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ON POWER SERIES SUBSPACES OF CERTAIN NUCLEAR
FRÉCHET SPACES

NAZLI DOĞAN

Abstract. The diametral dimension, ∆(E), and the approximate di-
ametral dimension, δ(E) of an element E of a large class of nuclear
Fréchet spaces are set theoretically between the corresponding invari-
ant of power series spaces Λ1(ε) and Λ∞(ε) for some exponent sequence
ε. Aytuna et al., [2], proved that E contains a complemented subspace
which is isomorphic to Λ∞(ε) provided ∆(E) = ∆(Λ∞(ε)) and ε is sta-
ble. In this article, we will consider the other extreme case and we proved
that in this large family, there exist nuclear Fréchet spaces, even regular
nuclear Köthe spaces, satisfying ∆(E) = ∆(Λ1(ε)) such that there is no
subspace of E which is isomorphic to Λ1(ε).

1. Introduction

Fréchet spaces are one of the leading class of locally convex spaces and

include most of the important examples of non-normable locally convex

spaces. Power series spaces constitute a well studied class in the theory of

Fréchet spaces. Subspaces and quotient spaces of a nuclear stable power se-

ries space are characterized by Vogt and Wagner ([15], [17], [18]) in terms of

diametral dimension and DN-Ω type linear-topological invariants. The topo-

logical invariants DN and Ω are enjoyed by many natural nuclear Fréchet

spaces appearing in analysis and these invariants play an important role in

this study.

Let E be a nuclear Fréchet space which satisfies DN and Ω. Then it

is a known fact that the diametral dimension ∆(E) and the approximate

diametral dimension δ(E) of E are set theoretically between corresponding

invariant of power series spaces Λ1(ε) and Λ∞ (ε) for some specific exponent

sequence ε. The sequence ε is called associated exponent sequence of E. In

[2], Aytuna et al. proved that a nuclear Fréchet space E with the properties

DN and Ω contains a complemented copy of Λ∞ (ε) provided the diametral

dimensions of E and Λ∞ (ε) are equal and ε is stable. In this article, we deal

with the other extreme, namely, the main question in this article is:
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Question 1.1. Let E be a nuclear Fréchet space with the properties DN and

Ω and ε be the associated exponent sequence of E. Is there a (complemented)

subspace of E which is isomorphic to Λ1(ε) if ∆(E) = ∆ (Λ1 (ε))?

This problem led us to examine the relationship between the diametral

dimension and the other invariants. The most appropriate topological in-

variants for comparison with the diametral dimension is the approximate

diametral dimension. Then, we ask the following question:

Question 1.2. Let E be a nuclear Fréchet space with the properties DN

and Ω. If diametral dimension of E coincides with that of a power series

space, then does this imply that the approximate diametral dimension also

do the same and vice versa?

In [5], we showed that Question 1.2 has an affirmative answer when

power series space is of infinite type. Then we searched an answer for the

Question 1.2 in the finite type case and, in this regard, we first proved that

the condition δ (E) = δ (Λ1 (ε)) always implies ∆(E) = ∆ (Λ1 (ε)). We also

constructed some sufficient conditions to prove the other direction. It turns

out that the existence of a prominent bounded subset in the nuclear Fréchet

space E plays a decisive role for the answer of Question 1.2. In [5, Theorem

4.8], we proved that δ (E) = δ (Λ1 (ε)) if and only if E has a prominent

bounded set and ∆(E) = ∆(Λ1 (ε)).

In this article, after giving some preliminary materials in Section 2, we

construct a family K of nuclear Köthe spaces K(ak,n) parametrized by a

sequence α satisfying the properties DN and Ω. First we show that for an

element of the family of K which is parameterized by a stable sequence

α, ∆(K(ak,n)) = ∆(Λ1(α)) and δ(K(ak,n)) = δ(Λ1(α)). Second, we prove

that for any element of the family of K which is parameterized by an un-

stable sequence α, ∆(K(ak,n)) = ∆(Λ1(ε)) and δ(K(ak,n)) 6= δ(Λ1(ε)) for

its associated exponent sequence ε. This show that the Question 1.2 has

a negative answer for power series space of finite type. Furthermore, we

prove in Theorem 4.1 that the first question has a negative answer, that

is, Λ1(ε) is not isomorphic to any subspace of these Köthe spaces K(ak,n),

let alone is isomorphic to a complemented subspace, though the condition

∆(K(ak,n)) = ∆(Λ1(ε)) is satisfied. Motivated by our finding in [5], we

compile some additional information, for instance, for any element E of the

family K parameterized by an unstable sequence,

1. E does not have a prominent bounded set.
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2. Although the equality ∆(E) = Λ1(ε) is satisfied and the canonical

imbedding from ∆(E) into Λ1(ε) has a closed graph, the canonical

imbedding from ∆(E) into Λ1(ε) is not continuous.

2. PRELIMINARIES

In this section, after establishing terminology and notation, we collect

some basic facts and definitions that are needed them in the sequel.

Throughout the article, E will denote a nuclear Fréchet space with an

increasing sequence of Hilbertian seminorms (‖.‖k)k∈N. For a Fréchet space

E, we will denote the class of all neighborhoods of zero in E and the class

of all bounded sets in E by U (E) and B (E), respectively. If U and V are

absolutely convex sets of E and U absorbs V , that is, V ⊆ CU for some

C > 0, and L is a subspace of E, then we set;

δ (V, U, L) = inf {t > 0 : V ⊆ tU + L} .

The nth Kolmogorov diameter of V with respect to U is defined as;

dn (V, U) = inf {δ (V, U, L) : dimL ≤ n} n = 0, 1, 2, ...

Let U1 ⊃ U2 ⊃ · · · ⊃ Up ⊃ · · · be a base of neighborhoods of zero of Fréchet

space E. The diametral dimension of E is defined as

∆(E) =
{

(tn)n∈N : ∀p ∈ N ∃ q > p lim
n→∞

tndn (Uq, Up) = 0
}

.

Demeulenaere et al. [4] showed that the diametral dimension of a nuclear

Fréchet space can also be represented as

∆(E) =

{

(tn)n∈N : ∀ p ∈ N ∃ q > p sup
n∈N

|tn| dn (Uq, Up) < +∞

}

.

The approximate diametral dimension of a Fréchet space E is defined as

δ (E) =

{

(tn)n∈N : ∃ U ∈ U (E) ∃ B ∈ B (E) lim
n→∞

tn
dn (B,U)

= 0

}

.

It follows from Proposition 6.6.5 of [11] that for a Fréchet space E with

the base of neighborhoods U1 ⊃ U2 ⊃ · · · ⊃ Up ⊃ · · · , the approximate

diametral dimension can be represented as;

δ (E) =

{

(tn)n∈N : ∃p ∈ N ∀ q > p lim
n→∞

tn
dn (Uq, Up)

= 0

}

.

The following proposition shows how the diametral dimension and the ap-

proximate diametral dimension passes into subspaces:

Proposition 2.1. Let E be a Fréchet space and F be a subspace or a qou-

tient of E. Then,

1. ∆(E) ⊆ ∆(F ).
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2. δ (F ) ⊆ δ (E).

