, called cells. Each cell is
stacked 3 times followed by a downsampling layer, and this
pattern is repeated 3 times followed by global average pooling
and a final dense softmax layer in order to create a whole

architecture. The cell search space consists of all possible
directed acyclic graphs (DAGs) with at most 7 nodes, where
each node can represent any of the following three operations:
3 × 3 max-pool, 1 × 1 convolution and 3 × 3 convolution.
There are also two special nodes IN and OUT, representing
the input and output tensors, respectively. The number of
edges is also restricted to 9. To build the dataset, all valid
architectures within the given search space have been trained
and evaluated on CIFAR-10, three times with four increasing
number of epochs: 4, 12, 36, 108. All the metrics regarding
this training process, e.g. the training/validation/test accu-
racy, the training time in seconds and the number of trainable
model parameters, are provided. The researchers just perform
a query in this dataset in order to learn the performance of a
proposed architecture, thus avoiding a costly train procedure.
It should also be noted that test accuracy is only allowed
to be used for an offline evaluation of a given NAS algo-
rithm, which enables a fair comparison between different
algorithms.

NAS-Bench-301 is the first benchmark covering a
realistically-sized search space of over 1018 architec-
tures [26]. As it would be impossible to fully train and
evaluate all the architectures in this large search space, a per-
formance estimation of the architectures is provided by a
surrogate model which was trained with a sample of archi-
tectures in the search space. Therefore, this benchmark is
called a surrogate benchmark. About 60k architectures were
sampled from the DARTS search space [18] by using several
NAS methods like random search, evolutionary algorithms
and bayesian optimization methods. Instead of exhaustively
evaluating the entire search space, only these sample architec-
tures were fully trained and evaluated which were then used
to train several surrogate models. When the performance of
a given architecture is queried, the best performing surrogate
model’s prediction is returned.

Similar to DARTS search space, each convolutional cell
is a DAG consisting of 2 input nodes, 4 intermediate nodes
and 1 output node in which the outputs of all intermediate
nodes are concatenated. Each node xi represents a fea-
ture map and each directed edge (i, j) represents an oper-
ation that transforms xi. The input node in cell k receives
the output feature maps from the previous two cells, cell
k − 1 and cell k − 2. Input and intermediate nodes are
connected by directed edges representing one of the fol-
lowing operations: 3 C- 3 and 5 C- 5 separable convolutions,
3 C- 3 and 5 C- 5 dilated separable convolutions, 3 C- 3 max
pooling, 3 C- 3 average pooling, identity, and zero. The output
of an intermediate node is computed considering all of its
immediate predecessors and operations represented by the
edges. An architecture is then formed by stacking multiple
cells together. In the cells located at the 1/3 and 2/3 of the
total depth of the network, a stride of 2 is applied in the first
operation in order to reduce the input feature map’s height
and width by a factor of two. These cells are called reduction
cells; and a stride of 1 is applied for the remaining cells, which
are called normal cells.
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IV. SOLUTION NETWORK-BASED SURROGATE MODELS
A category of surrogate models often used in evolutionary
optimization is the so-called similarity-based models (see
Tong et al. [28] for a taxonomy). These models predict the
fitness of a solution by using a set of similar solutions whose
true fitness values are known. Three commonly used strate-
gies are fitness inheritance, k-Nearest Neighbors regression
(kNN-R) and fitness imitation. Fitness inheritance predicts
the fitness of a new solution based on the fitness of its parents.
In kNN-R, the fitness of a new individual is determined by its
k nearest neighbor individuals. In fitness imitation, the popu-
lation is clustered into several groups, e.g. using the k-means
algorithm, and one individual is selected as the representative
of each group. The representative individuals are evaluated
using the true fitness function, whereas the fitness values of
the remaining individuals in the same cluster are predicted
from the representative individual (typically the one closest
to the center of the cluster) based on a distance measure [12].

Inspired by these strategies, we have developed the solu-
tion network approach. The solutions found in the search
process are added as the nodes of this network. Edge (i, j)
is added between nodes i and j if the distance between the
corresponding solutions is less than or equal to a threshold,
δ. This is the single linkage hierarchical clustering, one of
the oldest clustering methods (see [20]), which results in
maximal connected subgraphs (i.e. clusters). The distance
measure is based on a binary encoding of solutions. Thus,
two solutions are connected by an edge only if they are
sufficiently similar. The prediction of a solution’s accuracy
is done by using its neighbors in the network.

The nodes of the network are grouped into two subsets,
the set of nodes corresponding to solutions whose accuracy
values are predicted, E , and those whose true validation accu-
racy values are known, T . Determining whether a node will
go into the set E or T is done differently in the local search
algorithm (discussed in Section V-A) and in the differential
evolution algorithm (discussed in SectionV-B). In this sec-
tion, we first describe the distance measures used for neural
architecture encodings in Section IV-A, and present a new
encoding which is an extension to the existing path encoding
to alleviate its shortcomings in some scenarios. We describe
our first prediction method, Weighted Average-based predic-
tion, in Section IV-C and the second one, Regression-based
prediction, in Section IV-D.

A. DISTANCE MEASURES FOR ARCHITECTURE
ENCODINGS
There is a quite expansive literature on similarity/distance
measures of graphs. Emmert-Streib et al. [8] provide a very
good review of the graph matching and graph similarity
literature. In [4], 76 distance and similarity measures based
on binary vectors, some of which date back to early 1900s
have been identified.

Since the DAGs representing neural networks have both
node and arc labels, the distance measure for them must

FIGURE 1. NAS-Bench-101: Same path encoding for two different neural
network architectures.

take all of these into account. A similar problem exists
in chemistry, where a stream of research deals with dis-
tance/similarity measures for graph models of molecular
structures, in which nodes represent atoms and there are
labels associated with both nodes and edges [19]. A common
approach for such graphical models is to create a binary
vector, F, where each element Fi equals 1 if a graphical
substructure exists or 0 if not. For some organic compounds
researchers define thousands of substructures. For example,
Varmuza et al. [29] use a total of 1365 substructures that
include rings and trees. Given such a binary vector, a widely
used distance measure is the Jaccard distance (also known as
the Tanimoto index/distance) defined as

JD(E,F) =
b+ c

a+ b+ c
(1)

where, a = E · F (the number of features that exist in both),
b = E · ¬F (the number of features that exist only in E),
c = ¬E · F (the number of features that exist only in F) and
d = ¬E · ¬F (the number of features that do not exist in
both E and F). Another widely used distance is the Hamming
distance (H ) and its normalized version (NH ):

H (E,F) = b+ c (2)

NH (E,F) =
b+ c

a+ b+ c+ d
(3)

Recently, the idea of using presence/lack of graphical sub-
structures to represent a graph was introduced in the context
of NAS by White et al. [33]. They introduce a binary feature
for each possible path from the input to the output node of an
architecture cell, given in terms of the operations (e.g., input
→ conv1× 1→ pool3× 3→ output would be a path). The
encoding of an architecture is represented by a binary vector
mapping corresponding paths to 1s and lacking paths to 0s.

