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Abstract
Historical buildings in the Eastern world of architecture host many Islamic geometric 
patterns which are known as mathematically sophisticated patterns regarding their 
period of creation. This study focuses on the preparation of a model that can be 
helpful for the analysis and restoration/maintenance of these patterns. For this, a 
deep learning model to detect and classify star types in Islamic geometric patterns 
has been proposed, and the trials were evaluated. Accordingly, this study presents a 
database containing 5-pointed, 6-pointed, 8-pointed and 12-pointed star types. The 
database consists of 600 Islamic geometric patterns. A mask RCNN algorithm was 
trained to detect and classify star types using the prepared database. The results of 
the training indicate that the loss value is 0.90 and the validation loss value is 0.85. 
The algorithm was tested using images that it had not seen before and the results 
were evaluated. This paper presents a discussion on the pros and cons of the trained 
algorithm.
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Introduction

Throughout history, portraying living beings was avoided in Islamic art, and floral, 
written and geometric elements were used in decorations (Altın 2020). There are 
mathematical rules underlying the Islamic geometric patterns used in different parts 
of the Islamic geography throughout history. This mathematical infrastructure, 
especially used in ancient times, requires great expertise. Today, the application 
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of this type of geometric patterns is almost non-existent. That explains why there 
are no experts trained in this field. Therefore, errors may occur in restorations. As 
a result of his research, Altın (2020) identified 120 incorrectly restored geometric 
panels or borders in 35 Seljuk architectural works. These errors generally arise from 
the problems in geometric construction.

Today, these artifacts need to be repaired and restored from time to time. It is 
necessary to quickly and practically solve what kind of mathematical system 
these patterns have, some parts of which have been lost or distorted. It is possible 
to divide these patterns into various classes. For example, the number of star 
arms can be considered as a classification. Different star types come together 
to form a tessellation. For example, the regular arrangement of 12-pointed stars 
and the formation of 6-pointed stars in the empty parts may be an example of the 
tessellation. These tessellations can be very diverse and complex. Therefore, in this 
study, a model based on deep learning is proposed for the prediction of star polygon 
types in Islamic geometric patterns.

The studies have been carried out about the classification and prediction of 
Islamic geometric patterns according to various parameters. For example, Aoulalay 
et al. (2022) proposed a machine learning-based classification model using grey level 
co-occurrence matrix, Gabor filter bank and CNN in order to determine symmetric 
groups (frieze, wallpaper and rosette) of Islamic geometric patterns, and used texture 
periodicity for the differentiation of the patterns. Similarly, Djibril and Thami (2008) 
proposed an Islamic geometric pattern classification model with taking account 
symmetric features. Ahadian and Bastanfard (2011) proposed a model using Zernike 
moments for feature extraction, K-nearest neighbor rule and feed forward neural 
network for shape based classification in Islamic geometric patterns. Similarly, 
Hajebi and Hajebi (2021) proposed a Islamic geometric pattern prediction model 
using Zernike moments for feature extraction, and back-propagation neural network 
for prediction of vanished patterns. In this study, in order to to detect star types and 
to mask the related object, we proposed and tested a model that is based on Mask 
RCNN (Mask Region Convolutional Neural Network) (He et  al. 2017) algorithm. 
The model is based on the application of an instance segmentation technique with 
the state-of-the-art convolutional neural network model Mask RCNN to detect and 
distinguish star polygons in Islamic geometric patterns.

Background

Islamic Geometric Patterns

The patterns containing star motifs that are found around the Eastern world are 
usually called Islamic geometric patterns in the literature. The motifs in these 
patterns have a geometric substructure. Various star units come together to form 
a tessellation. Connections in the combinations of star units can be different. This 
connection unit type may be, for example, another star unit, or it may be a simpler 
geometric setup. The arrangement of the main units also has an important place 
in the formation of the tessellation setup. This arrangement may be, for example, 



Prediction of Star Polygon Types in Islamic Geometric Patterns…

a gridal arrangement, or it may be a radial arrangement (Schneider 1980). The 
number of star arms in the main units of the tessellations and the type of connection 
units determine the scheme of the tessellation. Different geometric tessellations 
can be created with different setups. One of the first known example of Islamic 
geometric pattern studies conducted by Bourgoin (1879) who had analysed patterns 
in the Eastern world. Broug (2008) and Bonner (2017) also analyzed many Islamic 
geometric patterns with their potential drawing techniques. Furthermore, Schneider 
(1980) gives information about the knotting principles in the 3rd dimension of the 
patterns in his drawings while showing which architectural artifacts contained these 
tessellations. Islamic geometric patterns, although applied in the 2nd dimension, 
contain the knot principle in the 3rd dimension (Agirbas 2020).

