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When the source code of a software is the only product available, program understanding has a substan-
tial influence on software maintenance costs. The main goal in code comprehension is to extract informa-
tion that is used in the software maintenance stage. Generating the structural model from the source
code helps to alleviate the software maintenance cost. Software module clustering is thought to be a
viable reverse engineering approach for building structural design models from source code. Finding
the optimal clustering model is an NP-complete problem. The primary goals of this study are to minimize
the number of connections between created clusters, enhance internal connections inside clusters, and
enhance clustering quality. The previous approaches’ main flaws were their poor success rates, instabil-
ity, and inadequate modularization quality. The Olympiad optimization algorithm was introduced in this
paper as a novel population-based and discrete heuristic algorithm for solving the software module clus-
tering problem. This algorithm was inspired by the competition of a group of students to increase their
knowledge and prepare for an Olympiad exam. The suggested algorithm employs a divide-and-conquer
strategy, as well as local and global search methodologies. The effectiveness of the suggested Olympiad
algorithm to solve the module clustering problem was evaluated using ten real-world and standard soft-
ware benchmarks. According to the experimental results, on average, the modularization quality of the
generated clustered models for the ten benchmarks is about 3.94 with 0.067 standard deviations. The
proposed algorithm is superior to the prior algorithms in terms of modularization quality, convergence,
and stability of results. Furthermore, the results of the experiments indicate that the proposed algorithm
can be used to solve other discrete optimization problems efficiently.
� 2023 The Author(s). Published by Elsevier B.V. on behalf of King Saud University. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Change and evolution of software based on changes in user
needs and system features are inevitable. Software maintenance
(Change and evolution) accounts for 60% of software expenditures
on average (Amarjeet and Chhabra, 2017; Sun and Ling, 2018;
Chhabra, 2017; Yuste et al., 2022). One of the most difficult tasks
in software maintenance is determining the impact of the applied
change on the rest of the software. The action of examining the
likely impacts of a change to limit unexpected side effects is known
as impact analysis. When the source code is the only product avail-
able, program understanding has a substantial influence on soft-
ware maintenance costs. The main goal in code comprehension is
to extract information that is used in the software maintenance
stage. The primary maintenance task, which accounts for around
50% of the expenditures, is program comprehension. The generated
structural model from the source code helps the software develop-
ers to make the desired maintenance in the software system with a
limited amount of cost.
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The structural model, as an architectural model of a software
product, consists of the modules (components, classes, methods)
in the software product and the static relationships that exist
between them. This model describes the related codes (modules)
in the program source code and display the organization of a soft-
ware system in terms of the components. As a result, when con-
fronted with large and complex software source code, extracting,
and interpreting the software structural models from source code
is essential. Before making source-code changes, one can learn
about the design structure of software by reverse engineering the
source code components. As a reverse engineering approach, soft-
ware source-code clustering groups software modules (compo-
nents, classes, and methods) with similar qualities after
extracting them from the source code. As a metric, modularization
quality (MQ) is evaluated based on the number of connections
inside (cohesion) and between clusters (coupling). The MQ crite-
rion is used to assess the performance of module clustering algo-
rithms. According to this criterion, optimal clustering results
from maximal cohesion (the ties between modules in a cluster)
and minimal coupling (the links between different clusters).

The software module clustering (SMC) methods divide the
source code of a program into m clusters (components or pack-
ages). Assume S (a source code) is made up of n modules, M1,
M2, . . ., Mn, each of which includes methods, functions, and prop-
erties. Set p represents the available combinations for dividing n
modules into m clusters. Each item of p indicates a potential com-
bination of clustering options. The number of possible solutions for
clustering a program with n modules into m clusters is represented
by Sn, m (Stirling numbers) that is calculated by Eq. (1). A program
with five modules, for example, has 52 distinct clustering combina-
tions, but a 25-module program has 1,382,958,545 possible clus-
tering combinations. The cluster intersection is empty, while the
union of the m clusters equals all source code (S). As a result, the
SMC problem is technically classified as an NP-Complete problem
(Chhabra, 2017; Yuste et al., 2022; Prajapati and Chhabra, 2018).
This forces academics to use heuristic ways to choose the appropri-
ate grouping.

S n;mð Þ ¼ S n� 1;m� 1ð Þ þm� S n� 1;mð Þ
n : number of modules in the software product

m : number of clusters

ð1Þ

The primary goals of the study are as follows:

� Improving the quality of modularization (MQ).
� Increasing the chances of obtaining optimal clusters.
� Improving the SMC method’s stability across several runs.
� Accelerating convergence to get the best clusters.

Different heuristic and machine-learning algorithms are now
being employed to solve various computer science and engineering
challenges. The SMC has been approached as a discrete search-
based optimization issue using a variety of search-based heuristic
approaches. The primary shortcomings of the prior techniques are
as follows:

� Lower MQ.
� Reduced success rate and falling into the local optimum.
� Poor stability.
� Slower convergence speed in finding the best clustering, partic-
ularly in big software applications.

This research proposed a novel discrete optimizer strategy for
dealing with the SMC problem. The proposed technique is based
on the process of group teaching and learning of class members
(students) in preparation for an Olympiad test (Olympiad Opti-
2

mization Algorithm). In the Olympiad Optimization Algorithm
(OOA), the population mimics the behavior of a group of students
that desire to enhance their knowledge by learning from their
peers. The students try to improve their knowledge by learning
from the other students. Therefore, students are competing to gain
knowledge from each other. The OOA splits and conquers an opti-
mization problem by using both local and global search tech-
niques. Each iteration divides the population into student groups,
and teaching and learning take place among the students. No
teachers are participating in the teaching and learning process at
the OOA. In the OOA, population evolution is based on swarm intel-
ligence and group-based learning. The local search operation is car-
ried out by each group. Each solution delivers software module
clustering; a solution’s fitness demonstrates the solution’s MQ.
OOA may also be used to solve discrete optimization problems.
The followings are the study’s main contributions:

� In this work, a unique discrete optimization algorithm (OOA) for
tackling discrete optimization problems was developed. The
suggested method is a swarm-based algorithm that simulates
the learning process of a class of students preparing for the
Olympiad test. The steps of teaching and learning amongst
population members (students) in each iteration produce popu-
lation evolution. The suggested algorithm employs a divide-
and-conquer strategy, as well as local and global search
methodologies. Individuals are separated into groups, and each
group searches in a distinct part of the total solution space using
a specific imitation strategy.

� The suggested OOA can handle the majority of graph-based
optimization challenges. Another contribution of this study is
the use of the OOA to tackle the software module clustering
problem as a graph partitioning problem.