Figure 1 depicts two networks that have the same four paths
out of 364 possible paths for the NAS-Bench-101 benchmark
instances. Thus, path encoding would result in a distance of
0 between these two networks (b = c = 0 using the nota-
tion given above for Eqn. 1). To alleviate this shortcoming,
we introduce a set of new substructures for NAS-Bench-101
and NAS-Bench-301 to extend path encoding.
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FIGURE 2. NAS-Bench-101: In-flow/out-flow substructures for a node
with conv3 × 3 operator.

B. NEW GRAPH SUBSTRUCTURES FOR EXTENDING THE
PATH ENCODING
Below, we first present, in detail, the approach we took for
the NAS-Bench-101 dataset, and then we discuss the modifi-
cations made for the NAS-Bench-301 dataset.

In NAS-Bench-101, a node in the graph can have at most
6 in-coming or out-going edges. The number of edges that
go into and out of a node with a specific operator can differ-
entiate architectures with the same path encoding. Figure 2
depicts 12 substructures we propose for a conv3 × 3 node.
We define the same in-flow and out-flow substructures for
conv1× 1 and mp3× 3 nodes. Furthermore, we define 6 in-
flow substructures for both out and in nodes. This results in a
total of 48 substructures in addition to the in-out paths. Hence,
the size of the binary encoding vector, n, equals the number
of in-out paths (364) plus the number of the new additional
substructures (48), which is 412. By definition, n = a +
b + c + d , as defined for Eqn 1. Using the extended binary
encoding of size n = 412, distance calculation between
Networks 1 and 2 in Figure 1would give b = 4 (the number of
substructures that exists in Network 1 but lack in Network 2,
namely, con3× 3-out-2, in-out-3, conv3× 3-in-2, out-in-3),
c = 3 (the number of substructures that exist in Network
2 but lack in Network 1, namely, con3 × 3-out-3, in-out-
2, out-in-4). 6 of the in-flow/out-flow substructures exist in
both Network 1 and Network 2 (namely, conv1 × 1-in-1,
conv1×1-out-1, conv3×3-in-1, conv3×3-out-1, mp3×3-in-
1, mp3× 3-out-1), and since the two networks share 4 in-out
paths, a = 6+ 4 = 10. This means d = 412− 17 = 395, i.e.
395 substructures lack in both of the networks.

For the distance measure to perform well within the
search heuristic, any two networks with a small distance
between them should have similar validation accuracy. To test
this, a set of 1000 randomly generated NAS-Bench-101
neural networks were used. All networks were tested for
graph-isomorphism to verify that there is no isomorphic pair.
For all pairs of networks, their pairwise distances using JD
and H , and the absolute difference between their accuracy
values, AbsAccDiff, were calculated. Figures 3 and 4 depict
the average AbsAccDiff as a function of the Hamming dis-
tance and Jaccard distance, respectively. It is important to

FIGURE 3. NAS-Bench-101: Hamming distance versus average AbsAccDiff
for 1000 randomly generated neural networks.

FIGURE 4. NAS-Bench-101: Jaccard distance versus average AbsAccDiff
for 1000 randomly generated neural networks.

note that for all pairs of non-isomorphic networks the encod-
ing yields a positive value for b+ c.
Comparing the two charts, we can see that the Jaccard

distance performs better: as the Jaccard distance between
two networks gets larger the difference in their accuracy
values grows approximately linearly, whereas, we see that
beyond a certain threshold Hamming distance (around 16-17)
AbsAccDiff decreases as the Hamming distance increases.

Tong et al. [28] state that ‘‘the accuracy of similarity-based
models deteriorates significantly when the problem is highly
nonlinear and/or the search space is enormous.’’ Thus they
recommend using similarity-based models as local surro-
gates. Figure 4 depicts a picture that is consistent with their
recommendation; the similarity-based fitness estimation is
likely to work better when Jaccard distance between solutions
is small.

Ideally, one would want a graph distance measure to be
fine-grained, yielding different distances for different pairs of
graphs. Dehmer et al. [5] use cumulative similarity/distance
distributions to visualize this characteristic of the Jaccard
distance and the graph edit distance (GED). They observe that
GED’s cumulative distance distribution has a step-function
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FIGURE 5. NAS-Bench-101: Cumulative distributions of the Jaccard and
Normalized Hamming distances (each divided into 593 bins covering their
respective ranges).

characteristic, where for a given GED a cluster of graphs
exist with the same GED. They demonstrate that the distri-
bution of the Jaccard distance is significantly smoother and
becomes more smooth as larger sets of graph substructures
are used in its calculation. In Figure 5 we plot the cumulative
distance distributions for the Jaccard and Hamming distances
and observe that Jaccard distance’s distribution is signifi-
cantly smoother than Hamming distance’s as well. Hence we
conclude that the Jaccard distance based on the 412 graph
substructures we define for NAS-Bench-101 architectures
provides a sufficient level of discriminating power between
solutions.

Compared to NAS-Bench-101, NAS-Bench-301 places
tighter constraints on the structure of the neural architectures.
Thus, the extension of the path encoding requires a different
set of substructures. For each regular node (excluding nodes
ck−2, ck−1 and ck ) we add 7 binary digits for each of the two
in-coming edges. For each in-coming edge, there is one digit
for each operator type (taking the value 1 if the edge has the
corresponding operator and 0 otherwise). This results in a
total of 56 binary digits that are added the path encoding.

Furthermore, as we have done for NAS-Bench-101 archi-
tectures, out-going edges from each node are also encoded.
For a given node i, for each edge that may go out of that node,
say (i, j), 7 binary digits, one for each edge operator type, are
added. So, for instance, for node ck−2, there could be edges
to nodes 0, 1, 2, 3, which results in adding 28 binary digits,
whereas for node 0, there could be edges to nodes 1, 2, 3,
resulting in 21 binary digits. This results in a total of 98 binary
digits added to the path encoding leading to a total length of
11358.

Figure 6 depicts the average AbsAccDiff as a function of
the Jaccard distance between pairs of 1000 random networks,
and, as was the case for NAS-Bench-101 architectures, as the
Jaccard distance between two networks gets larger the differ-
ence in their accuracy values grows approximately linearly.
Here, the relationship can be stated as piecewise linear, how-
ever, in the Jaccard distance range in which almost all data
falls (i.e. JD > 0.68) the relationship is linear.

FIGURE 6. NAS-Bench-301: Jaccard distance versus average AbsAccDiff
for 1000 randomly generated neural networks.