As mentioned in the Introduction section, there are limited studies about the 
recognition and classification of the pattern types in the Islamic geometric pattern 
tessellations. As it can be found in the review article of Ranjazmay Azari et  al. 
(2023), the studies about the Islamic geometric patterns are mostly related to the 
method proposals for creation of Islamic geometric patterns. For example, Khamjane 
et al. (2023) proposed a polygonal method for creation of various Islamic geometric 
tilings, Khamjane et  al. (2020) proposed a method for creation of decagonal self-
similar Islamic geometric patterns, Khamjane and Benslimane (2018) proposed a 
method for creation of Islamic quasi-periodic patterns, El Ouaazizi et  al. (2015) 
and Nasri et  al. (2014) proposed a genetic algorithm-based method for Islamic 
geometric pattern characterization, Nasri and Benslimane (2014) presented method 
for symmetrical motif extraction in periodic Islamic geometric patterns, Lahcen 
et  al. (2021) presented a method for creation of Islamic geometric patterns based 
in the traditional HASBA Method, mostly used by Moroccan craftsmen, Rasouli 
et al. (2008), Nadyrshine et al. (2021) and Izadi et al. (2010) developed algorithms 
to create Islamic geometric patterns.

Apart from the knot principle, we encounter the lifting of star patterns to the 
3rd dimension in the creation of muqarnas geometries. Many authors agree that 
the muqarnas are lifted to the 3rd dimension after the plan drawings are made. In 
the muqarnas drawings in the Topkapı Scroll (Necipoglu 1995), it is clearly seen 
that there are star units in muqarnas plans. The star units in the plans of muqarnas 
were analyzed by Uluengin (2018) and Takahashi (2023). In these star units, some 
stars have equal arm lengths and some have unequal arm lengths. Agirbas and 
Yildiz (2021) and Agirbas et  al. (2022) have investigated the geometric reasons 
for the unequal length of the star arms in the muqarnas plans. Moreover, the stars 
draw attention in the principle of ascension to the 3rd dimension of the muqarnas 
which are made up of layers. If we consider a type of star, some of the arms of 
the star are in one layer of the muqarnas and the other arms of the star are in the 
other layer of the muqarnas. In other words, cells in different layers come together to 
form the whole of the star. Algorithmic methods for creation of muqarnas geometry 
have been developed by various researchers. For example, 3D construction of 
muqarnas geometry has been studied by Senhaji and Benslimane (2022), Senhaji 
and Benslimane (2019), Gherardini and Leali (2016) and Hamekasi et al. (2011).

There are also current studies on lifting the star patterns to the 3rd dimension 
in different forms. For example, Agirbas (2020) has created parametric Islamic 
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geometric knits through visual programming language by considering the knotting 
principles in Islamic geometric patterns. Agirbas and Basogul (2021), on the other 
hand, created reciprocal frame structures based on the knotting forms of Islamic 
geometric patterns and made their structural analysis using different variables. There 
are also studies on creating new variations by coding the mathematical infrastructure 
of Islamic geometric patterns (Agirbas 2017).

Deep Learning and the Mask RCNN Algorithm

Machine learning is a field of artificial intelligence that focuses on the development 
of algorithms that enable computers to learn and make predictions or decisions 
based on data. Deep learning is a branch of machine learning that involves training 
artificial neural networks on large amounts of data to recognize patterns and to make 
predictions. Deep learning algorithms consist of multiple layers of nodes that allow 
algorithm to learn from complex data (LeCun et al. 2015). These algorithms learn 
to perform tasks by adjusting the weights and connections between these nodes. 
The logic behind the deep learning algorithm structures are similar to human brain 
interconnected neurons. Deep learning algorithms are being widely used for many 
speech recognition and computer vision tasks.