The following five sections comprise the paper: The second sec-
tion provides an outline of major SMC research. Section 3 illus-
trates and explains the recommended OOA method and its
application in SMC problem. Section 40s first half discusses the
platform and tools that were utilized to carry out the proposed
approach. This section also includes evaluation criteria and data
sets related to the SMC methods. The study’s findings are pre-
sented and discussed in the second part of Section 4. Section 5 con-
cludes the paper and recommends future research in the field of
SMC.
2. Related works

In Yuste et al. (2022) a PSO-based approach for selecting the
optimum clusters for software application modules was presented.
Each particle depicts the structure of software components (mod-
ules). Each particle possesses two critical properties: its location
vector and its speed vector. The speed vector, on the other hand,
affects the current positions of the particles in each direction. As
the particles travel faster, their locations alter. The starting popula-
tion consists of particles. In response to the SMC task’s challenges,
the particle locations and speed of the PSO technique were created.
A modified version of the PSO method was utilized for the SMC
issue, which applies a local search technique to enhance particle
position. The results of the tests reveal that the recommended
method produced higher-quality software clusters. Chhabra
(2018) created a one-of-a-kind heuristic method based on a Greedy
Random Adaptive Search Procedure using Variable Neighborhood
Descent. The method has been tested successfully on a set of
real-world software projects and exceeds the prior state-of-the-
art approach in terms of Modularization Quality in extremely fast
computation times.
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XinShe-Yang introduced the firefly algorithm in Mamaghani
and Hajizadeh (2014) (FA). Its foundation is based on swarm intel-
ligence. In this method, each firefly symbolizes a clustering combi-
nation with a specified light intensity (clustering quality). The
degree of light intensity may be quantified using a fitness function
(MQ). Fireflies try to approach optimal fireflies and change their
positions to get the best clustering combination and even the most
accurate timings. To address difficulties, the Firefly algorithm, a
non-discrete optimization approach, is utilized. It may, however,
be used for specific problems such as the SMC problem. Firefly out-
performs HC and GA on most benchmarks, according to experi-
mental data. The approach’s principal restrictions, particularly in
big software systems, are local optimum likelihood and
sluggishness.

A hill climbing (HC)-based approach for building clustered
structural models of software source code was reported in
Mahdavi et al. (2003). Because it includes N modules, MDG can
generate up to N initial clusters. Before the first hill climber starts,
each software module is assigned to a random cluster. A fitness
function is used to assess the MQ of the created clusters. The pur-
pose of this strategy is to create clusters with the least amount of
connection and the greatest level of cohesion. At each stage of the
method, each hillclimber seeks to reach the next neighboring clus-
ter with a greater MQ. When the hillclimber notices another neigh-
bor in the new cluster, it goes in quest of another (climber with a
higher MQ). When none of the clustering’s nearest neighbors can
find a optimal MQ value, the search activity is ended. The first
stage’s hills finally join together to form a hill sequence. This strat-
egy has the potential to slip into the local optimum, searching for
the global optimum more difficult (the optimal clustering).

The genetic algorithm is a heuristic search technique that is
evolutionary in nature (GA). The GA has solved the HC approach’s
key flaws in the SMC problem. There is no way to get the best
grouping when using direct search techniques like the HC algo-
rithm. Such algorithms are incapable of dealing with huge search
spaces. In contrast, the search procedure in GA happens concur-
rently with the beginning population’s chromosomes. Each chro-
mosome refers to a clustering combination in GA. The starting
population consists of chromosomes selected at random (random
clustering combinations). The fitness function analyzes the chro-
mosomes in each iteration, intending to construct chromosomes
with a high degree of cohesion and a low degree of coupling. The
search is then enlarged by updating the chromosomes of interest
with the crossover and mutation operators (Mancoridis et al.,
1999; Praditwong et al., 2011). According to the findings, the GA
is an appropriate solution for the SMC problem in small and
medium-sized software clusters.

For selecting the best software application clusters, Arasteh and
colleagues proposed a hybrid PSO-GA approach (Arasteh et al.,
2020). This approach seeks to address shortcomings in previous
methods (low convergence, inadequate MQ, low stability, and
inadequate success rate). This approach incorporates the advan-
tages of both heuristic methods. When compared to PSO and GA
algorithms, this hybrid approach enhances clustering quality and
provides rapid data convergence. Throughout the level, crossover
and mutation were used to update and improve particle position
by updating the speed vectors of all particles. Experiments on ten
well-known benchmark Module Dependency Graphs (MDGs)
reveal that the PSO-GA technique beats the standard strategy
90% of the time. Furthermore, in 30% of the benchmarks, all three
approaches obtained the same success rate. In 60% of the bench-
mark programs, the PSO-GA technique outperforms the PSO and
GA algorithms in terms of stability. The code that was used is freely
accessible for download.

In Hatami and Arasteh (2020), the ant colony optimization
(ACO) approach was used for clustering the components of the
3

software. The modules of each cluster (subsystem) are consider-
ably connected. Swarm intelligence is used by the ACO algorithm
to solve a variety of search-based optimization issues. Each ant
in the proposed approach is a clustering solution. A high-quality
clustering has the highest coherence and the lowest coupling. This
method was tested on a variety of benchmark datasets. The find-
ings indicate the higher performance of ACO in the SMC problem.
Furthermore, regarding the convergence speed and MQ value, the
ACO-based approach typically beats the GA and PSO. In regard to
stability, all three solutions have the potential to overcome the
SMC problem.

By combining the shuffle frog leaping algorithm (SFLA) with GA
approaches, an SMC method (Bölen) for clustering software mod-
ules was proposed in Arasteh et al. (2021). This method offers sev-
eral advantages, like faster data convergence, greater
modularization quality (MQ), higher success rate, and improved
stability. MDG, like the other techniques, is used to demonstrate
how various software components (modules) are linked. SFLA cov-
ers both local and international searches. In the SMC problem, each
frog in SFLA is viewed as a clustering array (clustering combina-
tion). Using the crossover operator, the best frogs in each meme-
plex were generated from the poorest frogs. The mutation
operator is also performed for every memeplex individual, with
the option of optimizing the memeplex member with the lowest
strength. In terms of average MQ, the SFLA-GA methodology out-
performed the other strategies in 80% of the benchmark instances.
The SFLA-GA approach, according to the convergence criteria, con-
verges to the optimal solution faster than that of the HC, GA, and
PSO algorithms in 90% of circumstances.

In Arasteh et al. (2022), a hybrid single objective strategy that
merges the gray wolf algorithm (GWOA) and GA was developed
for the SMC problem. The suggested method combines a swarm-
based and an evolutionary algorithm. For the SMC issue, the con-
ventional GWOA was discretized and tweaked. Experiments on
14 prominent benchmarks reveal that this single-objective hybrid
approach outperforms the GA, PSO, and PSO-GA strategies in the
SMC problem; greater MQ and quicker convergence speed are sig-
nificant benefits of this method, especially in big software pack-
ages. Many chaos-based heuristic algorithms for the SMC issue,
such as the Bat, Cuckoo, Teaching-Learning-Based, Black Widow,
and Grasshopper heuristic algorithms, were developed in
(Arasteh, 2022). The effects of chaos theory on the effectiveness
of various algorithms in this context have also been examined.
The BWO, PSO, and TLB methods outperform the other methods
in the SMC issue, according to real-world application findings. Fur-
thermore, when the initial populations of these algorithms were
generated using the logistic chaos method, their performance
increased. The average MQ values for clusters formed by BWO,
PSO, and TLB in the supplied benchmark set are 3.155, 3.120, and
2.778, accordingly.