C. WEIGHTED AVERAGE-BASED PREDICTION
The weighted average method is based on the idea that neural
networks that are similar to each other have similar validation
accuracy performances. Thus, given a network whose accu-
racy is to be predicted, the simplest approach that uses the
solution similarity network would be taking the average of
its’ neighbors accuracy values, as shown in Eqn 4:∑

j∈NT (i) A(j)

|NT (i)|
(4)

Here note that only the neighbors with known true validation
accuracy are used in this formula. Our preliminary computa-
tional analysis of this simple average approach showed that it
did not work well after testing for several δ values. Therefore,
we tested a weighted-average method, which utilized the
similarity of the neighbors. The empirical evidence discussed
in the previous section shows that given two solutions i and
j, if JD(i, j) is small, we can expect, on the average, their
accuracy values to be quite close to each other. Then, a rea-
sonable and simple method for calculating Ã(i), the predicted
accuracy for solution i, could be given by Eqn. 5:∑

j∈NT (i) Si,jA(j)∑
j∈NT (i) Si,j

, (5)

where Si,j gives the similarity between solutions i and j, A(j)
denotes the true (queried) accuracy of solution j, and NT (i)
is the set of neighbors of solution i whose true accuracy are
known (please refer to Table 3 for a complete list of nota-
tions). We repeated our preliminary computational analysis
of this weighted average approach, and saw that although it
was better than the simple average, it still was not yielding
results better than those obtained by DE of [1].

In the third, and final method, the weighted average
approach was enhanced by using not only the solutions in
NT (i) but also NE (i). Since the main objective of fitness
estimation is to reduce the number of solutions for which
A(j) is calculated, NT (i) is likely to be too small for some i
for Eqn. 5 to work well. For example, consider the similarity
network depicted in Figure 7. Calculation of Ã(8) with Eqn. 5
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FIGURE 7. Example 1 – Similarity network.

uses A(3). Let’s assume JD(4, 9) is very small, say almost 0,
and Ã(9) ≈ A(9). In that case, including Ã(9) in the fitness
estimation of solution 8 is likely to yield a better result than
only using Ã(3). Thus, rather than having a binary categoriza-
tion of the solutions as those that can be used in estimation
and others that cannot, one could benefit from a reliability
measure, rj ∈ (0, 1], for the fitness value associated with a
solution j. LettingN (j) denote the set of neighbors of solution
j, we define rj as in Eqn. 6

rj =


1
|N (j)|

∑
i∈N (j)

ri exp−JD(i,j) if j ∈ E

1 if j ∈ T
(6)

Since calculation of rj may require ri for some i ∈ E ,
an iterative procedure is needed, which stops when all r
values converge.

After rj values converge, one can calculate Ã(j) as in Eqn. 7,
where e−JD(i,j) is a measure of similarity between solutions i
and j: ∑

i∈NE (j)
rie−JD(i,j)Ã(i)+

∑
i∈NT (j)

rie−JD(i,j)A(i)∑
i∈N (j)

rie−JD(i,j)
(7)

As was the case for rj, calculation of Ã(j) is an iterative
process that stops when sufficient convergence is obtained.
Note that for any given solution j, the iterative calculation
of rj and Ã(j) should be done for all nodes in E of the
maximally connected subgraph of node j, MCS(j). For the
example network, MCS(8) equals {8, 9}, thus iterations are
stopped when convergence is obtained for both 8 and 9.

Given a new solution for which accuracy prediction will be
done for the first time, both rj and Ã(j) can be initialized to
some arbitrary value (we use 0.5) when starting the iterations.
For a solution whose rj and Ã(j) were calculated in a previous
iteration of the search algorithm and are being updated in the
current iteration, rj and Ã(j) are initialized with their current
values.

The calculations of rj and Ã(j) are depicted in Tables 1
and 2 for the example given in Figure 7. In Table 1 the
neighbors of each solution and edge distances are given, along
with whether true or predicted accuracy is to be determined

TABLE 1. Example 1 – data for reliability, rj , calculations.

for each solution. In Table 2 the iterative calculation of rj
values are shown. By definition, for a solution whose true
accuracy is used (i.e. j ∈ T ), rj = 1. Since all neighbors
of j = 6 are in T , r6 needs to be calculated only once.
On the other hand, r8 and r9 require iterative calculation
until convergence (here we assume convergence occurs if the
change in both r8 and r9 from their previous iteration values
are less than or equal to 0.001). Once rj values converge,
Ã(j) values are calculated as shown in Table 2, assuming A(j)
equals 0.9767, 0.5420, 0.8550, 0.6619, 0.8618, 0.725, and
0.9729, for j = 1, 2, 3, 4, 5, 7 and 10, respectively. As in r6,
only one calculation is sufficient for Ã(6), since all neighbors
of 6 are in T . On the other hand, for Ã(8) and Ã(9) six
iterations are needed for convergence.

Considering the prediction approach described above,
there are two critical decisions to be made: (i) between which
nodes to add the edges, (ii) which nodes’ accuracy to pre-
dict. We refer to the latter as the node type decision. These
decisions affect both the quality of the accuracy estimations
and total time spent for neural network training and testing in
order to obtain the true accuracy values. Overall, these two
decisions are closely linked to how the similarity network
grows within the search algorithm. Hence, these decisions are
handled differently within the local search and the differential
evolution algorithms, as discussed in Sections V-A and V-B.

D. REGRESSION-BASED PREDICTION
As depicted in Figures 4 and 6, there is approximately a
linear relationship between the Jaccard distance between two
solutions and the absolute difference between their accuracy
values. Motivated by this observation, a linear regression-
based estimation approach is developed.

Let NT (k) be the set of neighbors of solution k with true
accuracy values. Choosing an anchor solution i ∈ NT (k),
one can obtain a regression model to predict the accuracy
of a solution as a function of its Jaccard distance to i. The
regression model can be built using the distances and accu-
racy values of solutions j ∈ NT (k) \ {i} as long as |NT (k)| is
not too small (e.g. [11] recommends the sample size in linear
regression to be at least 8 for data with low variance). Thus,
given {(JD(i, j),A(j)) : j ̸= i, j ∈ NT (k)} the regression equa-
tion for estimation would be Ãi(j) = b0,i + b1,iJD(i, j) and
predicted accuracy of solution k based on anchor i, denoted
by Ãi(k) would be b0,i+b1,iJD(i, k). Clearly, different anchor
solutions would yield different regression equations.

Since at a given iteration of a search algorithm there are
several solutions whose accuracy will be predicted, one can
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TABLE 2. Example 1 – reliability, rj , and predicted accuracy, Ã, calculations.

TABLE 3. Notation.