The artificial intelligence based algorithms are increasing and diversing so 
fast. Therefore, researchers prepare review articles focusing on specific type 
of algorithms. For example, Sultana et  al. (2020) and Masita et  al. (2020) have 
investigated deep learning based object detection algorithms in detail, and Chen 
et  al. (2021a) has reviewed almost 50 Convolutional Neural Networks (CNN) 
algorithms with their characteristics. CNNs are used mainly in computer vision 
tasks. There are many CNN algorithms mainly used for object detection (such as 
Yolo), image classification (such as GoogLeNet, VGGNet, LeNet-5, AlexNet, ViT), 
semantic segmentation together with image classification and object detection (such 
as DenseNet, MobileNet). Unlike these algorithms, Mask RCNN (Mask Region 
Convolutional Neural Network) (He et al. 2017), which is an improved version of 
Faster RCNN, can make pixel level segmentation. Therefore, it can create patches 
on the detected objects related to various classification categories. Mask RCNN was 
created by Facebook AI Research and many researchers interpreted the algorithm 
according to the specified tasks. In this study, Matterport’s (Abdulla 2017; Johnson 
2020) Mask RCNN interpretation with ResNet 101 FPN architecture was used. The 
algorithm architecture has parts such as Region Proposal Network (RPN), RoIAlign, 
Fully convolutional networks (FCN) to detect objects, classify them and make the 
final mask creation (Zhang et  al. 2022; Chen et  al. 2021b). Masks are the results 
of the generation of pixel-level segmentation for objects detected in the images. 
The loss values (classification loss, bounding box loss, mask loss) are calculated on 
multiple parts in the algorithm. The loss values refer to the metrics used to quantify 
discrepancy between the model’s predictions and the truth. Per pixel sigmoid and 
SGD Keras optimizer was used in the algorithm.

Mask RCNN has been used in various branches of science. But the common point 
of the studies using this algorithm is to capture the specific details in the images. Wu 
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et al. (2020) for particle characterization, Pustokhina et al. (2021) for anomaly detection 
in pedestrian walkways, Jin et al (2021) for detection of highway guardrail, Sadhukhan 
et al. (2020) to estimate surface temperature from thermal imagery of building, Tran 
et al. (2022) for detecting and identifying cracks in pavements, Shaodan et al. (2019) for 
ship detection, Al-Shaibani et al. (2021) for airplane type identification, Sizkouhi et al. 
(2020) for boundary extraction of photovoltaic plants, Chen et al. (2021c) for narrow 
gap deviation detection in welding, Fan et  al. (2021) for detection and segmentation 
of underwater objects, Rahman et al. (2022) for filler detection in Scanning Electron 
Microscopic images, Raoofi and Motamedi (2020) for detection of construction 
machinery, Htet and Sein (2021) for classification of palm trees, Prados-Privado et al. 
(2021) for radiographic detection of teeth, Johnson (2020) for the detection of cell 
nuclei in the medical images, An et al (2021) for the automatic diagnosis of tongue.

Material and Methods

For this study, firstly, an Islamic geometric pattern database was created. The patterns 
in this database were drawn by the authors (Fig. 1). The software Illustrator allows 
designer to create vector based images and was used to create patterns in the dataset. 
These database patterns include 5-pointed, 6-pointed, 8-pointed, and 12-pointed stars, 
which are the most common star types in Islamic geometric pattern tessellations. 
Various colors and patterns with different scales were used in the images.

Supervised learning was used as a basis for the deep learning process. 
Accordingly, the patterns in all images in this database are labeled. Labeling 
consists of four classes: 5-pointed star, 6-pointed star, 8-pointed star and 12-pointed 
star. While this labeling was being done, the intertwined stars were also labeled so 
that they overlapped each other. The half stars at the corners of the images were 
eliminated from the labeling. Labeling was done with VGG Image Annotator 1.0.0 
(Dutta and Zisserman 2019). Polygonal labeling was used to label stars based on 
their edges. Database was divided into two groups: train and validation data.