Hence the diametral dimension and the approximate diametral dimension

are linear topological invariants.

Proof. [11, Proposition 6.6.7 and Proposition 6.6.25] �

A matrix (ak,n)k,n∈N of non-negative numbers is called a Köthe matrix if

it is satisfies that for each k ∈ N there exists an n ∈ N with ak,n > 0 and

ak,n ≤ ak,n+1 for all k, n ∈ N. For a Köthe matrix (ak,n)k,n∈N,

K (ak,n) =

{

x = (xn) : ‖x‖k :=

∞
∑

n=1

|xn| ak,n < +∞ for all k ∈ N

}

is called a Köthe space. Every Köthe space is a Fréchet space given by the

semi-norms in its definition. Nuclearity of a Köthe space was characterized

as follows:

Theorem 2.2. [Grothendieck-Pietsch] K (akn) is nuclear Köthe space if and

only if for every k ∈ N, there exists a l > k so that

∞
∑

n=1

ak,n
al,n

< +∞.

Proof. [8, Theorem 28.15]. �

Dynin-Mitiagin Theorem [8, Theorem 28.12] states that if a nuclear

Fréchet space E with the sequence of seminorms (‖.‖k)k∈N has a Schauder

basis (en)n∈N, then it is canonically isomorphic to a nuclear Köthe space de-

fined by the matrix (‖en‖k)k,n∈N. Therefore, it is important to understand

the structure of nuclear Köthe spaces in the theory of nuclear Fréchet spaces.

Terzioğlu gave an estimation for nth-Kolmogorov diameters of a Köthe

space K(ak,n) by using the matrix (ak,n)k,n∈N.

Proposition 2.3. Let K(ak,n) be a Köthe space and fixed n ∈ N. Assume

J ⊂ N with |J | = n + 1 and I ⊂ N with |I| ≤ n. Then for every p and

q > p,

inf

{

ap,i
aq,i

: i ∈ J

}

≤ dn(Uq, Up) ≤ sup

{

ap,i
aq,i

: i /∈ I

}

.

Proof. [12, Proposition 1]. �

Definition 2.4. A Köthe space K(ak,n) is called regular if the inequality
ak+1,n

ak,n
≤

ak+1,n+1

ak,n+1
is satisfied for all k, n ∈ N

Remark 2.5. In the light of the above proposition, we conclude that for any

regular Köthe space K (ap,n), the nth-Kolmogorov diameter is dn (Uq, Up) =
ap,n+1

aq,n+1
. If, on the other hand, K (ap,n) is not regular, then, one can find
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Kolmogorov diameters by rewriting the sequence

(

ap,n
aq,n

)

n∈N

with terms in a

descending order so that the nth-Kolmogorov diameter of K (ap,n) is nothing

but the n+ 1− th term of this descending sequence.

Power series spaces are the most important family of Köthe spaces and

they have a significant role in this work, for a comprehensive survey see [13].

Let α = (αn)n∈N be a non-negative increasing sequence with lim
n→∞

αn = +∞.

A power series space of finite type is defined by

Λ1 (α) :=

{

x = (xn)n∈N : ‖x‖k =

∞
∑

n=1

|xn| e
− 1

k
αn < +∞ for all k ∈ N

}

and a power series space of infinite type is defined by

Λ∞ (α) :=

{

x = (xn)n∈N : ‖x‖k =

∞
∑

n=1

|xn| e
kαn < +∞ for all k ∈ N

}

.

The nuclearity of a power series space of finite type Λ1 (α) and of infinite

type Λ∞ (α) are equivalent to the conditions lim
n→∞

ln(n)

αn

= 0 and sup
n∈N

ln(n)

αn

<

+∞, respectively.

Definition 2.6. An exponent sequence α is called finitely nuclear if Λ1(α)

is nuclear.

Diametral dimension and approximate diametral dimension of power series

spaces are ∆(Λ1 (α)) = Λ1 (α), ∆(Λ∞ (α)) = Λ∞ (α)′, δ (Λ1 (α)) = Λ1 (α)
′

and δ (Λ∞ (α)) = Λ∞ (α) for details see [3] and [9].

An exponent sequence α is called

stable if sup
n∈N

α2n

αn

< +∞,

weakly-stable if sup
n∈N

αn+1

αn

< +∞,

unstable if lim
n→∞

αn+1

αn

= +∞.

It follows that α is stable, respectively weakly-stable, if and only if E ∼=

E × E, respectively, E ∼= E × K where E = Λr(α) for r = 1 or r = ∞, for

proofs see [6].

Subspaces and quotient spaces of a nuclear stable power series space

are characterized by Vogt and Wagner ([15],[17], [18]) in terms of diame-

tral dimension and DN-Ω type linear-topological invariants. The topological

invariants DN and Ω are enjoyed by many natural nuclear Fréchet spaces

appearing in analysis and these invariants play an important role in this

study.
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Definition 2.7. A Fréchet space (E, ‖.‖k)k∈N is said to have the property:

(DN) ∃ k ∀ j ∃ l, C > 0, 0 < λ < 1

‖x‖j ≤ C ‖x‖λk ‖x‖1−λ

l ∀ x ∈ E

(Ω) ∀ p ∃ q ∀ k ∃ C > 0, 0 < τ < 1

‖y‖∗q ≤ C‖y‖∗p
1−θ

‖y‖∗k
θ

∀ y ∈ E
′

where ‖y‖∗k := sup {|y (x)| : ‖x‖k ≤ 1} ∈ R ∪ {+∞} is the gauge functional

of the polar U◦
k for Uk = {x ∈ E : ‖x‖k ≤ 1}.

In [16], D. Vogt characterized Ω for Köthe spaces in terms of Köthe matrix

as follows:

Proposition 2.8. A Köthe space K (ak,n) has the property Ω if and only if

the condition

∀ p ∃ q ∀ k ∃ j > 0, C > 0 (ap,n)
j ak,n ≤ C (aq,n)

j+1 ∀n ∈ N

is satisfied.

Proof. [16, Proposition 5.3]. �

By using the technique in [16, 5. 1 Proposition], one can easily obtain

the following:

Proposition 2.9. A Köthe space K (ak,n) has the property DN if and only

if the condition

∃ p0 ∀ p ∃ q ∃ 0 < λ < 1, C > 0 ap,n ≤ C (ap0,n)
λ (aq,n)

1−λ ∀n ∈ N

is satisfied.

Now we give the important result which gives a relation between the

diametral dimension/approximate diametral dimension of a nuclear Fréchet

spaces with the properties DN , Ω and that of a power series spaces Λ1 (ε)

and Λ∞ (ε) for some special exponent sequence ε.

Proposition 2.10. Let E be a nuclear Fréchet space with the properties

DN and Ω. There exists an exponent sequence (unique up to equivalence)

ε = (εn) satisfying:

(2.1) ∆(Λ1 (ε)) ⊆ ∆(E) ⊆ ∆(Λ∞ (ε)) .