FIGURE 8. Example 2 – Regression-based prediction: solution set.

increase the set of solutions used to obtain each regression
equation as follows. LetP denote the set of solutions pi whose
accuracy values will be predicted in the current iteration such
thatNT (pi) ̸= ∅. Then, the regressionmodels can be based on
the graph GR(R,ER) comprised of nodesR =

⋃
pi∈P N

T (pi)
where ER is the set of edges between nodes in R.
In the example depicted in Figure 8, P = {p1, p2},

NT (p1) = {s1, s2, s3}, NT (p2) = {s1, s2, s3, s4}, and there-
fore,R = {s1, s2, s3, s4}.
For i ∈ R, let ER(i) denote the set of edges connected to i

in GR(R,ER). Letting nmin denote the minimum sample size
required for running a regression model, one can obtain a
regression equation for each anchor i with |ER(i)| ≥ nmin.
Assuming nmin = 3, Figure 9 depicts the four subgraphs and
the associated regression equations.

For a given solution k whose accuracy is to be predicted,
the average of all estimations, Ãi(k), over all i ∈ R that

FIGURE 9. Example 2 – Regression-based prediction: models.

are connected to k can be used as an aggregate predictor.
Using the regression equations in Figure 9, Ãi(p1) equals
0.9475, 0.9573 and 0.9534, for i equals s1, s2 and s3, respec-
tively, whereas Ãi(p2) equals 0.9496, 0.9528, 0.9499 and
0.9521 for i equals s1, s2, s3, and s4, respectively. Thus,
Ã(p1) = 0.9527 and Ã(p2) = 0.9511.

V. SEARCH ALGORITHMS
We implemented the proposed surrogate models in two
search algorithms: surrogate-assisted local search (SuALS)
and surrogate-assisted differential evolution (SuADE). Local
Search (LS) is a strong NAS performer and suggested to
be used as a baseline for NAS [25], [34]. On the other
hand, it is shown by Awad et al. [1] that DE was able to
perform better than RE which is another strong EA on NAS-
Bench-101 benchmark. They conclude that DE, by keeping
the population in continuous space, helps maintain diversity
and explore the high-dimensional search spaces effectively.
Siems et al. [26] used 10 different search algorithms to sample
architectures from a large search space to create NAS-Bench-
301 surrogate benchmark. They selected only two EA-based
algorithms, DE and RE, as the meta-heuristics that yield a
good coverage of this large search space. When the archi-
tectures discovered by each algorithm are visualized using
their t-SNE embeddings, it was clear that DE was the only
algorithm which was able to find good architectures in the
center of the embedding space.
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A. SURROGATE-ASSISTED LOCAL SEARCH
In some recent research ( [25], [34]), it has been shown
that LS is a strong performer in NAS. White et al. [34],
using NAS-Bench-101, NAS-Bench-201 and NAS-Bench-
301 datasets, show that when the noise in the validation
accuracy is reduced to a minimum, hill-climbing outper-
forms many state-of-the-art algorithms. Schneider et al. [25]
determine that the strong performance of BANANAS stems
mainly from local optimization of architectures in which an
architecture is mutated by changing a single operation or edge
randomly and the architecture yielding the best performance
becomes the next one for accuracy evaluation.

One difference of SuALS (see Algorithm 1) from a tradi-
tional local search is maintaining a solution network. Each
generated solution, vi, is added to the solution network by
the updateNetw(network , vi, δ) function. The second differ-
ence is in the way the number of generated neighbors of an
incumbent solution is limited by the parametersmaxTrue and
numPred .

SuALS starts with randomly generatingNI initial solutions
(randArch(NI ) function). The true accuracy values of all
of these solutions are queried. The best of these solutions
becomes the first incumbent solution, v0. Each query of
true accuracy uses up the budget, B, which could be spec-
ified either in number of queries or the training/validation
time required. From a given incumbent solution, first up to
maxTrue neighbors are generated by mutation and their true
accuracy values are queried. randNewNeigh(vi) in line 8 is
the mutation method of [25], i.e. a single edge or operator
of architecture vi is changed. If this happens to be a solu-
tion that already exists in the network, another neighbor is
randomly selected. If all neighbors of the incumbent have
already been generated (which may happen in NAS-Bench-
101 instances) and vi is NULL, then the algorithm jumps
to Line 39. If any neighbor vi improves the incumbent it
becomes the new incumbent solution (line 36). If none of
them improves the incumbent (i.e. ctrTrue equals maxTrue),
then numPred neighbors are generated by mutation and
their accuracy values are predicted. This set of solutions
are kept sorted in setPred in decreasing predicted accu-
racy. The solution with the highest predicted accuracy is
picked from setPred (line 27), its true accuracy is queried
and removed from setPred until the incumbent is improved
or maxTrueFromPred solutions’ true accuracy values are
queried (by definition maxTrueFromPred ≤ NumPred).
If maxTrueFromPred limit is reached without improving
the incumbent, the new incumbent becomes the solution
with next largest true accuracy (NextBestTrue() function in
line 39). Two versions of NextBestTrue() were implemented.
In the first one, a solution is selected as the incumbent
only once whereas in the second one this restriction is not
used. Our experiments revealed that, for the NAS-Bench-101
instances the second version was often getting stuck at an
incumbent, so the first version was used for these instances.
For the NAS-Bench-301 instances, the second version was
used.

Algorithm 1 SuALS
Input : NI ; δ; B; maxTrue; maxTrueFromPred ; numPred

1 ctrTrue← 0; ctrTrueFromPred ← 0
2 {a1, . . . , aNI } ← randArch(NI )
3 updateUsedBudget(usedBudget, {a1, . . . , aNI })
4 updateNetw(network, {a1, . . . , aNI }, δ);

b← argmaxj=1,...,NI f (aj)
5 v0 ← ab; i← 1 // local search starts with

the best solution
6 while usedBudget < B do
7 if ctrTrue < maxTrue then

// randomly pick a neighbor w/o
replacement

8 vi ← randNewNeigh(vi−1)
9 if vi <> NULL then
10 updateNetw(network, vi, δ)
11 vi.accType← true; f (vi)←

queryTrueAccuracy(vi)
12 updateUsedBudget(usedBudget, vi)
13 ctrTrue← ctrTrue+ 1
14 end
15 end
16 else
17 if ctrTrueFromPred = 0 then

// rand pick numPred neighbors
w/o replacement

18 for (ctrPred ← 0; ctrPred ≤
numPred; ctrPred ← ctrPred + 1) do

19 ni ← randNewNeigh(vi−1)
20 if ni <> NULL then
21 ni.accType← predicted;

setPred .ADD(ni)
22 updateNetw(network, ni, δ)
23 end
24 end
25 predictAccuracy(network , setPred)
26 end
27 vi ← PickBestPredictedSoln(setPred)
28 if vi <> NULL then
29 ctrTrueFromPred ← ctrTrueFromPred + 1
30 setPred .REMOVE(vi)
31 vi.accType← true; f (vi)←

queryTrueAccuracy(vi)
32 updateUsedBudget(usedBudget, vi)
33 end
34 end
35 if vi <> NULL AND f (vi) > f (vi−1) then