In Arasteh et al. (2022), an autonomous strategy (Savalan) for
the SMC issue was proposed, that is based on a multi-objective
genetic algorithm and a special combination of goal functions.
The fundamental purpose of this study is to improve all clustering
goals at the same time (coupling, cohesion, cluster size, modular-
ization quality, and number). Six separate objective criteria were
considered as optimization objectives in this study. As the multi-
objective genetic algorithm in the proposed approach, the Pareto
envelope-based selection algorithm (PESA) was used. This method
is useful for both little and major projects. Based on the results of
the 14 benchmark programs, the primary advantage of this
approach is that it improves all clustering goals at the same time.
The results reveal that the Savalan technique concurrently
improves all clustering criteria. Savalan generates higher-quality
clusters than similar technologies such as Bunch (Mancoridis
et al., 1999), CIA (Chen, 1995), and Chava (Korn et al., 1999), and
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it outperforms them in large software systems (MQ). Savalan was
released as free software for researchers and developers in
(Available online: http://savalan-smct.com/). As a result, the soft-
ware industry will benefit from both the theoretical and practical
implications of our research. This tool was built using the Java-
Script programming language. Table 1 summarizes the key compo-
nents of contemporary research and creative techniques in
complex software systems. The main disadvantages of the previous
approaches include slow convergence, local optimum, and poor
stability.

3. Proposed method

In this study, a novel discrete heuristic algorithm was proposed.
Introducing, designing, and implementing a new discrete heuristic
algorithm is the first innovation of this research. The proposed
algorithm (OOA) can be used for solving discrete NP-hard opti-
mization problems. Adapting the OOA for SMC problem is the other
contribution of this study. SMC is one of the challenging optimiza-
tion problems in the field of software engineering. Producing the
most effective structural model from a source code is the optimal
solution to the SMC problem. Clustering the n modules of a pro-
gram into m clusters is formally considered a combination prob-
lem. In this problem, the module dependency graph (MDG) of
the source code is generated (first stage) and then the OOA clusters
the modules of the program using MDG. The generated structural
model alleviates the cost of software maintenance.

3.1. Olympiad algorithm

3.1.1. Algorithm structure
For tackling the SMC problem, a novel discrete heuristic tech-

nique was presented in this work. To solve the SMC problem, the
Olympiad optimization algorithm (OOA) is presented and imple-
mented as a discrete swarm algorithm. The suggested OOA uses
the swarm-based imitation technique as its local and global search
methods. OOA is a population and group-based heuristic method
that solves the optimization problems in divide and conquer form.
Each member of the population in the OOA simulates the behavior
of a student in the class. The proposed OOA mimics the learning
process among students of a class who are preparing for the Olym-
piad exam.

The steps of teaching and learning between the members of the
population (students) in each iteration cause the evolution of the
population. The proposed algorithm is a divide-and-conquer-
based algorithm with local and global search strategies. As shown
in Fig. 1, the individuals (students) of the whole population are
sequentially divided into equal size subgroups. Line 9 of Algorithm
1 indicates the implemented MATLAB code for the population divi-
sion. The individuals are divided into subgroups, and each sub-
group uses a specific imitation approach to search in a different
region of the overall solution space. Fig. 1 shows the general work-
flow of the OOA that can be used to solve an optimization problem.
There is competition among the individuals (students) to learn
from other students. Each student has a memory for storing their
learning rate (position of the student in terms of learning). Each
student in the OOA was designed and implemented as a numeric
array. The student population is made up of solutions. As depicted
in Fig. 1, the partitioning of the student population into n teams is
the first stage of the OOA after sorting. Each team includes m stu-
dents. The first team is the global best team, and the last team is
the global worst team. Each team, comprised of the students,
explores its local solution space. The first student of the first team
is the global best student, and the first student of each team is its
4

local best student. Algorithm 1 illustrates the pseudocode of the
main part of introduced OOA.
Algorithm 1. The pseudocode of the main part of the
proposed OOA.
1.
 Initialize population size, iteration, number

of teams and size of teams;
2.
 nPop=Number of populations.
3.
 n=number of Teams.
4.
 m=Size of Team.
5.
 itr=0;
6.
 While (itr < iteration)
7.
 {
8.
 Sort(population); //parallel bubble sort

algorithm
9.
 Team=Partition (population, n, m);
10.
 globalBest=1;
11.
 for i=2 to n
12.
 {
13.
 localBest=i-1;
14.
 localWorst=i;
15.
 for j=1 to m do in parallel
16.
 {
17.
 NewStd=Learn(Team[localBest][j],

Team[localWorst][j]); //1st step
18.
 if(NewStd.cost < Team[localWorst]

[j].cost)
19.
 Team[localWorst][j]= NewStd;
20.
 else
21.
 NewStd= Mutate(Team[localBest]

[1])); //2nd step
22.
 if(NewStd.cost < Team

[localWorst][j].cost)
23.
 Team[localWorst][j]= NewStd;
24.
 else
25.
 NewStd=Learn(Team[globalB

est][j], Team[localWorst][j]); //3rd step
26.
 if(NewStd.cost < Team

[localWorst][j].cost)
27.
 Team[localWorst][j]= NewStd;
28.
 else
29.
 NewStd= Mutate(Team

[globalBest][1])); //4th step
30.
 if(NewStd.cost < Team

[localWorst][j].cost)
31.
 Team[localWorst][j]=

NewStd;
32.
 else
33.
 NewStd= StdRandGeneration

();
34.
 if(NewStd.cost < Team

[localWorst][j].cost)
35.
 Team[localWorst][j]=

NewStd;
36.
 }
37.
 }
38.
 Evaluate the fitness of the population

using equations (2-3);
39.
 itr=itr + 1;
40.
 } //end of while
41.
 Return Team[globalBest][1]; //return the

global best student as the best solution.
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3.1.2. Population evolution by learning procedure
The students are divided into teams of the population and try to

learn from the best student of the adjacent team (the local best stu-
dent) or the global best team. The proposed learning operator
implements the local and global search of OA. Indeed, learning is
the main operator of the OOA to find the optimal solution to the
problem. The learning operator was introduced to improve the
population’s knowledge (fitness). The individuals (students) were
sorted based on their knowledge (fitness function). As shown in
Fig. 2, OOA tries to improve the knowledge of the population by
the introduced learning operator. Learning operator includes four
steps. In the first step, the students of each team learn from the
students of their adjacent team. As a result of the first step of learn-
ing the operator, the knowledge of the first team is transferred to
other teams as a bubble.

Fig. 3 shows the first step of the proposed learning operator. In
this step, the knowledge of a team is transferred to the next adja-
cent team. The procedure of learning, like the bubble sort algo-
rithm, is performed serially from one team to the adjacent team.
As shown in Fig. 3, all students of a learner team learn from the
corresponding students in the adjacent team (left side team). If
there is no improvement in the knowledge of the weak students
of the weak team, the second stage of the learning process is per-
formed. In the second improvement step, the best student of the
learner’s team (right side team) is mutated to make diversity.
The mutation operator implements a local search on the best stu-
dent of the weak team. If no improvement was made in the second
step, then the third step is executed. In the third step, all students
of the learner team (weak team) learn from the corresponding stu-
dents of the global best team (first team).