The patterns in the database are based on patterns found in the historical 
buildings containing star forms. Many variations of the patterns were produced 
by drawing them in different colors and sizes, keeping their geometric structures 
the same. The patterns in the database are generally chosen from the geography of 
Turkey (such as patterns found in Sehzade Mosque, Beyazit Mosque, Suleymaniye 
Mosque, Selimiye Mosque in Istanbul, Bursa Yesil Mosque in Bursa and Esrefoglu 
Mosque in Beysehir).

A new environment with Python language infrastructure has been prepared 
in Anaconda to perform deep learning training using the Mask RCNN algorithm 
developed by Matterport (Abdulla 2017). Environment includes imgaug, Keras, 
Tensorflow, scikit-image, numpy, opencv-python libraries. COCO (Common 
Objects in Context) was used for transfer learning in the training. Mask RCNN code 
has been modified to have four classes. The training result was monitored with the 
help of Tensorboard.

The validation tests were done with the use of different images (the images 
different from the train and validation data). The test data include various types 
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of images with various backgrounds, various scales of the patterns and various 
colors. The Jupyter Notebook platform was used to make these tests. The inspection 
algorithm has been modified to use the trained network. The weighted file obtained 
at the end of the training was used in the inspection tests.

Results and Discussion

Case 1

Train data of the database used for the Case 1 contains 300 elements, and validation 
data contains 100 elements. Additionally, augmentation (translate, rotate, Gaussian 
Blur) was used to increase the number of images in the database.

After the deep learning training was completed (epochs = 30, steps per 
epoch = 100, min confidence = 0.9, learning rate = 0.0005), the result values were 

Fig. 1   Train and validation data samples of the prepared database
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monitored with the help of Tensorboard. Accordingly, the loss value is 0.93 and 
the validation loss value is 0.75 (Fig. 2, Table 1). Inspection tests were performed 
using test images that the algorithm had never seen before. According to these 
tests, the trained deep learning algorithm can classify stars according to their 
types. As can be seen in Sample 1, which includes random lines and figures at 
the background, the deep learning algorithm has detected 8-pointed stars in the 
pattern (Fig.  3). Also, as can be seen in Sample 2, which includes lines and a 
background color, the algorithm has detected 8-pointed stars in the pattern. In the 
Sample 3, the algorithm was able to detect 6-pointed stars in the pattern (Fig. 3).

Even though the algorithm can detect specific types of stars, there are 
limitations of the algorithm in the tested cases. The following problems were 
detected in the tests:

•	 Although the algorithm can correctly detect and classify 6-pointed and 
8-pointed stars in the images, it generally cannot correctly detect and classify 

Fig. 2   Train and Validation loss graphs found at the end of the deep learning training with a Mask RCNN
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5-pointed and 12-pointed stars in the images. The images containing 5-pointed 
and 12-pointed stars should be increased in the database.

•	 It has been determined that masking cannot be done in some of the images 
containing 12-pointed stars, even if the 12-pointed stars are detected in the 
related images (Fig. 4).

•	 It has been determined that although most of the stars can be detected and 
classified in the images of star pattern tessellations placed in the larger canvas 
(larger image sizes and more repetitive star patterns), some stars cannot be 
detected and classified (Fig. 5).

•	 It has been observed that star detection and classification cannot be done 
in images with very complex backgrounds. The database, which was used 
to train the deep learning algorithm, does not contain images with complex 
backgrounds. Therefore, images with complex backgrounds should be added 
to the database (Fig. 6).

•	 Star detection with masks could not be made in the images where the stars were 
drawn as lines (Fig. 7).

•	 The algorithm performs masking for stars. However, since this masking cannot 
be done from the exact edges of the stars, the masking cannot be in full star form. 
It is thought that ensuring exact masking can be useful for possible tessellation 
layouts creations.