// new solution becomes incumbent
36 i← i+ 1; ctrTrue← 0; ctrTrueFromPred ← 0;

setPred ← NULL
37 end
38 else if vi = NULL OR

ctrTrueFromPred = maxTrueFromPred then
39 vi ← NextBestTrue(network , vi)
40 i← i+ 1; ctrTrue← 0; ctrTrueFromPred ← 0;

setPred ← NULL
41 end
42 end

B. SURROGATE-ASSISTED DIFFERENTIAL EVOLUTION
Differential Evolution (DE) algorithm ( [22], [27]) has been
widely applied in many fields due to its effectiveness and
simplicity. As a type of Evolutionary Algorithm (EA), it is
a population-based search algorithm and makes use of basic
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operations like selection, mutation and crossover, with sev-
eral parameters to be tuned. DE maintains a population of
NP D-dimensional real-valued vectors, so-called individuals,
each representing a candidate solution. At generation g = 0,
the individuals, {xi,0 = (x1i,0, .., x

D
i,0)} for i = 1, . . . ,NP are

initialized randomly from uniform distribution U (x jlow, x jhigh)
for each j = 1, . . . ,D. After the initialization, DE per-
forms the evolutionary operations, crossover, mutation and
selection, to generate a new population. At generation g, a
mutant vector vi,g = (v1i,g, .., v

D
i,g) is produced for each target

vector xi,g using a certain mutation operator. We tested two
commonly used mutation strategies, DE/rand/1 (Eq. 8) and
DE/current-to-best/1 (Eq. 9) in the literature.

vi,g = xr1,g + F (̇xr2,g − xr3,g) (8)

vi,g = xi,g + F (̇xbest,g − xi,g)+ F (̇xr1,g − xr2,g) (9)

In the notation DE/target/nbr , target specifies how the
target vector is chosen. For example, rand means the target
vector is randomly chosen, while current-to-best means the
current target vector and the best-so-far vector are used as
the base vectors. nbr in the notation indicates the number of
vector differences contributing to the differential. F > 0 is a
parameter for scaling the difference vector, and r1, r2, r3 are
distinct integers randomly selected from [1,NP], which are
also different from i.

Each pair of target vector and its corresponding mutant
vector is subjected to a binomial crossover operation to gen-
erate a trial vector, ui,g as follows:

uji,g =

{
vji,g, if rand ≤ CR or j = nj
x ji,g, otherwise

, for j = {1, ..D}

(10)

whereCR ∈ [0, 1) is the crossover rate, rand is a random vari-
ate sampled from U (0, 1) distribution, and nj is a randomly
selected number from the set {1, . . . ,D}. nj is used to ensure
that ui,g gets at least one dimension from vi,g.

Before evaluating the objective function values of the
newly generated trial vectors, ui,g, they are subjected to a
boundary checkmechanism. If a value in a dimension exceeds
the bounds, then it is set to a uniformly generated random
value within the specified range. In the selection phase, each
target individual xi,g competes with its corresponding trial
vector ui,g for being included in the next generation. If xi,g is
better than ui,g in terms of the objective function value, then
xi,g is selected as a parent for the next generation, xi,g+1.
Algorithm 2 provides the pseudo-code of the SuADE algo-

rithm. The main difference between a regular DE algorithm
and SuADE is the accuracy prediction step, including the
maintenance of the solution similarity network. In the ini-
tialization step two different approaches were used for gen-
erating the solutions of the initial population (denoted by
the parameter InitType). In the first one, NP solutions are
generated randomly. This method was used for NAS-Bench-
101. In the second one, 10 solutions are generated randomly
and the remaining NP− 10 solutions are generated randomly

from the neighbors of the best one among the initial 10. This
method was used for the NAS-Bench-301 instances.

In line 3 the function queryAccuracy() returns the vali-
dation accuracy of the given architecture using the meth-
ods described in [38] for NAS-Bench-101 and in [26] for
NAS-Bench-301. In line 8 the function produceTrialVector()
returns a trial vector as given in Eqn 10. In line 11 the function
predictAccuracy() returns the predicted accuracy using the
chosen surrogate model for that implementation of the search
algorithm.

Unlike in SuALS, the type of a node depends on its neigh-
bors. Therefore, updating the network and determining the
type of nodes are done together. After determining the true
and predicted accuracy values of the solutions in setTrue and
setPred , respectively, at the beginning of each generation the
highest accuracy solution in setTrue, Xbest , is used to update
the best solution found so far, X∗ (line 7).

Algorithm 2 SuADE
Input : NP; δ; B; InitType; nodeUB?

1 setPop← initialize(NP, InitType)
2 {setTrue, setPred} ← updateNetwAndNodeT(network ,

setPop, δ, nodeUB?)
3 queryAccuracy(usedBudget , setTrue)
4 predictAccuracy(network , setPred)
5 while usedBudget < B do

// for each generation
6 Xbest ← bestSolution(setPop)
7 X∗ ← bestFitness(setTrue,X∗)
8 setU ← produceTrialVector(setPop, Xbest )
9 {setTrue, setPred} ← updateNetwAndNodeT(network ,

setU , δ, nodeUB?)
10 queryAccuracy(usedBudget , setTrue)
11 predictAccuracy(network , setPred)
12 vb ← bestSolution(setPred)
13 queryAccuracy(usedBudget , vb)
14 setTrue.ADD(vb)
15 vb.accType← true
16 setPop← nextGenPopulation(setPop, setU )
17 end
18 return(X∗)

The first step of Algorithm 3 is determining the nodes to
be added. Each element of the vector of solution encodings,
V , is mapped to a solution. If that solution is infeasible or it is
feasible but there is a solution already in the network whose
Jaccard distance to this one is 0, then it is not included in the
set of new nodes,N , to be added to the network. The second
step is determining a set of candidate edges, C, between N
and V

⋃
N . A candidate edge is defined between nodes n

and w, where n ∈ N and w ∈ V
⋃
N if JD(n,w) ≤ δ.

These edges are sorted in increasing JD(n,w), and edge and
node type decisions are made in this order. Figure 10 depicts
a small example withN = {18, 19, 20}, where edges in C are
shown by dashed lines.

All nodes in N are added to the network. Edge addi-
tion decisions are made differently for weighted-average and
regression-based prediction methods. For regression-based
prediction nodeUB? parameter is set to FALSE. In that case,
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Algorithm 3 updateNetwAndNodeT
Input: network , V , δ, nodeUB?