Furthermore, Λ1 (α) ⊆ ∆(E) implies Λ1 (α) ⊆ Λ1 (ε) and ∆(E) ⊆ Λ′
∞ (α)

implies Λ′
∞ (ε) ⊆ Λ

′

∞ (α).
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Proof. [2, Proposition 1.1]. �

Definition 2.11. Let E be a nuclear Fréchet space with the properties DN

and Ω. The sequence ε (unique up to equivalence) in the above proposition

is called the associated exponent sequence of E in [2].

We note that Λ∞(ε) is always nuclear provided E is nuclear, but it may

happen that Λ1(ε) is not nuclear. For example, if we take the space of rapidly

decreasing sequence s = Λ∞(ln(n)), the associated exponent sequence of s

is (ln(n))n∈N and Λ1(ln(n)) is not nuclear.

In the proof of the above proposition, Aytuna et al. showed that there

exists an exponent sequence (unique up to equivalence) (εn) such that for

each p ∈ N and q > p, there exist C1, C2 > 0 and a1, a2 > 0 satisfying

C1 e
−a1 εn ≤ dn (Uq, Up) ≤ C2 e

−a2 εn

for all n ∈ N. From this inequality, one can easily obtain

δ (Λ∞ (ε)) ⊆ δ (E) ⊆ δ (Λ1 (ε)) .

For a nuclear Fréchet space E with the properties DN and Ω and the

associated exponent sequence ε, concidence of the diametral dimension of E

with that of power series spaces defined by ε form two extreme cases. The

extreme case ∆(E) = ∆ (Λ∞(ε)) gives an information about a (comple-

mented) subspace of a nuclear Fréchet space E with the properties DN and

Ω and stable associated exponent sequence ε. In [2], Aytuna et al. proved

that a nuclear Fréchet space E with the properties DN and Ω contains a

complemented copy of Λ∞(ε) provided that ∆(E) = ∆(Λ∞(ε)) and ε is

stable.

Theorem 2.12. Let E be a nuclear Fréchet space with the properties DN

and Ω and stable associated exponent sequence ε. If ∆(E) = ∆ (Λ∞ (ε)),

then E has complemented subspace which is isomorphic to Λ∞ (ε).

Proof. [2, Theorem 1.2]. �

On the other hand, there is no information for the other extreme ∆(E) =

∆ (Λ1(ε)). This leads to ask the Question 1.1 in Introduction. We need the

following proposition characterizing coincidence of δ(E) with δ(Λ1(ε)) given

by A. Aytuna in [1]:

Proposition 2.13. Let E be a nuclear Fréchet space E with the properties

DN , Ω and associated exponent sequence ε. Then

δ (E) = δ (Λ1 (ε)) ⇔ inf
p
sup
q≥p

lim sup
n∈N

εn (p, q)

εn
= 0
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where εn (p, q) = − log dn (Uq, Up).

Proof. [1, Corollary 1.10] �

3. Kα Spaces

In this section, we will construct a family of nuclear Köthe spaces with the

properties DN and Ω and parameterized by a finitely nuclear sequence α and

show that a subfamily of these Köthe spaces satisfied that ∆(K (ak,n)) =

∆ (Λ1 (ε)) and δ (K (ak,n)) 6= δ (Λ1 (ε)) for its associated exponent sequence

ε. This shows that Question 1.2 has a negative answer.

We proceed as follows: First, we divide natural numbers N into infinite

disjoint union of infinite subsets. For this purpose, we order the elements of

N
2 by matching them with the elements of N such that any element (x, y) ∈

N
2 corresponds to the element

(x+ 1) (x+ 2)

2
+ y(x+ 1) +

y (y − 1)

2
∈ N.

One can visualize this ordering as shown in the following diagram:

1

2

3

4

5

6

7

8

9

10

I1 I2 I3 I4 Is· · ·

As shown in the above diagram, each vertical line Is has infinitely many

elements and N can be expressed as an infinite disjoint union of Is, that is,

N =
⋃

s∈N

Is.

Definition 3.1. Let α = (αn)n∈N be a strictly increasing, positive, finitely

nuclear sequence. We define a matrix (ak,n)k,n∈N by setting:

(3.1) ak,n =



























e
−
1

k
αn

, if k ≤ s

e

(

−
1

k
+ 1

)

αn

, if k ≥ s+ 1.
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where n ∈ Is, s ∈ N.

Infact, (ak,n)k,n∈N is a Köthe matrix, since for every n, k ∈ N, 0 < ak,n ≤

ak+1,n. We denote the Köthe space generated by a matrix (ak,n)k,n∈N as in

3.1 by Kα. We say that the space Kα is parameterized by the sequence α.

We denote the family of all Köthe space Kα by K. Now, we show that each

element of the family K is nuclear and satisfies the properties DN and Ω:

Lemma 3.2. Let Kα be an element of the family K parametrized by α =

(αn)n∈N. Then, Kα is nuclear and has the properties DN and Ω.

Proof. For the nuclearity of Kα, we show that the series

∞
∑

n=1

ak,n
ak+1,n

is con-

vergent for each k ∈ N. Since
ak,n
ak+1,n

≤ e

(

− 1
k
+ 1

k+1

)

αn for every k, n ∈ N

and Λ1(α) is nuclear, then the series

∞
∑

n=1

ak,n
ak+1,n

is convergent. By Theorem

2.2, Kα is nuclear, as asserted.

We now prove that Kα has the DN property by using Proposition 2.9.

We will show that for all p ∈ N there exists a 0 < λ < 1 such that the

inequality

(3.2) ap,n ≤ (a1,n)
λ (ap+1,n)

1−λ

is satisfied for all n ∈ N. Let p, n ∈ N and assume n ∈ Is, s ∈ N. There

are two cases for p and s: p ≤ s or p > s. First we assume that p ≤ s: In

this case, a1,n = e−αn , ap,n = e
−1

p
αn and ap+1,n ≥ e

− 1
p+1

αn . Then, the

inequality 3.2 is satisfied for any λ <

1
p
− 1

p+1

1− 1
p+1

. Second we assume that s < p:

In this case, a1,n = e−αn , ap,n = e

(

−1
p
+1

)

αn and ap+1,n = e

(

− 1
p+1

+1
)

αn . But

then the inequality 3.2 is satisfied for any λ <

1
p
− 1

p+1

2− 1
p+1

. Hence, if we choose

a λ > 0 satisfying

λ < min

{

1
p
− 1

p+1

1 − 1
p+1

,

1
p
− 1

p+1

2− 1
p+1

}

=

1
p
− 1

p+1

2− 1
p+1

then inequality 3.2 holds in general and so Kα has the property DN, as

claimed.

We now prove that Kα has Ω by using Proposition 2.8. We will show

that for all p ∈ N and k > p there exists a j > 0 such the inequality

(3.3) (ap,n)
j ak,n ≤ (ap+1,n)

j+1
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is satisfied for all n ∈ N. Let p, n ∈ N and assume n ∈ Is, s ∈ N. There are

two case for p and s: p ≤ s or p > s. First we assume that p ≤ s: In this

case, ap,n = e
−1

p
αn , ap+1,n ≥ e

− 1
p+1

αn and ak,n ≤ e

(

− 1
k
+1

)

αn for all k ≥ p.