If the global-best team’s students could not teach the worst
team’s students, then the mutation operator is performed on the
globally best student. The mutation of the global best may avoid
the local optimum by making minor diversity. Finally, students
(search agents) from different teams are combined to produce a
new population. The learning operator is performed iteratively
on the student population. Algorithm 2 illustrates the pseudocode
learning operator that is conducted in each iteration of the OOA. In
the proposed method, learn operator (imitation operator) was
implemented by crossover operator. Some of bits (cells) in the
worst individual are replaced by the corresponding elements of
best individual. The LearnCount indicates the number of bits from
the weak element that should be replaced by the equivalent bits in
Table 1
Specifications of prior methods and tools.

Researcher Publication Year A

Prajapati (Prajapati and Chhabra, 2018) 2018 P
Mamaghani (Mamaghani and Hajizadeh, 2014) 2014 F
Mahdavi (Mahdavi et al., 2003) 2003 H
Mancoridis (Mancoridis et al., 1999) 1999 G
Praditwong (Praditwong et al., 2011) 2010 T
Arasteh (Arasteh et al., 2020) 2020 P
Hatami (Hatami and Arasteh, 2020) 2020 A
Arasteh (Arasteh et al., 2021) 2019 S
Arasteh (Arasteh et al., 2022) 2022 H
Arasteh (Arasteh, 2022) 2022 C
Arasteh (Arasteh et al., 2022) 2022 P
Arasteh (Arasteh et al., 2020) 2022 w
Korn (Korn et al., 1999) 1999 J
Kumari (Kumari et al., 2013) 2013 H
Chhabra (Chhabra, 2017) 2017 O
Chhabra (Chhabra, 2018) 2018 T
Arasteh (Arasteh et al., 2023) 2022 S

5

the strong element. The best value of LearnCount is determined
experimentally. In this study, the optimal value of LearnCount is
30% of the length of clustering array.
lgo

SO
ire
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A
wo
SO
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yp
bj
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an
Algorithm 2. The pseudocode of the learning operator in the
OOA.
1

rithm

based
fly bas
Climb
based
Arch

-GA b
based

A-GA b
rid Gr
os-bas
A-GA b
based
Rever
er-heu
ect Or
-Arch
d cat s
Function studentType Olampiyad_Learn(BestStd,

WorstStd)
2
 {
3
 nVar= length(Student_array);
4
 LearnCount=ceil((30 * nVar)/100); %imitation

count
5
 count=0;
6
 i = 0;
7
 NewStd=WorstStd;
8
 while (count<=LearnCount and i < nVar)
9
 {
10
 aL=randi(nVar);
11
 if (WorstStd(aL)!=BestStd(aL))
12
 {
13
 NewStd(aL)=BestStd(aL);
14
 count=count+1;
15
 }
16
 {i = i + 1;
17
 }
Return(NewStd);
}

3.2. Adapting the olympiad algorithm to SMC problem

3.2.1. Problem specification
In the second phase of this study, the proposed innovative algo-

rithm (OOA) was used to solve the SMC problem. The recom-
mended OOA uses the MDG of the program source code to
arrange related modules together. As a result, the OOA’s input is
the MDGs of the benchmark source code. Fig. 4 depicts the MDG
extracted from the source code. The nodes depict the software
modules, while the edges reflect the connections between them
(calls, inheritance, and association). Fig. 4 displays the software
product’s six components as well as the related dependency
Type Fitness Function

Method Single-objective
ed Method Single-objective
ing based Method Single-objective
Tool Single-objective
ive Genetic based Method Multi-objective
ased Method Single-objective
Method Single-objective
ased Method Single-objective
ay Wolf based Method Hybrid Single Objective
ed Metaheuristic Method chaos-based Single Objective
ased Method Multi-objective
and Multi objective based tool Multi-objective
se Engineering Tool Single Objective
ristic Method Multi-objective

iented Method Multi-objective
ive ACO based Method Multi-objective
warm based Method Single-objective



Fig. 1. The proposed OOA workflow.
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matrix. The values of the matrix elements represent the module
linkages. The MDG is used to generate the dependency matrix. Dif-
ferent programming environments, such as visual studio, visual
studio code, and eclipse, may produce the MDG of a source code
6

automatically. The graphviz libraries can be used to convert the
MDG text file to the visual graph model (Jalali et al., 2013).

Each student in the SMC issue is represented by a numeric array
(clustering array). Fig. 5 depicts a student’s structure in the SMC



Fig. 2. The first step of the proposed learning algorithm.

Fig. 3. The learner team’s students learn from the adjacent team’s students.
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problem as well as the associated clustered MDG. The array’s
length equals the number of modules in the program source code.
The indices denote the module number, and the value of each
index in the clustering array represents the SMC method’s cluster
allocation. As seen in Fig. 5, the clustering array was designed to
cluster a program source code with 22 modules; hence, it has 22
cells. In terms of module dependencies in the relevant source code,
7

modules M1, M14, M18, and M22 were all grouped (cluster 1).
Cluster 2 of the clustered MDGs depicted in Fig. 5 comprises M2,
M13, M16, and M21. The SMC approaches attempt to organize
the modules that are the most comparable and connected into
the same cluster. As a result, any change to the code of a cluster
module will most likely affect the other modules in the same clus-
ter. This finding assists the program developer in managing the
impact propagation when updating a module’s source code.

3.2.2. Objective function
As a quality criterion, the modularization quality (MQ) was

used to direct the population via the suggested method. This crite-
rion is used by the OOA algorithm to guide its search for the finest
software clusters. This criterion was introduced by Mancoridis
et al. as a measure of clustering quality (Prajapati and Chhabra,
2018). High cohesion (internal connection) and low coupling char-
acterize high-quality clusters (external connection). Because clus-
ter modules are densely connected, a cluster with significant
cohesion (internal connection) suggests an effective clustering
design. Eq. (2) depicts the approach for determining the clustering
quality (MQ) for cluster k. In Eq. (2), the variable i represents the
number of internal connections (coupling) and variable j repre-
sents the number of exterior connections (cohesion) for a given
cluster. The overall quality of all clusters formed is calculated using
Eq. (3); in this equation, m denotes the number of clusters. MFk
indicates the modularization factor for cluster k. MQ indicates
the sum of MF for all created clusters. The MQ function depicts
the trade-off between intra-connectivity and interconnectivity
(coupling). This function assesses clustering quality by optimizing
coupling and cohesion. Individual module cohesiveness within a
cluster must be strengthened. The higher the MQ, the higher clus-
tering quality. If the coupling is regarded undesirable, the ‘‘opti-
mal” system would be a single cluster that housed all modules.
As a result, there must be a balance between coupling and
cohesion.

MFk ¼
0ifi ¼ 0
i

iþ1
2j
ifi > 0

(
ð2Þ

MQ ¼
Xm
k¼1

MFk ð3Þ
4. Experiments and results

4.1. Experiment platform

To evaluate the performance of the recommended OOA, a signif-
icant number of tests were run on the developed platform in
MATLAB. The proposed technique, as well as the GA, PSO, PSO-
GA, Cuckoo optimization algorithm (COA), Sand cat swarm algo-
rithm (SCSO), and GWO, were developed and implemented in
MATLAB in the same software platform. The calibration parameters
of GA, PSO, PSO-GA, COA, SCSO, GWO, and OOA were adapted dur-
ing the tests in this study. The optimal values for these parameters
were determined during the experiments and are shown in Table 2.
To achieve valid results, all the experiments were run on the same
hardware platform, same software platform and under equal con-
ditions. Ten conventional and actual benchmark MDGs were
employed in the tests.