1 N ← determineNewNodes(V)
2 C ← candidateEdges(N , network , δ)
3 S ← sortByIncDistance(C)
4 for each (v,w) in S do
5 network ← addEdgeNode((v,w), network ,

nodeUB?)
6 {T , E} ← nodeType(v, w, network)
7 if nodeUB? = TRUE then
8 updateNodeLimits(E , T , network)

9 {T , E} ← nodeTypeForIsolated(T , E , network)
10 return network

FIGURE 10. Example 4 – Set of candidate edges.

all candidate edges (v,w) are added to the network. For the
weighted-average method, nodeUB? is set to TRUE, and
node-based upper bounds on edge distances are defined.
The intuition behind this can be explained as follows. For
instance, assume node w1 ∈ E is connected to a single
solution w2 ∈ T with JD(w1,w2) ≈ 0, which should yield a
small error in Ã(w1). In that case, we may not want to add an
edge from a new solution n to w1 especially if JD(n,w1) ≈ δ,
since it is quite likely to increase the error in Ã(w1). Hence,
a dynamically updated constraint is defined for connecting an
edge to a node in E . Let dUB(v) denote an upper limit on the
distance of an edge that can be connected to node v, defined
as:

dUB(v) =

{
minw∈N (v) JD(v,w) if v ∈ E
1 if v ∈ T

(11)

Consider node 9 in Figure 10, for which dUB(9) = .2, that
is one of its three current connections is quite similar to 9 and
likely to yield a good predicted accuracy for 9. Adding edge
{9, 20} with distance 0.46 is likely to degrade the estimation
quality for solution 9. It is worth noting that dUB(v) does not
depend on the reliability values discussed in Section IV-C.
An intuitive argument behind this is that the reliability values

are likely to improve as the network grows, so it is more
important to make the edge formation decisions based on
distances alone. Of course, the effect of edge {9, 20} on the
estimation quality of 9 also depends on the node type decision
for 20.

Given the upper bounds, edge {v,w} is added to the net-
work only if v or w ̸∈ T and,

JD(v,w) ≤ K ×min{dUB(v), dUB(w)} (12)

After an edge {v,w} is added to the network, assuming v is in
N , its type is determined as follows:

(i) If w ∈ T , v is added to E ;
(ii) If w ∈ N , one of v or w is randomly assigned to T and

the other is added to E ;
(iii) If w ∈ E , then v is added to T if Ã(w) > α, and added

to E , otherwise.
Considering case (iii) above, if α equals 0, v would always

be added to T , which is likely to improve the estimation for
w. However, let’s assume Ã(w) = 0.5, that is, solution w is
predicted to be quite poor. Thus, it is quite likely that v is
also a poor solution and including v in T would be a waste of
limited computational budget. In other words, we would like
to improve the estimation of good solutions rather than poor
ones. Therefore, letting A∗ denote the maximum true accu-
racy obtained so far, we set α to max{A∗− 0.1, 0.60}, for the
NAS-Bench-101 instances, and to max{A∗ − 0.0025, 0.94},
for the NAS-Bench-301 instance (these parameter values
were determined by looking into the distribution of accuracy
values of the solutions obtained during the search).

After determining the node types, dUB(v) and dUB(w) are
updated using Equation 11. For the example in Figure 10,
assuming K = 1, this algorithm first adds edge {14, 20},
makes the updates E = E

⋃
{20} and dUB(20) = 0.05.

Then, it adds {18, 19}, sets T = T
⋃
{18}, E = E

⋃
{19},

dUB(18) = 1, and dUB(19) = 0.12. Finally it adds {13, 18},
and updates dUB(13) as min{0.26, 0.19} = 0.19.
After the new edges are created it is possible for some

n ∈ N to have no edges. Since estimation cannot be made
for such isolated nodes, there are two options: they can either
be added to T or not added to the network at all. The for-
mer would serve towards the exploration function of search
algorithms, whereas the latter would serve the exploitation
function. To strike a balance between the two, min{τ, |I|}
isolated nodes are selected for adding to T , where I is the
set of isolated nodes and τ ∈ N is a parameter. The selected
ones are those that have the shortest distance to X∗, the best
solution found so far (see Algorithm 2).

VI. EXPERIMENTAL RESULTS
In this section, we report the results of the experimental work
done in line with the NAS best practices checklist in [16].
In the Appendix, we give full details of our answers to
this checklist. Our implementation is made publicly avail-
able at Github [15]. For each of the benchmark datasets,
we evaluate both the performance of the two similarity-based
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TABLE 4. Parameter settings for the prediction methods.

predictors (weighted average and regression-based) and the
performance of each search algorithm (SuADE and SuALS)
coupled with each predictor.

For both SuADE and SuALS algorithms, we did not per-
form a dataset-specific parameter tuning process, in accor-
dance with NAS best practices. Instead, we have adopted
the hyper-parameter values that were used or recommended
in earlier studies. SuADE requires the population size, NP,
the crossover rate, CR and the scaling factor, F , and τ to
be set. For CR and F we directly adopted the values in [1],
setting them both to 0.5, whereas, we set NP to 30 rather
than 20 used in [1] and we set τ to 3. The four parameters of
SuALS-WAand SuALS-RG, namely,NI , numPred , numTrue
andmaxTrueFromPred were given the values 10, 10, 3, and 5,
respectively, for both datasets.

In addition to those search algorithm parameters, solution
network maintenance carried out in the prediction models
also requires a couple of parameters. These parameters are δ

and nmin for the regression-based prediction model, and δ and
k for the weighted average prediction model. A robustness
analysis has been carried out for these parameters, with all
combinations of δ = {0.3, 0.4, 0.5, 0.6, 0.7} and nmin =
{20, 25, 30, 35, 40} for the regression-based prediction, and
δ = {0.3, 0.4, 0.5, 0.6} and k = {1, 1.2, 1.4, 1.6} for
the weighted average prediction model. Table 4 provides the
common set of parameters used for both datasets, along with
the best performing parameters. The prediction performance
analysis in Section VI-A and search performance analysis
in Section VI-B are reported for the parameters given in the
column titled ‘‘used’’ in this table.

SuADE, as opposed to SuALS, tends to produce solutions
with relatively larger distances between them. Because of
this, for a given δ it results in fewer neighbors for solutions.
Thus, having a relatively large nmin in SuADE-RG would
result in some solutions’ predictions to be made by a simple
average of neighbors’ accuracy values.