Then, the inequality 3.3 is satisfied for any j ≥

1
p+1

− 1
k
+ 1

1
p
− 1

p+1

. Second we

assume that s < p: In this case, ap,n = e

(

−1
p
+1

)

αn , ap+1,n = e

(

− 1
p+1

+1
)

αn

and ak,n = e

(

− 1
k
+1

)

αn for all k ≥ p. Therefore, the inequality 3.3 is satisfied

for any j ≥

1
p+1

− 1
k

1
p
− 1

p+1

. Now, we choose a j > 0 satisfying

j ≥ max

(

1
p+1

− 1
k
+ 1

1
p
− 1

p+1

,

1
p+1

− 1
k

1
p
− 1

p+1

)

=

1
p+1

− 1
k
+ 1

1
p
− 1

p+1

and so that the inequality 3.3 is satisfied for all n ∈ N. Hence Kα has the

property Ω, as claimed. �

Remark 3.3. It is worth noting that any element Kα of the family K does

not have the property (d2),

(d2) : ∀k ∃j ∀l sup
n

akn aln
(ajn)2

< +∞.

Since for all j ∈ N, n ∈ Ij, a1,n = e−αn , ajn = e
−1

j
αn , aj+1,n = e

(

−
1

j+1
+1

)

αn,

a1,n aj+1,n

(ajn)2
= e

j+2
j(j+1)

αn and sup
n∈Ij

a1,n aj+1,n

(ajn)2
= sup

n∈N

a1,n aj+1,n

(ajn)2
= +∞

then Kα does not have the property (d2). So the family K does not contain

a power series space of finite type.

3.1. Kolmogorov diameters of an element Kα of the family K.

In this subsection, we calculate Kolmogorov diameters of an element Kα

of the family K. In order to determine nth-Kolmogorov diameter of a Köthe

space Kα, we will rewrite the sequence

(

ap,n
aq,n

)

n∈N

in descending order. We

know from Remark 2.5 that the nth-Kolmogorov diameter of the space Kα

is the n+ 1th-term of this descending sequence.

Let Kα be an element of the family K parameterized by an exponent

sequence α. Let us take a p, a q > p and an n ∈ Is, s ∈ N. Then, we can

write

ap,n
aq,n

=











ecpq αn , s ≥ q or s < p

e(cpq − 1)αn , p ≤ s < q
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where cpq is the negative number −
1

p
+

1

q
. We define the set I =

⋃

p≤s<q

Is

with the elements (ni)i∈N ordered increasingly, namely, ni ≤ ni+1 for all

i ∈ N. We also denote the index of the element of Ip on the line with the

equation x + y = q + k − 2 by sk for each k = 0, 1, 2, ..., as seen from the

following diagram. Since every a line with the equation x + y = q + k − 2

has q − p elements of I, then s(k + 1) − sk = q − p for every k = 0, 1, 2, ....

ns0

ns1

nsk + 1

ni

ni + 1

n1

n2

nsk

n3

I

Ip Iq−1

the line with the equation

x+ y = q + k − 2

the line with the equation

x+ y = q + k − 1

Now we assume that the terms ecpq αm , m ∈ N−I, are on the blue points

and the terms e(cpq − 1)αni , ni ∈ I, are on the red points at this line. Before

sorting the terms of the sequence

(

ap,n
aq,n

)

n∈N

, we note that the terms of the

sequences
(

ecpqαm
)

m∈N−I
and

(

e(cpq − 1)αni

)

i∈N
have decreasing order in

themselves.

At first, we take into account the part of

(

ap,n
aq,n

)

n∈N

including the first

n1 − 1 terms e(cpq − 1)αni , 1 ≤ i ≤ n − 1. Since α is increasing, this part

has decreasing order and all terms in this part is greater than the terms

corresponding to the elements of I. Then, having decreasing order, this

part remains the same. However, we write this part by shifting to the left

taking into account the zero indices for Kolmogorov diameter.
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ap,n
aq,n

ecpq α1 ecpq α2 ecpq αn1 − 1
...

...

e(cpq − 1) αn1

dn(Uq, Up) ecpq α1 ecpq α2 ecpq αn1 − 1 ecpq α1

d0 d1 dn1 − 2 dn1 − 1

So, for every 0 ≤ n ≤ n1 − 2,

dn(Uq, Up) = ecpqαn+ 1 .

In order to find the diameter dn1 − 1(Uq, Up), we will compare the term

e(cpq − 1)αn1 with the terms ecpqαm, m ∈ N− I, m > n1, and the greatest

term gives the diameter dn1 − 1(Uq, Up):

e(cpq − 1)αn1 ≤ ecpqαm ⇔ αm ≤ Apq αn1.

where Apq = 1 +
pq

q − p
. Then, the terms ecpq αm , m ∈ N − I, m > n1,

satisfying αm ≤ Apq αn1 is greater than the term e(cpq − 1)αn1 . So we

must write the terms ecpq αm , m ∈ N− I, m > n1, satisfying αm ≤ Apq αn1

before the term e(cpq − 1)αn1 in decreasing order.

We call the greatest element m ∈ N − I satisfying αm ≤ Apq αn1 as i1.

As shown in the following diagram, we can assume that there exists a k1 > 0

so that the inequality

nsk1
< i1 < ns(k1 + 1)

holds.

n1 n2n3 n4n5n6

...
nsk1

i1 ns(k1 + 1)

...

This means that the number of elements of I which is less than i1 is

s(k1 + 1) − 1. So, before the term e(cpq − 1)αn1 , we will write i1−[s(k1 + 1)−

1] many ecpq αm , m ∈ N−I, m ≤ i1, terms in decreasing order. Furthermore,

while writing these terms in decreasing order, every term e(cpq − 1)αna ,

1 ≤ a ≤ s(k1 + 1)−1 shifts to the right and every term ecpq αm , m ∈ N− I,

m ≤ i1, shifts to the left, as shown in Diagram 1.
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N
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3

ap,n
aq,n

dn(Uq, Up)

1

1

1

d0

2

2

2

d1

...

...

...

n1

...

...

...

n2 n3

...

...

...

n4 n5 n6

...

...

...

nsk1

...

... ...

...

...

i1

i1

i1 n1

dj1

Diagram 1

For decreasing order, we will lift the red boxes and shift the blue boxes to the left.
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In order to find n1 − 1-th Kolmogorov diameter, we shift the term cor-

responding to the first element n1 of I. Considering also that we shift the

terms to the left for d0(Uq, Up), we find that for every n1 − 1 ≤ n ≤ n2 − 3,

dn(Uq, Up) = ecpqαn + 2 .

So, we found the Kolmogorov diameters until the indices n2 − 2. Now, we

also shift the terms corresponding to the element n2 and n3 of I. Up till

now, we shift the terms to the left four-indices, then we find that for every

n2 − 2 ≤ n ≤ n4 − 5

dn(Uq, Up) = ecpqαn + 4 .