Table 3 displays the specifications of the benchmark MDGs
(datasets). Each benchmark MDG indicates the modules depen-
dency graph of a real-world program. Each MDG is a text represen-
tation of the call graph of the related real-world program. The
MDGs were automatically extracted from the source code by



Fig. 4. The MDG and the dependency matrix of a software product with six modules and their relations.

Fig. 5. The structure of a student in OOA is used to cluster a program with twenty-two modules into five clusters.
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different programing IDEs (such as Visual Studio). The MDGs are
simply converted to the adjacency matrix by the developed code
in this study. The proposed OOA takes the adjacency matrix
(shown in Fig. 4) of a MDG, as input, and finds its best clustering
model. The number of rows and columns of the matrix is equal
to the number of modules of the related program. The input of
the proposed method is a matrix (shown in Fig. 4) and its out is
in the form of a linear array (shown in Fig. 5). The benchmark pro-
grams were chosen to reflect real-world complexity in terms of
nodes and connections (edges) between modules. The MDG of
the mtunis benchmark (as a small benchmark) utilized in the
8

research is depicted in Fig. 6. This software is made up of 20 mod-
ules linked together by 57 connections. The modules that are the
most closely related have been grouped. The fitness function deter-
mines how comparable the modules in this study are (Eequation
3). The proposed technique seeks to group modules that are most
similar into the same cluster. Fig. 6 demonstrates that the modu-
larization quality (MQ), cohesiveness, and coupling are 1.858, 36,
and 21 correspondingly. The higher the MQ criterion, the greater
the clustering quality.

In this study, the graph (MDG) is generated automatically and
directly from the source code using the programing platforms tools



Table 2
Parameters of SMC algorithms that have been adjusted experimentally.

Algorithms Parameters Value

Genetic Algorithm(GA) Number of chromosomes 40
Length of chromosome Depends to the number of modules
Rate of Ccossover 0.8
Rate of mutation 0.05
Number of iterations 100

Gray Wolf Algorithm
(GWA)

Number of wolves 50
a Random value from [0, 2]
C Determined by GWO movement relations
A Determined by GWO movement relations
r1, r2 [0–1]

Particle Swarm Optimization Algorithm (PSO) Number of particles 40
Inertia Weight 0.8
Inertia Weight Damping Ratio 0.99
Particle.C1 and Particle.C2 [1.5, 1.7]
Number of iterations 100

(SCSO) Number of Cats 40
Sensitivity range (rG) [0, 2]
Phases control range (R) [-2rG, 2rG]
Pc 0.8
Pm 0.04

(COA) Number of Nests 40
Lavy Distribution Parameter 1.5
Step Length 0.01
Number of iterations 100

Olympiad Optimization Algorithm(OOA) Number of students 40
Number of teams 10
Size of teams 4
Learning rate Random values between [0.2–0.8]
Imitation count 1
Number of iterations 100

Table 3
The specifications of the programs as benchmarks.

Programs # Modules # Connections among modules Size

mtunis 20 57 Small
spdb 22 16 Small
ispell 24 97 Small
Rcs 29 155 Mid
bison 37 117 Mid
Cia 38 216 Large
Dot 42 248 Large
Php 62 163 Large
Grappa 86 252 Large
Incle 174 360 Large
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and libraries. Each node of MDG indicates a module in the program
source code and each edge represents the connection among the
nodes (call or data access). In MDG, the number of nudes and edges
are deterministic; in this graph, |N| represents the number of nodes
and |E| the number of edges. In the MDG (as deterministic graph)
an edge between two vertices denotes a certain link in the corre-
sponding source code and a node denotes a certain module in
the corresponding source code. In contrast, in the SMC problem,
the belonging of program modules to a program function (cluster)
is an uncertain phenomenon. A module may play a role in different
functions of the program with different probabilities. It means that
a module does not definitely belong to a cluster. Hence, the created
clusters are considered as an uncertain outcome due to the internal
uncertainty of a module belonging to a cluster.

Many assessment factors were investigated during the tests.
MQ is the fundamental performance criterion for SMC techniques.
The MQ value is used to assess the quality of SMC-generated clus-
ters. SMC methods all seek clusters with the highest MQ. Eq. (2) is
used to calculate the MQ of a produced cluster for an MDG. Clus-
ters with reduced coupling and more cohesiveness have higher
9

MQ. Empirical evidence is used to determine the best number of
clusters. Convergence speed was another performance factor that
was examined. The speed of convergence is proportional to the
time it takes an SMC approach to determine the best grouping.
The success rate is another performance criterion for SMC algo-
rithms. The success rate of an SMC technique in determining the
best clusters is revealed. To do this, each SMC technique was run
ten times upon every benchmark program. The success rate is cal-
culated by dividing the number of times the SMC technique finds
the optimal solution by ten. In SMC approaches, stability is also
examined as a reliability criterion. SMC approaches employ several
heuristic algorithms. To assess the method’s stability, the standard
deviation (STDV) of the results produced from numerous SMC algo-
rithm executions is employed. The lower the STDV number, the
higher the system’s stability.
4.2. Results

The suggested technique was tested using 10 different bench-
mark applications. The MQ criterion was used to assess the clusters
of the proposed strategy. The MQ of the clusters generated by each
MDG program is shown in Tables 4, 5, and 6. For each benchmark,
the approaches were run ten times. One of the critical parameters
in the SMC issue is the number of clusters in each benchmark.
Experimentation is used to find the optimal cluster number. The
number of clusters is influenced by several parameters, such as
the number of modules, and the connection between the modules.
As a result, empirical evidence is necessary. As shown in Tables 4,
5, And 6, the OOA was tested on each benchmark with a different
number of clusters. The findings of the other six algorithms (GA,
PSO, PSO-GA, SCSO, COA, and GWA) were studied and compared
to those of the OOA. The approaches were compared in the SMC
issue in terms of best MQ, average MQ, convergence speed, success



Fig. 6. The clustered MDG of the mtunis software with 20 modules and 57 relations among the modules.

Table 4
The generated clusters’ MQ for mtunis, SPDB, ispell and rcs by different SMC algorithms.

Benchmark Mtunis SPDB ispell rcs
Num. of Cluster 2 3 5 2 3 5 3 5 7 3 4 5

Runs Number 1 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9369 2.1851 2.499 1.7454 1.8980 2.1499
2 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9117 2.1943 2.2747 1.7454 1.8900 2.1420
3 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9369 2.1851 2.2753 1.7454 1.8980 2.1233
4 1.5788 2.0810 2.3145 2.0000 3.0000 5.0000 1.9369 2.1769 2.2922 1.7454 1.8980 2.1492
5 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9369 2.1943 2.2675 1.7454 1.8980 2.0958
6 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9163 2.1943 2.2747 1.7454 1.8980 2.1256
7 1.5788 2.0579 2.3145 2.0000 3.0000 5.0000 1.9369 2.1943 2.2805 1.7454 1.8980 2.1413
8 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9369 2.2021 2.2922 1.7454 1.8900 2.1233
9 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9369 2.2021 2.2675 1.7454 1.8980 2.1492
10 1.5788 2.1248 2.3145 2.0000 3.0000 5.0000 1.9369 2.2021 2.2825 1.7454 1.8980 2.1393
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rate, and stability. Figs. 7, 8, and 9 demonstrate the MQ of the clus-
ters formed by different SMC methods for different datasets. On
each benchmark dataset, each method was run twenty times.
Fig. 7 depicts the MQ values achieved by several SMC methods
for the benchmarks mtunis, spdb, ispell, and rcs. In the manuscript,
the term cost refers to the fitness (MQ) of the solution created the
SMC algorithms; the fitness (MQ) is calculated by Eqs. (2) and (3).
10
Mtunis is a tiny MDG with 30 modules and 57 connections
between them. In this benchmark, all SMC methods perform simi-
larly. Except for COA, all methods converge to optimum solutions
(clusters with optimal MQ) in the first iteration. Spdb is another lit-
tle MDG used to assess the performance of the SMC algorithms.
This benchmark contains 21 modules and 16 connections between
them. Fig. 7 shows that OOA and SCSO outperform the other



Table 5
The generated clusters’ MQ for Bison, cia, Dot and php by different SMC algorithms.