Figures 11 through 14 depict the performances of the four
algorithms with the used parameters listed in Table 4 along
with those corresponding to the best and worst parameter
settings (based on the accuracy obtained at the termination).
In seven of these eight charts we observe a narrow gap
between the best and worst performances throughout the
search. The only exception is for SuALS-RG tested on NAS-
Bench-101 (see Figure 14) but the gap is relatively wide only
during the first half of the search process which narrows down
significantly by the termination of the search. Overall, we can
conclude that all four algorithms are quite robust with respect
to the two parameters.

A. PREDICTION PERFORMANCE
In the NAS literature, the performance of a predictor is
judged to be its generalization ability to unseen architectures.
Correlation measures between the predicted and the actual
accuracy values, such as Pearson, Spearman’s rank, Kendall’s
tau rank correlations, are used to evaluate the power of a given
predictor (e.g. see White et al. [35] and Ning et al. [21]).
In addition to the prediction ability, the time to reach that
predictive power is also considered while comparing different
NAS predictors.

As stated in [35], some predictors require a costly query
routine where true accuracy of some architectures are
obtained, and some predictors employ a costly initialization
routine. NAS benchmark datasets reduce costly true accu-
racy query routine to simple database queries. Each query
gives not only the true accuracy of the associated neural
architecture but also its total training time. Some predictors
also employ an update routine where initial computations are
updated. The total time spent during all these steps determine
the speed of a predictor. A fair comparison between different
predictors can only be made considering the time it takes to
reach certain levels of prediction power.

In this study, we aimed to improve the prediction perfor-
mance of our network-based model incrementally by adding
a number of newly created architectures with true accuracy
values at each iteration and calculating/updating predicted
accuracy of new/existing architectures in the network. As our
approach is very different from those in the literature, it is
difficult to separate the times for the initialization, query
and update routines in SuADE and SuALS algorithms in
a comparable manner to the algorithms in literature. Since
the queried training time of architectures is many orders of
magnitude larger than the times taken to maintain the similar-
ity network and calculate the predicted accuracy values, the
number of queries and the training times obtained by these
queries determine the wall-clock time of SuADE and SuALS
algorithms. Pearson correlation, Spearman’s rank correlation
andKendall’s tau rank correlation values are reported through
this wall-clock time which is equal to the sum of the queried
training times from the benchmark datasets. It is also impor-
tant to note that true accuracy values of the architectures with
predicted accuracy values are queried in order to calculate
the correlations, and never used to drive the search. There-
fore, only the queried times for the architectures whose true
accuracy values are used to update the model are included in
the wall-clock time.

1) NAS-BENCH-101 EXPERIMENTS
All algorithms were allowed to run for a total time bud-
get of 8 × 104 seconds. For each algorithm, we performed
500 independent runs and report the mean for each of three
criteria; namely, Pearson correlation, Spearman’s rank cor-
relation and Kendall’s tau rank correlation. The results are
shown in Figure 15, where x-axis represents the estimated
wall-clock time, as the cumulative time taken for training
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FIGURE 11. Robustness analysis of SuADE-WA.

FIGURE 12. Robustness analysis of SuALS-WA.

each of the architectures found as returned by NAS-Bench-
101. The correlation reported for a given wall-clock time is
for all predicted architectures generated up to that time.

The results show that SuADE-WA and SuADE-RG per-
form significantly better than both SuALS versions in terms
of all three criteria throughout the whole search process.
Although SuALS-WA seems to perform better than SuALS-
RG; both yield weak correlations.

In addition to the final prediction performance, the time
taken to reach a level of prediction performance is an impor-
tant criterion for assessing a NAS predictor. We observe that
for the SuADE algorithms the correlations start high, and
while they remain stable for the weighted average predic-
tor, there is some decline for the regression-based predic-
tor. In [35] Kendall’s tau rank correlation values of several
predictors under different initialization and query time set-
tings are presented. At an initialization time of 106 seconds,

BANANAS [33] exhibits the highest Kendall’s tau rank cor-
relation value of 0.8. On the other hand, BANANAS yields
correlation values of approximately 0.25 and 0.55 for the ini-
tialization times of 104 and 105 seconds, respectively. As only
the initialization routine is costly for BANANAS; we take
this initialization time to compare it to SuADE-WA. SuADE-
WA achieves a mean Kendall’s tau rank correlation value of
0.66 at very early stages of the search. It also achieves the
highest correlation value of 0.73 within the first 3× 104 sec-
onds. It is shown in [35] that XGBoost [3] which was used
as a model-based predictor while creating NAS-Bench-301
performs weakly on NAS-Bench-101. This is attributed to the
complexity of the NAS-Bench-101 search space as it contains
more diverse set of architectures ranging from a single node
and no edges, to five nodes with nine connecting edges. Thus,
the correlation performance of SuADE-WA is a significant
achievement.
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FIGURE 13. Robustness analysis of SuADE-RG.

FIGURE 14. Robustness analysis of SuALS-RG.

2) NAS-BENCH-301 EXPERIMENTS
In this section we report the results of the set of experiments
discussed in the previous section for the NAS-Bench-301
dataset. Each of the algorithms is allowed to run for a total
budget of 150 queries. The results are shown in Figure 16.
In order to be able to compare our results to other results
in the literature in terms of both the predictive power and
the time it takes to reach that power, we used the estimated
wall-clock time provided for a given architecture, and the
x-axis shows the total time spent querying the architectures
during the search.

In Figure 16 we see that SuALS algorithms start with all
three correlations around zero and improve quickly. SuADE
algorithms start quite high and remain high throughout.
SuALS-WA exceeds the performance of the SuADE algo-
rithms with respect to Spearman’s and Kendall’s tau rank
correlations. White et al. [35] present a comparison of several
predictors under several initialization and query time budgets
considering both the correlation performance and their ability
to speed up NAS process. It is shown in the study that some
NAS predictors that result in high Kendall’s tau correlations

in smaller search spaces do not perform well on large search
space like NAS-Bench-301. For example, BANANAS [33]
yields a very poor Kendall’s tau rank correlation value of
0.1 after an initialization time of 106 seconds. According to
the study, a strong predictor, Sum of Training Losses at Last
Epoch E (SoTL-E), achieves a Kendall’s tau rank correlation
value close to 0.7 after a query time of 105 seconds. SuALS-
WA achieves the same Kendall’s tau value within similar
time.

Overall, for all three correlation measures, SuADE-WA
gives higher values throughout the search than SuALS-RG for
both NAS-Bench-101 and NAS-Bench-301. Similarly, for all
three correlation measures, SuADE-WA gives higher values
throughout the search than SuALS-WA for NAS-Bench-101.
However, for NAS-Bench-301 we see that SuALS-WA yields
better rank correlations (Spearman’s and Kendall’s Tau).

B. SEARCH PERFORMANCE
1) NAS-BENCH-101 EXPERIMENTS
The search performances of the four algorithms developed
in this research along with the Differential Evolution (DE)
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FIGURE 15. Correlation results on NAS-Bench-101 with the first and the third quartiles shaded.