We would like to point out that the endpoints of the intervals in which we

determine Kolmogorov diameters are generally represented by the elements

of Ip. Because the terms corresponding to the elements of I that we shift

to the right and the terms corresponding to the elements of N− I that we

shift to the left are between the two elements of Ip, as seen in the following

diagram.

... ...
ns(k + 1)nsk

Another significant point in writing the endpoints of the intervals in which

we determine the diameters are to find out how many elements, the terms

corresponding to the elements of I, we shift to the right.

We continue to calculate the diameters with this perspective. Let us

assume that we replaced ns0 − [s0 + 1] terms in decreasing order. In order

to find ns0−s0-th Kolmogorov diameter, we shift s1 terms corresponding to

the elements of I in total, for every ns0 − s0 ≤ n ≤ ns1 − [s1 + 1], we have

dn(Uq, Up) = ecpqαn + s1 .

Considering the terms that we shift to the right in each step, we can write

for every 0 ≤ k < k1 and for every nsk − sk ≤ n ≤ ns(k + 1) − [s(k + 1) + 1]

dn (Uq, Up) = e
cpq αn+ s(k + 1)

and for all nsk1 − sk1 ≤ n ≤ i1 − s(k1 + 1)

dn (Uq, Up) = e
cpq αn+ s(k1 + 1) .

Therefore, we shift i1−[s(k1 + 1)−1] many terms ecpq αm , m ∈ N−I, m ≤ i1

to left, namely, we sort all terms which is greater than e(cpq − 1)αn1 . Hence,
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the term e(cpq − 1)αn1 is replaced at the indices j1 = i1 − s(k1 + 1) + 1,

namely,

dj1(Uq, Up) = e(cpq − 1)αn1 .

Now assume that the first a− 1, (a ≥ 2) terms corresponding to the ele-

ments of I are placed in decreasing order. Before the term e(cpq − 1)αna , we

must write the terms ecpq αm , m ∈ N−I which is greater than e(cpq − 1)αna ,

satisfying the inequality αm ≤ Apq αna We call the greatest element of

m ∈ N satisfying αm ≤ Apq αna as ia. We can assume that there exists a

ka ∈ N so that

nska < ia < ns(ka + 1)
.

This means that the number of elements of I which is less than ia is

s(ka + 1) − 1. So, before the term e(cpq − 1)αna , we write ia− (s(ka + 1)−1)

many ecpq αm , m ∈ N− I, m ≤ ia, terms in decreasing order. Since we as-

sume that the first a− 1 terms corresponding to the elements of I is placed

in decreasing order, then the term e(cpq − 1)αna are replaced at the indices

ja = ia − s(ka + 1) − 1 + a, namely,

dja(Uq, Up) = e(cpq − 1)αna .

Now, we determine Kolmogorov diameters between the indices ja and

j(a + 1) for every a ≥ 1. Starting the index ja, we must compare the term

e
(cpq − 1)αna + 1 with the terms ecpq αm , m ∈ N−I and for every m ∈ N−I

satisfying αm ≤ Apq αna+ 1, we write the terms ecpq αm , before the term

e
(cpq − 1)αna + 1 . Again, we call the largest element of N−I satisfying above

inequality as i(a + 1) for which there is k(a+ 1) ∈ N satisfying

nsk(a+ 1)
< i(a + 1) < ns(k(a+ 1) + 1)

.

Let us continue to decreasing order from ja + 1:

For all ja + 1 ≤ n ≤ ns(ka + 1)
− s(ka + 1) + a− 1

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − a

.

If any, for every ka + 1 ≤ k ≤ k(a+ 1) − 1 and for every

nsk − sk + a ≤ n ≤ ns(k + 1) − s(k + 1) + a− 1

dn (Uq, Up) = e
cpqαn+ s(k + 1) − a

and for every nsk(a+ 1)
− sk(a+ 1)

+ a ≤ n ≤ i(a+ 1) − s(k(a+ 1) + 1) + a

dn (Uq, Up) = e
cpqαn + s(k(a+ 1) + 1) − a

.
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We sort all terms which is greater than e
(cpq − 1)αna+ 1 . Then, the term

e
(cpq − 1)αna + 1 is replaced at the indices

j(a + 1) = i(a + 1) − s(k(a+ 1) + 1) + a + 1, namely,

dj(a + 1)
(Uq, Up) = e

(cpq − 1)αn(a + 1) .

Hence, we determine all Kolmogorov diameters between the terms e(cpq − 1)αna

and e
(cpq − 1)αn(a + 1) for every a ≥ 1.

Therefore, we can calculate all Kolmogorov diameters by following the

above observation, and finally we can write:

1. Let J := {ja : a ∈ N} where ja = ia − s(ka + 1) − 1 + a. For all a ∈ N,

dja(Uq, Up) = e(cpq − 1)αna .

2. For a, k ∈ N, we define

Ia, k =
[

nsk − sk + a, ns(k + 1)
− s(k + 1) + a− 1

]

and

K =
⋃

a ∈ N

⋃

ka + 1 ≤ k ≤ ka+ 1 − 1

Ia, k.

For every n ∈ K, there is an a ∈ N and a k ∈ N satisfying ka + 1 ≤ k ≤

k(a+ 1) − 1 such that

dn (Uq, Up) = e
cpqαn + s(k + 1) − a

.

3. Let L =
⋃

a∈N

[ ja + 1, n s(ka + 1)
−s (ka + 1)+a − 1 ]. For every n ∈ L,

there is an a ∈ N such that

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − a

.

4. Let M =
⋃

a∈N

[

nska
− ska + a− 1, ja − 1

]

. For every n ∈ M , there is an

a ∈ N such that

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − (a− 1)

.

All Kolmogorov diameters in the light of above observation are found

since N = {0, 1, ..., n1 − 2}∪J∪K∪L∪M . This completes the determination

of the diameters.

Now, we give an estimation for Kolmogorov diameters of an element Kα

of the family K which is parameterized by α.
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Theorem 3.4. Let Kα be an element of the family K with the parameter

α. For every p, q > p there exists a N ∈ N such that

(3.4) ecpqα4n ≤ dn(Uq, Up) ≤ ecpqαn

for every n ≥ N .

Proof. Let p ∈ N and q > p. Above we obtained Kolmogorov diameters

dn(Uq, Up) on each subsets {0, 1, ..., n1 − 1}, J , K, L and M of N. We will

show that the inequality 3.4 holds for sufficiently large elements of each

subsets J , K, L, and M of N.

Primarily, we will show that 2ja > ia for sufficiently large a ∈ N. We

know that for every ia there exists a ka ∈ N satisfying nska
< ia <

ns(ka + 1)
. Since nska

is on the line which has the equation x+y = q+ka−2,

the first element of Iq + ka − 2 is less than nska
, we can write

nska
≥

(q + ka − 2) (q + ka − 1)

2
=

(q − 2) (q − 1)

2
+(q − 1) ka+

ka (ka − 1)

2
.