Benchmark Bison cia Dot php

Num. of Cluster 4 6 8 4 6 8 5 8 10 5 8 10

Runs Number 1 2.1681 2.5344 2.6554 2.0274 2.3909 2.6344 2.0126 2.3694 2.5387 2.6302 3.6659 5.9414
2 2.1681 2.5344 2.6534 2.0130 2.3102 2.5996 2.0126 2.3759 2.5643 2.8772 3.7034 5.7947
3 2.1574 2.5344 2.6518 2.0860 2.3986 2.5660 2.0840 2.3786 2.5575 2.8615 3.6752 5.9175
4 2.1497 2.5344 2.6539 2.0322 2.3696 2.6344 2.0113 2.4056 2.5169 2.6848 3.6254 5.4259
5 2.1574 2.5344 2.6434 2.0322 2.3722 2.6344 2.0840 2.3103 2.5162 2.7567 3.6806 5.8425
6 2.1427 2.5344 2.6539 2.0130 2.3696 2.6344 2.0023 2.3236 2.5120 2.8772 3.6065 6.0000
7 2.168 2.5344 2.6052 2.0130 2.3888 2.4690 2.0451 2.42932 2.4823 2.7774 3.7072 5.8880
8 2.1367 2.5344 2.6539 2.0860 2.3716 2.5431 2.0559 2.4006 2.4580 2.8632 3.6603 5.8126
9 2.1380 2.5344 2.6539 2.0322 2.3179 2.5045 2.0024 2.3525 2.5393 2.4931 3.6965 5.7963
10 2.1467 2.5344 2.6554 2.0861 2.3722 2.5565 2.0752 2.3189 2.4476 2.7890 3.6662 5.8875

Table 6
The generated clusters’ MQ for grappa and Incle by different SMC algorithms.

Benchmark grappa Incle
Num. of Cluster 6 9 12 6 9 12

Runs Number 1 3.8679 5.9414 8.7495 4.5038 5.5619 7.0074
2 3.9232 5.7947 8.2371 4.2762 5.9407 7.3179
3 3.8737 5.9175 8.4581 4.3794 5.8205 6.9797
4 3.9048 5.4259 8.7945 4.0651 6.0689 7.2736
5 4.0000 5.8425 8.6803 4.4647 5.6535 6.9109
6 3.8412 6.0000 8.4771 4.2762 6.0140 7.2584
7 3.9263 5.8880 8.4657 4.2281 5.9131 7.1733
8 3.8232 5.8126 8.5986 4.2223 6.1532 6.9856
9 3.8309 5.7963 8.4657 4.4358 5.9605 7.6701
10 3.9210 5.8875 8.6979 4.9295 5.7104 7.5419

Fig. 7. The MQs of different SMC algorithms for mtunis, spdb, ispell and rcs MDGs.
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algorithms in terms of MQ and success rate. In the spdb bench-
mark, the rate of success by the OOA and SCSO is close to 100%.
Ispell is the other midsize benchmark that is used as a standard
SMC benchmark. This MDG includes 24 modules and 97 connec-
tions. In this benchmark, OOA is considerably superior to the other
SMC algorithms. The minimum and maximum values of MQ
11
obtained by OOA for spell are respectively 2.267 and 2.4990.
Whereas the best MQ values provided by the other algorithm are
lower than the worst value of OOA. Rcs is the other benchmark
MDG that consists of 29 modules and 155 connections (edges).
As shown in Fig. 7, OOA outperforms the other SMC algorithms
according to the MQ.



Fig. 8. The MQs of the different SMC algorithms for bison, cia, dot and php MDGs.

Fig. 9. The MQs of the different SMC algorithms for grappa, and incle MDGs.
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Fig. 8 illustrates the performance of the SMC algorithms on the
bison, cia, dot, and php benchmarks. bison, as the other MDG
benchmark, includes 37 modules and 167 connections. OOA is con-
siderably superior to the other SMC algorithms. In this benchmark,
the provided MQ by the OOA is 2.6554 which is higher than the
other algorithms. In this benchmark, GWA is the most efficient
SMC algorithm. The other benchmark (cia) consists of 38 modules
and 166 connections among the modules. The MQ of the generated
clusters for the cia MDG is 2.6345. The worst MQ obtained during
10 executions is about 2.4691. Another benchmark is dot which
includes 42 modules and 248 connections. Like the other bench-
marks, OOA considerably outperforms the other algorithms. The
average value of MQ after 10 times executions is 2.5133. One of
the large benchmarks that have been used in the experiments is
php; this MDG includes 62 modules and 163 connections. As
shown in Fig. 8, OOA has considerably higher performance in the
large benchmarks. The MQ of the generated clusters by OOA in
the best case is 4.1904 which is considerably higher than the MQ
12
of the other algorithm. After OOA, GWO could generate the highest
MQ (37591). The other benchmark used for the evaluation of the
OOA is grappa which includes 86 modules and 295 connections
among the modules. Like the other MDG, OOA has outstanding per-
formance in the grappas benchmark. The obtained MQ by the OOA
is about 1.7 times the MQ obtained by the GWO. As showsn in
Fig. 9, incle as the other benchmark MDG was used to evaluate
the SMC algorithms. This MDG consists of 164 modules and 360
connections. In this benchmark, OOA generated the optimal clus-
ters with the highest MQ.

Fig. 10 shows the average MQ obtained by the six SMC algo-
rithms along with the MQ of the OOA. To evaluate the average
MQ, each algorithm was executed ten times on each dataset
(MDG). The clusters generated for the modules of the small soft-
ware products by all SMC algorithms have similar quality (MQ).
As shown in Fig. 10, in the mtunis and rcs benchmarks, all the algo-
rithms generate the same quality clusters. Analysis of the results
indicates that the generated clusters with the same MQ may be



Fig. 10. The average MQ obtained by ten executions of different algorithms for ten benchmark programs.
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slightly different. Determination of the best-clustered model (as a
design model) from the generated clusters with the same MQ is
one of the challenging problems of software engineering. The aver-
age MQ values computed from 10 executions show that OOA out-
performs the other techniques. The difference in average MQ
between the OOA and other methods is significant, especially in
big benchmarks. The suggested OOA may be used to construct
the structural model from real-world software with a significant
number of code lines. Regarding the results of experiments, in all
benchmarks, OOA generates more high-quality structural models
than the other six algorithms.