FIGURE 16. Correlation results on NAS-Bench-301 with the first and the third quartiles shaded.

FIGURE 17. NAS-Bench-101 search performance.

algorithm of Awad et al. [1], local search algorithm (LS) and
Random Search (both are available in the Naszilla website
maintained in Github, and are based on the work reported
in [32], [33], and [34]) for NAS-Bench-101 are shown in the
Figure 17.

Looking into these results, it is seen that SuADE-RG and
SuADE-WA achieved the best average test accuracy val-
ues within the specified time limit (SuADE-RG performed
slightly better than SuADE-WA). Other algorithms, includ-
ing the Naszilla DE and LS, did not perform better than
random search. The improved performance of SuADE with
the two prediction methods suggest that these fast and good

prediction methods facilitate evaluation of more solutions
and searching the solution space more efficiently without
consuming extra wall-clock time.

It is interesting that SuALS-WA and SuALS-RG initially
perform significantly worse than LS of Naszilla, even though
eventually they catch up and obtain slightly better results. The
initial under-performance may be partly explained by the low
correlations depicted in Figure 15.

2) NAS-BENCH-301 EXPERIMENTS
Figure 18 shows the search performance of different heuris-
tics and estimators. Based on the results, SuALS-WA reaches
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FIGURE 18. NAS-Bench-301 search performance.

the highest average validation accuracy. SuALS-WA outper-
forms Random Search, Differential Evolution, and Regular-
ized Evolution in terms of average validation accuracy by
0.6, 0.56, and 0.19, respectively. There is an insignificant
difference between the performances of SuALS-WA, SuALS-
RG and Naszilla LS. The final average accuracy obtained by
SuALS-WA and SuALS-RG is only 0.02 and 0.01 higher than
that of Naszilla LS, respectively. As a comparison, we can
note that SuADE-RG and SuADE-WA improved the perfor-
mance of the baseline DE by 0.3647 and 0.3513, respectively.
SuADE-RG performed slightly better than SuADE-WA but
the difference is insignificant. These results confirm that the
similarity-network-based estimators help Differential Evolu-
tion perform a faster and better exploration of the search
space.

Another important observation is that all four algorithms
developed here achieve the fastest improvement in accuracy,
reaching approximately 94.35 in less than 1.6×105 seconds.
Only Naszilla LS yields a similar performance among the
other algorithms from the literature.

Even though SuALS-RG performed very well it is interest-
ing to note that the correlations results for it (Section VI-A2)
were really poor (close to zero or negative) at the early stages
of the search and then significantly improved to be compa-
rable with the other algorithms. It is plausible that the poor
correlations at the early stages could have helped diversify
the local search (as in simulated annealing when moves that
worsen the fitness of solutions in the early stages are allowed).

VII. CONCLUDING REMARKS
In this research we have developed and tested two new neural
network accuracy predictors that make use of a solution sim-
ilarity network. We integrated these two predictors, namely
weighted average and regression, into two search algorithms,
differential evolution and local search, that are known to
perform well for NAS. The resulting four search algorithms
(SuADE-WA, SuADE-RG, SuALS-WA, SuALS-RG) have

been tested on two benchmark datasets with significant char-
acteristic differences in their search spaces. NAS-Bench-101
puts fewer restrictions on the design of the neural architec-
ture, resulting in a very large search space, whereas NAS-
Bench-301 with significant design restrictions has a much
smaller search space. Thus, perhaps not surprisingly, for
NAS-Bench-101 SuADE algorithms performed better than
SuALS algorithms, as differential evolution is a population
based algorithm and makes use of large moves while local
search makes small local moves from a single incumbent
solution. Consistent with these observations, for the NAS-
Bench-301 dataset with more design restrictions, SuALS
algorithms performed better than SuADE algorithms.

At the outset, the research question posed here was whether
a relatively simple similarity-based solution network could
work well as a prediction tool in NAS. There are some
obvious advantages to such an approach. Firstly, it does not
require a computationally expensive initialization stage and
instead, training is integrated into the search process. Our
correlation results showed that our algorithms obtain high
correlations quickly and these correlation stay mostly stable.
In other words, these prediction models are fast and start
giving high quality predictions quickly. In addition to these
correlation results, our computational experiments demon-
strate that the prediction methods can improve the search
performance significantly, as demonstrated for both NAS-
Bench-101 and NAS-Bench-301 when used within differen-
tial evolution. Especially for NAS-Bench-101 with its large
search space, and differential evolution which uses large
moves, prediction quality is important for choosing the right
moves.

The computational experiments have showed that the per-
formances of the prediction models depend on the search
algorithm within which they are implemented. For instance,
they did not yield significant improvements when used within
local search. Several design characteristics of local search
could explain this. Firstly, since the moves consists of small
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mutations, the new solutions are close to the incumbent solu-
tion and not too different in terms of accuracy performance.
Secondly, since the search is not population based, selection
of next solution is done among similar solutions. Both of
these reasons make prediction less critical than in differential
evolution.

As future research, it would be interesting to see how well
the weighted average approach performs when incorporated
into other large step or population based search algorithms.

APPENDIX
NAS BEST PRACTICE CHECKLIST
We now describe how we addressed the individual points of
the NAS best practice checklist [16].

1) Best Practices for Releasing Code

For all experiments we report:
a) Did we release code for the training pipeline used to

evaluate the final architectures? Does not apply
b) Did we release code for the search space? Yes, for

both NAS-Bench-101 and NAS-Bench-301 search
spaces.

c) Did we release the hyperparameters used for the final
evaluation pipeline, as well as random seeds? No,
Does not apply

d) Did we release code for your NAS method? Yes
e) Did we release hyperparameters for your NAS

method, as well as random seeds? Yes
2) Best practices for comparing NAS methods

a) For all NAS methods we compare, did we use exactly
the same NAS benchmark, including the same dataset
(with the same training-test split), search space and
code for training the architectures and hyperparame-
ters for that code? Yes

b) Did we control for confounding factors (different
hardware, versions of DL libraries, different runtimes
for the different methods)? No

c) Did we run ablation studies? Yes
d) Did we use the same evaluation protocol for the meth-

ods being compared? Yes
e) Did we compare performance over time? Yes
f) Did we compare to random search? Yes
g) Did we perform multiple runs of your experiments

and report seeds? Yes
h) Did we use tabular or surrogate benchmarks for in-

depth evaluations? We used both.
3) Best practices for reporting important details

a) Did we report how we tuned hyperparameters, and
what time and resources this required? Yes

b) Did we report the time for the entire end-to-end NAS
method (rather than, e.g., only for the search phase)?
Yes

c) Did we report all the details of your experimental
setup? Yes
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