Table 1   The details of the tests

Properties of the deep learning process Case 1 Case 2 Case 3

Min confidence 0.9 0.9 0.2
Epochs 30 30 30
Steps per epoch 100 100 100
Learning rate 0.0005 0.0005 0.0005
Total images in the database 400 600 600
Number of train data 300 460 460
Number of val data 100 140 140
Resulted loss value 0.93 0.91 0.90
Resulted val loss value 0.75 0.87 0.85

Details of the database content Train Val Train Val Train Val

Image details Images with 5-pointed star 25 10 130 35 130 35
Images with 6-pointed star 105 30 105 30 105 30
Images with 8-pointed star 170 61 220 71 220 71
Images with 12-pointed star 25 10 135 40 135 40

Number of labelled stars 5-pointed star 610 299 1359 530 1359 530
6-pointed star 556 114 556 114 556 114
8-pointed star 1323 364 1354 376 1354 376
12-pointed star 373 159 791 298 791 298
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Fig. 3   The star type prediction 
results
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Fig. 4   12-pointed star detection results of Case 1, 2 and 3 respectively

Fig. 5   The repetitive 8-pointed star pattern detection in larger canvas (results of Case 1, 2 and 3 
respectively)

Fig. 6   The star type prediction problems in the complex backgrounds
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Case 2

In Case 1, the number of labeled 5-pointed stars and 12-pointed stars is not 
very small compared to the others (Table  2). However, the number of images 
containing the number of 5-pointed stars and 12-pointed stars is less than other 
stars (train data contains 25 5-pointed stars, 105 6-pointed stars, 170 8-pointed 
stars and 25 12-pointed stars, while validation data contains 10 5-pointed stars, 
30 6-pointed stars, 61 8-pointed stars and 10 12-pointed stars). In other words, 
because a few images contain a large number of 5-pointed stars or 12-pointed 
stars, the number of labeled 5-pointed stars and 12-pointed stars appears to be 
large. In response to this situation, it was decided to increase the number of 
images containing 5-pointed stars and 12-pointed stars and prepare a new dataset.

New images containing 5-pointed and 12-pointed stars have been added 
to the dataset. This database contains 460 train data and 140 validation data. 
Additionally, augmentation (translate, rotate, Gaussian Blur) was used to increase 
the number of images in the database. In the new dataset, train data contains 130 
5-pointed stars, 105 6-pointed stars, 220 8-pointed stars and 135 12-pointed stars, 
while validation data contains 35 5-pointed stars, 30 6-pointed stars, 71 8-pointed 
stars and 40 12-point stars (Table 2).

At the end of the deep learning training with this database (epochs = 30, steps 
per epoch = 100, min confidence = 0.9, learning rate = 0.0005), similar to the 
previous test; the loss value: 0.91 and the validation loss value: 0.87 were found 

Fig. 7   8-pointed star pattern detection in linear drawings (results of Case 1,2 and 3 respectively)
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(Fig.  2, Table  1). The algorithm can find 6-pointed and 8-pointed stars, as in 
the previous test. In addition, the algorithm was improved by being able to find 
5-pointed stars and 12-pointed stars to a certain extent (Fig. 8, Fig. 9).

Even though the algorithm can detect types of stars, there are limitations of the 
algorithm in the tested cases. The following problems were detected in the tests:

•	 In this test, 5-pointed stars started to be detected. However, not all the 5-pointed 
stars in an image are detected (Fig. 8).

•	 12-pointed stars are also detected, but there isn’t enough masking in the images 
(Fig. 9).

•	 Although a progress has been made in star detection in the images with large 
canvases and star detection in linear drawings, the final results are not fully 
successful (Figs. 5, 7).

Fig. 8   Comparison of the 5-pointed star detection results of Case 2 (left side) and Case 3 (right side)
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Case 3

The min confidence parameter was changed (epochs = 30, steps per epoch = 100, 
min confidence = 0.2, learning rate = 0.0005) and another test was performed. At the 
end of this deep learning training, similar to the previous test; the loss value was 
0.90 and the validation loss value was 0.85 (Fig. 2, Table 1).

The algorithm can detect 6-pointed and 8-pointed stars, as in the previous test. 
Additionally, the rate of detecting 5-pointed stars and 12-pointed stars increased 
together with masking (Figs.  4, 8, 9). In Fig.  8, all of the 5-pointed stars and 
12-pointed stars are detected and masked. As can be seen in Fig.  9, 12-pointed 
star detection can be achieved even with a larger canvas. Furthermore, various star 
detection in the images with large canvases and star detection in linear drawings 
are also increased (Figs. 5 and 7). Better results can be obtained at the end of the 
training by increasing the variations of images of the same concept in the database. 
The detection problem in very complex backgrounds can also be improved by 
adding images with a similar concept to the database.