Since lim
a→+∞

ka = +∞, we can assume that
ka (ka − 1)

4
≥ (ka + 1) (q − p)

and
(q − 1) ka

2
≥ s0 for sufficiently large a ∈ N. Hence we can write

ia
2

≥
nska
2

≥ s0 + (ka + 1) (q − p) = s(ka + 1)

and we find

ja = ia − s(ka + 1) + a > ia −
ia
2

=
ia
2

⇒ 2ja > ia.

Now, we will show that the inequality 3.4 is satisfied for a sufficiently

large element of J . Let take an a ∈ N satisfiying 2ja > ia. We know that

ia is the greatest element of m ∈ N− I satisfying e(cpq − 1)αna ≤ ecpq αm ,

then we can write

ecpq αk < e(cpq − 1)αna

for every k > ia, k ∈ N− I. If 2ja ∈ N− I, then

ecpq α4ja ≤ ecpq α2ja < e(cpq − 1)αna .

If 2ja ∈ I, then 2ja + (q − p) ∈ N− I and 2ja + (q − p) ≤ 4ja is satisfied

for a sufficiently large a and we find

ecpq α4ja ≤ ecpq α2ja + (q − p) < e(cpq − 1)αna .

Also, we know that ia ≥ ja for every a ∈ N, thus we can write

dja(Uq, Up) = e(cpq − 1)αna ≤ ecpq α ia ≤ ecpq αja .
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The above inequalites give us that

ecpqα4ja ≤ dja(Uq, Up) = e(cpq − 1)αna ≤ ecpq αja .

Then, the inequality 3.4 is satisfied for sufficiently large element of J .

We now prove that the inequality 3.4 is satisfied for sufficiently large

elements of K, L and M . In order to see this, we first show that

nsk ≥ 2sk

for sufficently large k ∈ N. We know that nsk is on the line which has

equation x + y = q + k − 2 for every k = 0, 1.... Since the first element of

Iq + ka − 2 is less than nsk , then we can write

nsk ≥
(q + k − 2) (q + k − 1)

2
=

(q − 2) (q − 1)

2
+ (q − 1) k +

k (k − 1)

2
.

The inequalities

k.(k − 1)

4
≥ k(q − p) and (q − 1)k ≥ 2(s0 + 1)

hold for a sufficiently large k. Then we find

nsk ≥ 2(s0 + k(q − p) + 1) = 2sk

for a sufficiently large k ∈ N.

Now we show that the inequality 3.4 is satisfied for sufficiently large

element of K. Let take an n ∈ K. Then, there exist a a ∈ N and a k ∈ N

satisfying ka + 1 ≤ k ≤ k(a+ 1) − 1 such that nsk − sk + a ≤ n ≤

ns(k + 1)
− s(k + 1) + a− 1 and

dn (Uq, Up) = e
cpqαn+ s(k + 1) − a

.

Since nsk ≥ 2sk for a sufficiently large k ∈ N and s(k + 1)− sk = q− p for

all k ∈ N, we can write

sk ≤ nsk − sk + a ≤ n ⇒ n + s(k + 1) − a ≤ 2n.

for sufficiently large a. Then, we obtain

dn (Uq, Up) = e
cpqαn + s(k + 1) − a

≥ ecpqα2n ≥ ecpqα4n

and always we have

dn (Uq, Up) = e
cpqαn + s(k + 1) − a

≤ ecpqαn

since α is increasing. Therefore, the inequality 3.4 is satisfied for sufficiently

large elemets of K.

Now, we will show that the inequality 3.4 is satisfied for a sufficiently

large element of L. Let us take a n ∈ L. Then, there is an a ∈ N such that

ja + 1 ≤ n ≤ ns(ka + 1)
− s(ka + 1) + a− 1
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and

dn (Uq, Up) = e
cpqαn + s(ka + 1) − a

.

Since ska ≤ nska − ska + a ≤ ja + 1 ≤ n and n + s(ka + 1) − a ≤ 2n for a

sufficiently large n, then we find

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − a

≥ ecpq α 2n ≥ ecpq α 4n,

and always we have

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − a

≤ ecpqαn

since α is increasing. Therefore, the inequality 3.4 is satisfied for sufficiently

large element of L.

Now we will show that the inequality 3.4 is satisfied for a sufficiently

large element of M . If n ∈ M , then there is an a ∈ N

nska
− s(ka + 1) + a ≤ n ≤ ja − 1

and

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − (a− 1)

.

Again we can write ska ≤ nska − ska + a ≤ n and nska + ska − a+1 ≤ 2n

for a sufficiently large a. Hence we find

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − (a− 1)

≥ ecpqα2n ≥ ecpqα4n

and always we have

dn (Uq, Up) = e
cpqαn+ s(ka + 1) − (a− 1)

≤ ecpqαn

since α is increasing. Therefore, the inequality 3.4 is satisfied for a suffi-

ciently large element of M . This completes the proof. �

3.2. The diametral dimension and the approximate diametral di-

mension of an element of the family K parameterized by a se-

quence α.

As a consequence of Theorem 3.4, we will compute the diametral di-

mension and the approximate diametral dimension of an element Kα of the

family K which is parameterized by a stable sequence α.

Corollary 3.5. Let Kα be an element of the family K which is parameterized

by a stable sequence α. Then, ∆(Kα) = ∆(Λ1 (αn)) and δ(Kα) = δ(Λ1 (αn)).
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Proof. From Theorem 3.4, we have

∆(Λ1(αn)) ⊆ ∆(Kα) ⊆ ∆(Λ1(α4n))

and

δ(Λ1(α4n)) ⊆ δ(Kα) ⊆ δ(Λ1(αn)).

On the other hand, Λ1(αn) ∼= Λ1(α4n) since α is stable. Then ∆(Kα) =

∆(Λ1 (αn)) and δ(Kα) = δ(Λ1 (αn)). �

Now we will prove that ∆(Kα) = ∆ (Λ1 (αn+ 1)) and δ(Kα) 6= δ (Λ1 (αn+ 1))

for an element Kα of the family K which is parameterized by an unstable

sequence α. Besides, we will show that all regular elements of the family K

are parameterized by an unstable sequence α.

Proposition 3.6. Let Kα be an element of the family K which is parame-

terized by an unstable sequence α. Then, ∆(Kα) = ∆(Λ1 (αn + 1)).

Proof. We can calculate Kolmogorov diameters as in the previous deter-

mined for every p and q > p. Since α is unstable, then there exists an

a0 ∈ N such that for all a ≥ a0, there is no m > na, m ∈ N satisfy-

ing αm ≤ Apq αna. Now, we examine closely the indices replaced the term

e
(cpq − 1)αna0 . We know that

dj(a0 − 1)
(Uq, Up) = e

(cpq − 1)αn(a0 − 1)

where j(a0 − 1) = i(a0 − 1)−s(a0 − 1)+a0 − 2. Since αi (a0 − 1)
≤ Apq αn(a0 − 1)

and there is no m > na0 satisfying αm ≤ Apq αna0 , then we find i(a0 − 1) <

na0 . This gives that for all j(a0 − 1) ≤ n ≤ na0 − 2,

dn(Uq, Up) = ecpq αn+ 1.