Reliability of the results generated by the heuristic algorithms
(as indeterministic algorithms) is the other performance criterion
that should be considered into account. The heuristic algorithm
with higher MQ may generate low-quality clusters in most cases.
Hence, the standard deviation (STDV) among the generated results
during different executions should be taken into consideration. To
this end, the STDV of the MQs obtained from ten executions of each
algorithm were calculated and shown in Fig. 11. In most bench-
marks (except for incle), the STDV among the generated results
of OOA is lower than the other six algorithms. The lower the STDV,
the higher the reliability of the algorithm. The STADV of the results
obtained by GA, PSO, PSO-GA, SCSO, COA, GWO, and OOA are
respectively 0.07839, 0.07678, 0.11536, 0.09159, 0.08013, 0.1027
and 0.0752. As shown the STDV of the OOA is lower than the other
algorithms. Generating high-quality clustered models and higher
Fig. 11. The standard deviation among the MQs generate
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reliability (lower STDV) are the main merits of the OOA in SMC
problem.

Table 7 displays the best MQ produced by various SMCmethods
across 10 runs. As seen in Table 7, OOA produces the best MQ
across all benchmarks. Indeed, the OOA’s performance in the
SMC problem is independent of the number of MDGs. Indeed, the
best MQ of the OOA is greater than the other methods in all bench-
marks. In the SMC problem, OOA is an essentially discrete algo-
rithm that outperforms the other discretized algorithms (PSO,
SCSO, COA, and GWO) (as a discrete problem). The OOA-derived
structural models are of greater quality (higher cohesion and lower
coupling) than the models created by the other SMC methods.
Table 8 demonstrates the worst-case performance of the SMC algo-
rithms. The worst MQ of each algorithm from the generated MQs
during ten executions is shown in Table 8 Except for dot bench-
mark in all benchmarks the MQ of the OOA is superior to the other
algorithms. In all benchmarks (except for dot benchmark), the per-
formance of OOA in the best, worst, and average modes is more
than other algorithms.

The next experiments have been carried out to compare the
performance of the OOA with the existing SMC tools. Bunch
(Prajapati and Chhabra, 2018) and Savalan (Zadahmad et al.,
2011) have been selected as the automatic SMC tools to compare
with the OOA. Bunch uses GA and HC to cluster the modules of
software; it takes the matrix of MDG as input and generates the
clustered model by the selected algorithm (GA or HC). Savalan is
d from ten times executions of different algorithms.



Table 7
The MQ of different SMC algorithms for different benchmarks in the best cases during ten executions.

mtunis spdb ispell Rcs bison Cia Dot Php Grappa Incle AVG

GA 2.3140 5,0000 2.1774 2.1430 2.4135 2.5180 2.4060 3.3764 3.9930 3.6666 3.0007
PSO 2.3140 4.8300 2.1899 2.1523 2.4808 2.5160 2.4410 3.6097 4.6810 3.9411 3.1155
PSO-GA 2.3140 5,0000 2.2491 2.1420 2.4752 2.5590 2.4830 3.7310 4.6769 4.3889 3.2019
SCSO 2.3140 5,0000 2.1899 2.1708 2.4982 2.5000 2.4950 3.7083 5.1012 4.2540 3.2231
COA 2.3140 4.8300 2.1899 2.1549 2.4099 2.5182 2.6041 3.5759 4.6815 4.0731 3.1351
GWO 2.3140 5,0000 2.1899 2.1499 2.5284 2.5594 2.4836 3.7591 5.1012 4.3889 3.2474
OOA 2.3140 5,0000 2.4990 2.1499 2.6554 2.6345 2.5644 4.1904 8.7945 7.6701 4.0472
Best Alg. All Except for PSO, COA OOA COA OOA OOA COA, OOA OOA OOA OOA OOA
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the other web base automatic tool that was developed in JavaScript
programing language. Savalan takes the MDG file and automati-
cally generates the adjacency matrix; then clusters the software
modules using multi-objective GA. Savalan generates the more
practical output in the form of a clustered graph. The output of
the Savalan is more understandable by the software developers.
The output of the Savalan is a structural model of the input source
code. The MQ of the generated models by Bunch, Savalan, and OOA
was compared with each other. As shown in Fig. 12, in 80% of the
benchmarks, OOA has a higher MQ value. In the php and grappa
benchmarks, Savalan is superior to Bunch and OOA. The average
MQ of the Bunch, Savalan, and OOA are 3.1904, 6.1977, and
6.3634 respectively. Indeed, the average performance of the OOA
is higher than that of Bunch and Savalan. OOA can generate more
effective and understandable structural models that can be used
by software developers during the maintenance phase.

The other performance criterion of the heuristic algorithms in
optimization problems is their convergence speed. The conver-
gence speed is one of the important criteria that have been used
Table 8
The MQ of different SMC algorithms for different benchmarks in the worst cases during t

mtunis spdb ispell Rcs bison

GA 2.3140 4.7410 2.1516 2.0882 2.2680
PSO 2.3140 4.7410 2.1512 2.0653 2.2986
PSO-GA 2.3140 3.8045 2.1024 1.9963 2.2602
SCSO 2.3140 5.0000 2.0548 2.0966 2.2580
COA 2.0579 4.7412 2.1627 2.1237 2.2633
GWO 2.3140 3.8045 2.1024 2.0958 2.2602
OOA 2.3140 5.0000 2.2675 2.0966 2.6052
Best Alg. All SCSO, OOA OOA SCSO, OOA OOA

Fig. 12. Comparing the performance of the OOA with t
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to evaluate the performance of all heuristic algorithms in finding
the optimal solution of an optimization problem. In Fig. 13, the
x-axis indicates the number of repetitions of the algorithm and
the y-axis indicates the fitness of the answer obtained from the
algorithm. An effective algorithm obtains the best answer in the
least repetition. An algorithm may fall into local optimality and
cannot make progress in calculating the optimal solution. The abil-
ity of a heuristic algorithm to converge to the optimal solution is
one of the evaluation criteria. Fig. 13 shows the convergence of
the swarm-based and efficient algorithms (PSO, GWO, and OOA)
for the small MDGs. Approximately, in the mtunis, spdb, and rcs
all algorithms have the same performance in terms of MQ. In the
ispell benchmark, the OOA converges to the higher MQ; indeed,
in the ispell benchmark, the generated clustered model by the
OOA has higher modularization quality. Overall, the performance
of the proposed method in the worst case is equal to the perfor-
mance of the PSO and GWO in the small program. Fig. 14 shows
the convergence of the PSO, GWO, and OOA in the larger bench-
mark MDGs. As explained in Table 2 the used MDGs are related
en executions.

Cia Dot Php Grappa Incle AVG

2.3000 2.1934 3.1161 3.3965 3.029 2.75978
2.3000 2.3281 3.1367 3.8985 3.519 2.875242
2.3720 2.3871 3.1963 4.1747 3.748 2.83555
2.2720 2.5771 3.1577 4.5456 3.6061 2.98819
2.3252 2.2970 3.1897 3.5570 3.6841 2.84018
2.3965 2.2859 3.4512 4.5945 4.0677 2.93727
2.4910 2.4476 4.0307 8.2371 6.9109 3.83998
OOA SCSO, OOA OOA OOA OOA OOA

he single-objective and multi-objective SMC tools.