Although the algorithm does not yet provide perfect detection and masking 
results, it is open to improvement. The authors believe that the experiments carried 
out in this study, which is a preliminary study on the subject, will shed light on 
future studies.

Fig. 9   Comparison of the 12-pointed star detection results of Case 2 (left side) and Case 3 (right side)
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Comparison with Earlier Tests

In this study, apart from the database whose results were mentioned, other databases 
were also prepared and tested. As a result of these tests, the val loss value was high, 
and the obtained results of the tests were not satisfactory (Table 2). It is important 
that the loss and val loss values obtained at the end of the Mask RCNN training are 
close to 1 or less. In their studies using Mask RCNN, Davis et al. (2021), Sahin et al. 
(2023) and Wang et al. (2023) observed that the loss values were below 1.

Compared with earlier tests, the observation shows that the database used 
for training requires specific preparation. For example, in Test 1 with 257 data, a 
database consisting only of various Islamic geometric pattern photographs was 
prepared and labeled. The result of the tests were not successful. In Test 2, in 
addition to these photographs, Islamic geometric patterns drawn by the author were 
added to the database and a database with 657 data was prepared. However, the tests 
performed at the end of this training were not successful. The drawings prepared by 
the author have the same concept (linear features, coloring style, repetition, style). 
The tests in this study (mentioned as Case 1, 2, 3) were conducted only with the 
database prepared using these Islamic geometric patterns drawn by the author. As 
mentioned in the results section, this test was successful.

Accordingly, it has been observed that the tests performed with the database 
consisting of images containing a wide variety of different types were not successful, 
but the tests performed with the database consisting of images with similar styles 
and increased diversity were partially successful. With this result, the star detection 
mechanism with Mask RCNN has been tested and experienced.

It has been determined that for a database containing a wide variety of images, 
it must contain a large number of images close to each style. In this case, in order 
to achieve the best results, a database containing tens of thousands of images must 
be prepared. For this, using significant existing Islamic geometric pattern databases 
may be a good alternative. Examples of these databases are Wade Photo Archive 
(2024) and Brian Wichmann’s (2024) archive, which contains versions of geometric 
constructions of these images.

There are a few Islamic pattern tessellations that include 9-pointed stars, 
10-pointed stars and 16-pointed stars. Images containing these star types can be 
added to the database. By performing deep learning training, once more using the 
expanded database, the star types in Islamic pattern tessellations including 9-pointed 
stars, 10-pointed stars, and 16-pointed stars can also be classified.

Islamic geometric patterns are very diverse. Even though the patterns are 
different, they can be very similar to one another. In order for the deep learning 
algorithm to predict these patterns more precisely and give more accurate results, 
training it with a large number and variety of data will be necessary. A common 
platform can be created to create such a dataset to be used for deep learning 
algorithm training. Images can be added to this database by different people from 
different parts of the world. However, a systematic approach is needed to create such 
a platform.
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Conclusion

Islamic geometric patterns are found in many historical artefacts in Eastern 
architecture. However, the applications of the patterns to the modern buildings are 
almost non existent. Therefore, the experts on this subject are very limited. This 
makes the restoration/maintenance of these patterns very difficult. Hence, the ways 
should be searched to make this process automated and easier. In this study, it is 
suggested to use the deep learning algorithm for the detection and classification of 
Islamic geometric pattern tessellation type. The contributions of this study are as 
follows:

•	 A database containing 600 Islamic geometric pattern images has been prepared.
•	 The deep learning algorithm was trained and a weighted file was created. This 

file is ready to use.
•	 The results were tested by giving test images to the trained algorithm. Thus, the 

operability of the trained deep learning algorithm has been confirmed.
•	 The system of creating Islamic geometric patterns is not widely known because 

it is not often used in architecture anymore. For this reason, it is known that 
mistakes were made in the relevant restorations. An attempt has been made to 
produce alternative auxiliary solutions to this situation by searching for artificial 
intelligence-based solutions.

•	 It is thought that the positive and negative test results in this study using Mask 
RCNN will contribute to the development of the algorithm.
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