Besides, we obtain that the sequence

(

ap,n
aq,n

)

n∈N

has decreasing order start-

ing from the indices j(a0 − 1)+1, since for every a ≥ a0, there is no n > na0
satisfying αn ≤ Apq αna. Then, we have for all a ≥ a0

dna− 1(Uq, Up) = e(cpq − 1)αna

and for all m ≥ j(a0 − 1), m ∈ N− I

dm(Uq, Up) = ecpq αm+ 1 .

Since dn(Uq, Up) ≤ ecpq αn + 1 for every n ∈ N, then we find ∆(Kα) ⊇

∆(Λ1(αn + 1)).
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For the other direction, let us take a sequence (xn)n∈N ∈ ∆(Kα), an ε > 0

and a p ∈ N satisfying
1

p
< ε. We will show that

sup
n∈N

|xn| e
−εαn+ 1 < +∞.

Since (xn)n∈N ∈ ∆(Kα), there exist a q > p and M1 > 0 satisfying

sup
n∈N

|xn| dn (Up, Uq) < M1.

Let us define I =
⋃

p ≤ s < q

Is. For sufficiently large n ∈ N− I, we can write

|xn| e
−εαn + 1 ≤ |xn| dn (Uq, Up) = ecpqαn+ 1 ≤ M1

since cpq ≥ −ε. Therefore, the sequence |xn| e
−εαn+ 1 is bounded on the

set N − I. If we show that |xn| e
−εαn+ 1 is also bounded on I, then we

will find that (xn)n∈N ∈ ∆(Λ1 (αn+ 1)). Let take another p0 > q, then there

exist a q0 and M2 > 0 such that

sup
n∈N

|xn| dn
(

Uq0, Up0

)

< M2.

Let us define J =
⋃

p0 ≤ s < q0

Is. Since cp0, q0 ≥ −ε, we find

|xn| e
−εαn + 1 ≤ |xn| dn

(

Uq0, Up0

)

= ecp0, q0αn+ 1 ≤ M2

for sufficently large n + 1 ∈ N − J . Also, it is easy to see that I ⊂ N − J .

Then, the above inequalities give us that

|xn| e
−εαn + 1 ≤ M2.

for all n ∈ I. Hence, the sequence |xn| e
−εαn + 1 is also bounded on I.

Therefore, we find

sup
n∈N

|xn| e
−εαn+ 1 < +∞

and (xn)n∈N ∈ ∆(Λ1 (αn + 1)). This says that ∆(Kα) = ∆(Λ1 (αn+ 1)). �

Proposition 3.7. Let Kα be an element of the family K which is parame-

terized by an unstable sequence α. Then, δ(Kα) 6= δ(Λ1 (αn+ 1)).

Proof. In the proof of the previous proposition, we show that if α is unstable,

then for all p ∈ N and q > p, there is a a0 ∈ N such that for all a ≥ a0

dna− 1(Uq, Up) = e(cpq − 1)αna ,

so the last equality holds except for finitely many numbers of elements of

I. Then we have
εna − 1 (p, q)

αna
= 1− cp,q
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and

lim sup
a ∈ N

εna − 1 (p, q)

αna
= 1− cp,q ⇒ inf

p
sup
q

lim sup
n∈N

εn (p, q)

αn+ 1
> 0.

By Proposition 2.13, we have δ (Kα) 6= δ (Λ1 (αn + 1)). �

Remark 3.8. Proposition 3.6 and Proposition 3.7 shows that Question 1.2

has a negative answer for the elements of the family K which is parametrized

by an unstable exponent sequence.

Now, we will show that all regular elements of the family K are param-

eterized by an unstable sequence α.

Let Kα be an element of the family K parameterized by an exponent

sequence α and n ∈ Is, s ∈ N. Then, there exist two cases for n + 1:

n+ 1 ∈ Is+ 1 or n + 1 ∈ I1.

We assume n+ 1 ∈ Is+ 1: For this case, n+ 1 ≥
(s+ 1)(s+ 2)

2
≥ s+ 1.

i) For k + 1 ≤ s, we have ak, n = e
−

1
k
αn , ak + 1, n = e

− 1
k+1

αn , ak, n+ 1 =

e
− 1

k
αn + 1 ak + 1, n+ 1 = e

−
1

k+1
αn + 1 . Since α is increasing, the

inequality

ak + 1, n

ak, n
= e

(

1

k
−

1

k + 1

)

αn
≤ e

(

1

k
−

1

k + 1

)

αn + 1
=

ak + 1, n+ 1

ak, n+ 1

holds in this case.

ii) For k ≥ s+ 1, we have ak, n = e

(

−
1

k
+ 1

)

αn
, ak + 1, n = e

(

−
1

k + 1
+ 1

)

αn
,

ak, n + 1 = e

(

−
1

k
+ 1

)

αn+ 1
, ak + 1, n+ 1 = e

−
1

k + 1
αn + 1

. Since α is

increasing, the inequality

ak + 1, n

ak, n
= e

(

1

k
−

1

k + 1

)

αn
≤ e

(

1

k
−

1

k + 1

)

αn + 1
=

ak + 1, n+ 1

ak, n+ 1

holds in this case.

iii) For k = s, we have ak, n = e
−

1
k
αn , ak + 1, n = e

(

−
1

k + 1
+ 1

)

αn
,

ak, n + 1 = e
− 1

k
αn+ 1 , ak + 1, n+ 1 = e

−
1

k+1
αn+ 1 . Then, these give

that

ak + 1, n

ak, n
= e

(

1

k
−

1

k + 1
+ 1

)

αn
and

ak + 1, n+ 1

ak, n+ 1
= e

(

1

k
−

1

k + 1

)

αn+ 1.
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In this case, the regularity condition
ak + 1, n

ak, n
≤

ak + 1, n+ 1

ak, n+ 1
is equiv-

alent to the following inequality:

(3.5) (1 + k(k + 1))αn ≤ αn + 1 ∀n ∈ Ik, k ∈ N

The similiar observation can be given by following the same step for the

case n+1 ∈ I1. Then, we have a regularity condition for a Köthe space Kα:

Proposition 3.9. Let Kα be an element of the family K parameterized by

the sequence α. Then, Kα is regular if and only if the inequality

(1 + s(s+ 1))αn ≤ αn+ 1

is satisfied for all n ∈ Is and s ∈ N.

We also note that the sequence (αn)n∈N =

(

n− 1
∏

i = 0

(1 + i(i+ 1))

)

n∈N

satisfies

the condition of Proposition 3.9 since
αn + 1

αn
= (1 + n(n+ 1)) ≥ (1 + s(s+ 1))

for all n ∈ Is, s ∈ N.

As a consequence of Proposition 3.9, we obtain the following result:

Corollary 3.10. Let Kα be an element of the family K parameterized by

the sequence α. If Kα is regular, then the sequence α is unstable.

Proof. Let Kα be a regular Köthe space generated by the matrix (ak, n)k,n∈N

given in 3.1 and assume α is not unstable, that is, lim
n→∞

αn+ 1

αn
6= +∞.