Fig. 13. Comparing the convergence speed of the PSO, GWO and OOA as three efficient swarm-based Algorithms for mtunis, spdb, ispell and rcs.
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to real-world software products. In the bison benchmark, the OOA
provides optimal solutions (structural models) sooner than the
other algorithms. in this benchmark, the OOA attains the optimal
MQ in the 41st iteration. GWO is one of the effective continuous
heuristic algorithms in many of the optimization problems; but,
has lower performance in the SMC problem. Similar results have
Fig. 14. Comparing the convergence speed of the PSO, GWO, and OOA as
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been obtained in the cia benchmark. In this benchmark, the OOA
converges to the optimal solution before iteration 45. Whereas
the PSO and GWO never attain the solution generated by OOA.
The other hard-to-understand benchmark is dot. This benchmark
includes 248 connections among 42 modules. The source code
and MDG of this program are hard to understand and consequently
three efficient swarm-based Algorithms for bison, cia, dot and php.



Fig. 15. Comparing the convergence speed of the PSO, GWO and OOA as three efficient swarm-based Algorithms for grappa and incle.

Table 9
The MQ and standard deviation of the generated clusters for the MDGs by the SMC Algorithms.

PSO PSO-GA SCSO COA GWO OOA

MQ STDV MQ STDV MQ STDV MQ STDV MQ STDV MQ STDV
mtunis 2.3140 0.0000 2.3140 0.0000 2.3140 0.1082 2.3140 0.0000 2.3140 0.0000 2.3140 0.0000
Spdb 4.7744 0.0330 4.6180 0.3870 5.0000 0.0000 4.7844 0.0314 4.6170 0.3870 5.0000 0.0000
ispell 2.1690 0.0111 2.1660 0.0603 2.1520 0.0400 2.1800 0.0100 2.1500 0.258 2.3000 0.0702
rcs 2.1170 0.0231 2.0900 0.0910 2.1260 0.0215 2.1380 0.0129 2.1350 0.0165 2.1340 0.0171
bison 2.3640 0.0500 2.3300 0.0546 2.39.5 0.0871 2.3213 0.0483 2.4357 0.0814 2.6480 0.0154
cia 2.4026 0.0682 2.4639 0.0294 2.4106 0.0669 2.4108 0.0661 2.4735 0.0452 2.5777 0.0599
dot 2.4009 0.0370 2.4461 0.1527 2.3949 0.0672 2.4158 0.0813 2.4167 0.0617 2.5133 0.398
php 3.4232 0.1507 3.5141 0.1391 3.4743 0.1513 3.4013 0.1099 3.6171 0.1022 4.1184 0.050
grappa 4.2498 0.2580 4.4001 0.2023 4.8431 0.1874 4.2284 0.3109 4.8535 0.2080 8.5625 0.1716
incle 3.7151 0.1367 4.0812 0.2023 3.9690 0.1863 3.8288 0.1305 4.1925 0.0992 7.2119 0.2528
AVG 2.99.0 0.0767 3.0423 0.1153 3.1074 0.0915 3.0022 0.0801 3.1205 0.1027 3.9379 0.6768
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hard to modify. OOA generates the optimal clustered model for this
benchmark before iteration 75. Regarding the results of conducted
experiments, oneد of the algorithms can solve the proposed
algorithm (OOA). The results of experiments on the php MDG indi-
cate the superiority of the OOA over the other algorithms in terms
of convergence. The MDGs of grappa and incle are the most com-
plex benchmark used in this study. As shown in Fig. 15, the results
obtained by OOA have considerably higher MQ than the generated
models by the other algorithms.

Table 9 shows the provided MQ by different SMC algorithms
and the related standard deviation. The suggested OOA is inher-
ently discrete optimization algorithm that solves the problem in
divide-and-conquer form. In this algorithm, the population is
divided into subpopulations (teams) and a specific local search
(learn) operator was carried out into the created teams. In global
search, the individuals (students) imitate (learn) from the individ-
uals of the best team. In each iteration, the global best team’s stu-
dents are the best individuals of the whole populations. The learn
operator is performed among the students of the best team. At the
end of each iteration, the conquer operator combines the local best
students and a more elite population is produced. Hence, the
knowledge (fitness) of the best students transfers to the other stu-
dents like the bubble. Indeed, the bubble transmits knowledge
among the population. Furthermore, the knowledge of the best
students is improving by the global learn operator. The local and
global learn navigates the population to the optimal solutions.
Regarding the structure of the OOA, the steps of the algorithm
are parallelizable. The design and implementation of the parallel
OOA (POOA) is considered as the future study. In the SMC problem,
as a discrete and graph-based optimization problem, OOA is con-
siderably superior to other effective heuristic algorithms like
GWO. PSO, PSO-GA, COA and SCSO. Hence, solving the other dis-
16
crete graph-based optimization problems in different fields of
science and industry is the other future study.
5. Conclusions

A sophisticated software system’s source code may not always
show its structure. Among the most difficult tasks in software engi-
neering is identifying the impacted code parts of a source code
throughout the maintenance process. By making it easier to under-
stand how a program is put together, clustering the modules can
reduce maintenance expenses. The study’s purpose was to develop
clustered structural models that surpassed previous techniques in
terms of cohesion, coupling, and MQ value. OOA was introduced as
an evolutionary discrete method for creating the clustered design
model of a source code program. As benchmark programs, all small
and large software applications were chosen. Six alternative clus-
tering algorithms were created in tandem with the OOA to test
their performance. The suggested OOA, as an intrinsic discrete
and divide-and-conquer-based algorithm, uses local and global
search operators to explore the solution space (the potential com-
binations of the modules clustering). In the OOA, the population
was separated into subpopulations (teams) and then united with
the subpopulations’ selected solutions. The best individuals (stu-
dents) of the created teams navigate the search process. The OOA
avoids the local optimum explicitly and makes a compromise
between cohesiveness and coupling. Extensive experiments were
conducted utilizing ten distinct software source codes. OOA out-
performed other algorithms (GA, PSO, PSO-GA, SCSO, COA, and
GWO) in general, especially in big software projects in terms of
MQ, cohesion, coupling, and stability. One of the future research
projects that has been recommended is to build the algorithms
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in a way that is independent of the size of the software product.
The impact of chaotic equations on OOA effectiveness may be stud-
ied further. Incorporating different swarm and evolution-based
tactics into the SMC problem may yield optimal outcomes. It is
suggested that future research on improving the fitness function
to account for new software metrics be conducted. Even though
global modules have been used as universal criteria in a recent
study, they are not included in MQ. Global modules receive calls
from more than two independent modules but do not make any
calls themselves. Solving the other discrete graph-based optimiza-
tion problems in different fields of science and industry is the other
future study. Finally, the optimization methods proposed in
(Arasteh et al., 2014; Keshtgar and Arasteh, 2017; Zadahmad
et al., 2011; Bouyer et al., 2007; Arasteh et al., 2023; Jalali et al.,
2013; Ghaemi and Arasteh, 2020; Arasteh et al., 2020; Tutsoy,
2022) can be investigated in SMC techniques.
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