Then, there exist a M > 0 and a non-decreasing sequence (nk)k∈N so that

sup
k∈N

αnk + 1

αnk
< M. Since (nk)k∈N is non-decrasing and Kα is regular, we can

write
αk + 1

αk
≤

αnk + 1

αnk
≤ M

for all k ∈ N and from Proposition 3.9, we find that

(1 + s(s+ 1)) ≤
αk + 1

αk
≤ M

for all k ∈ Is, s ∈ N. This is a contradiction, therefore α must be unstable,

as desired. �

Remark 3.11. Being unstable is not sufficient for regularity of Köthe space

Kα. For instance, the sequence (αn)n∈N = (n!)n∈N does not satisfy the con-

dition of Proposition 3.9. Indeed, for every s ∈ N, n =
s(s+ 1)

2
∈ Is and

αn+ 1

αn
= n+ 1 = 1 +

s(s+ 1)

2
< 1 + s(s+ 1).
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Remark 3.12. As a corollary of Proposition 3.6, Proposition 3.7 and Corol-

lary 3.10, we can obtain that ∆(Kα) = ∆(Λ1 (αn+ 1)) and δ(Kα) 6= δ(Λ1 (αn+ 1))

for a regular element Kα of the family K which is parameterized by an ex-

ponent sequence α.

4. Some Results Obtained with the Family K

In this section, we compile some additional information for the family K.

We have shown that an element Kα of the family K which is parametrized

by an unstable sequence α constitutes a counterexample to Question 1.2. An

element Kα of the family K which is parametrized by an unstable sequence

α is crucial for Question 1.1, as well:

Theorem 4.1. There exists a nuclear Fréchet space E with the properties

DN and Ω satisfying ∆(E) = ∆(Λ1(ε)), for its associated exponent sequence

ε, with the property that there is no subspace of E which is isomorphic to

Λ1(ε).

Proof. Let Kα be an element of the family K which is parametrized by an

unstable sequence α. We proved that ∆(Kα) = ∆(Λ1(αn+ 1)) in Propo-

sition 3.6. Therefore, the sequence (αn + 1)n∈N is the associated exponent

sequence of Kα. Assume that there exists a subspace of Kα which is iso-

morphic to Λ1(αn+ 1). This gives us that δ(Λ1(αn + 1)) ⊆ δ(Kα) by Propo-

sition 2.1. Since always δ(Kα) ⊆ δ(Λ1(αn+ 1)), we conclude that δ(Kα) =

δ(Λ1(αn+ 1)). But this is a contradiction since we showed that δ(Kα) 6=

δ(Λ1(αn+ 1)) in Proposition 3.7. Hence, there is no subspace of Kα which is

isomorphic to Λ1(αn+ 1). �

Remark 4.2. The above theorem indicates that Question 1.1 has a negative

answer. It is worth mentioning that we can find even a nuclear regular Köthe

space with the properties listed in Theorem 4.1.

In [5], we gave conditions confirming an affirmative answer for Question

1.2. First result was related to the topology on diametral dimension of a

nuclear Fréchet space. The diametral dimension

∆(E) =
{

(tn)n∈N : ∀ p ∈ N ∃q > p lim
n→∞

tndn (Uq, Up) = 0
}

=
⋂

p∈N

⋃

q>p

∆(Uq, Up)
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is the projective limit of inductive limits of Banach spaces ∆(Uq, Up) with

the norm ‖(tn)n‖ = sup
n∈N

|tn| dn(Uq, Up). Hence ∆(E) is a topological vec-

tor space with respect to that topology which will be called the canonical

topology.

Theorem 4.3. Let E be a nuclear Fréchet space with properties DN and Ω

and ε = (εn)n∈N be the associated exponent sequence of E. If ∆(E), with

the canonical topology, is barrelled, then ∆(E) = ∆ (Λ1 (ε)) if and only if

δ (E) = δ (Λ1 (ε)).

Proof. [5, Theorem 4.2] �

Therefore, we obtain the following:

Proposition 4.4. Let Kα be an element of the family K parameterized by

an unstable sequence α. Then ∆(Kα), with the canonical topology, is neither

barrelled nor ultrabornological.

We actually wanted the barrelledness in [5, Theorem 4.2] to be able to

use a closed graph type theorem, [7, Theorem 5, Pg. 40] which says that a

linear map f from a barrelled space X into a Fréchet space Y is continuous

provided that the graph of f is closed in X×Y . Since δ(Kα) 6= δ(Λ1(αn+ 1))

and ∆(Kα) = ∆(Λ1(αn + 1)), the technique used in the proof of [5, Theorem

4.2] is not valid for an element Kα of the family K parameterized by an

unstable sequence α. Hence, this gives us that the identity mapping from

∆(Kα) into Λ1(αn+ 1) is not continuous although it has a closed graph:

Theorem 4.5. Let Kα be an element of the family K parameterized by

an unstable sequence α. Then ∆(Kα) = ∆(Λ1(αn+ 1)) and the identity map

from ∆(Kα) into Λ1(αn+ 1) is not continuous although it has a closed graph.

In [14], T. Terzioğlu defined the notion prominent bounded subset in order

to show that the diametral dimension of some Fréchet spaces is determined

by a single bounded set:

Definition 4.6. Let E be a Fréchet space. A bounded set B is said to

prominent if

∆(E) =

{

(xn)n∈N : lim
n→+∞

xn dn (B,Up) = 0 ∀ p

}

.

The existence of a prominent bounded subset in the nuclear Fréchet

space E plays a decisive role for the affirmative answer of Question 1.2.
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Theorem 4.7. Let E be a nuclear Fréchet space with the properties DN and

Ω and ε the associated exponent sequence. δ (E) = δ (Λ1 (ε)) if and only if

E has a prominent bounded set and ∆(E) = Λ1 (ε).

Proof. [5, Theorem 4.8] �

Obviously, this condition is not valid for an element Kα of the fam-

ily K which is parameterized by an unstable sequence α since ∆(Kα) =

∆(Λ1(αn + 1) and δ(Kα) 6= δ(Λ1(αn+ 1)).

Theorem 4.8. There exists a nuclear Fréchet space E with the properties

DN and Ω satisfying ∆(E) = ∆(Λ1(ε)) for its associated exponent sequence

ε such that there is no prominent bounded set of E.

Remark 4.9. It is worth to note that as a consequence of Theorem 4.7

and Corollary 3.5, an element Kα of the family K parameterized by a stable

sequence α has a prominent bounded subset.

A nuclear Fréchet space E with an increasing sequence of seminorms

(‖.‖k)k∈N is called tame if there exists an increasing function σ : N → N,

such that for every continuous linear operator T : E → E there exists a

n0 ∈ N and C > 0 so that

‖T (x)‖k ≤ C ‖x‖σ(k) ∀ x ∈ E.

In [1, Theorem 2.3], A. Aytuna proved that a nuclear Fréchet space E

with the properties DN and Ω and stable associated exponent sequence ε

is isomorphic to a power series space of finite type if and only if E is tame

and δ(E) = δ(Λ1(ε)). As a consequence of this result and Remark 4.9, we

have the following:

Proposition 4.10. Let Kα be an element of the family K parameterized by

a stable sequence α. Then, Kα is not tame.
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