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Abstract: This study investigates the stability of hydrological drought trends in the Euphrates Basin
from 1960 to 2020 using three-dimensional (3D) graphical representations based on innovative trend
analysis (ITA) and triple Wilcoxon test (WT) methods. Unlike traditional ITA and WT, which are
widely used for trend identification but do not inherently provide trend stability information, this
study employs a novel approach to assess and visualize trend stability. The Triple WT method
divides the data into three equal segments, examining differences without altering the time series.
Drought indices are calculated for 3-month, 6-month, and 12-month time scales using historical
streamflow data from five stations. The research identifies trends and their stabilities across three
distinct periods: 1967–1984, 1985–2002, and 2003–2020. Results show that as the time scale increases,
trend differences between extreme drought conditions diminish. One station consistently exhibits
significantly decreasing trends, while three stations show unstable trends with notable variations in
the standardized streamflow index (SSFI). The use of 3D-ITA and Triple WT effectively captures the
dynamics and stability of drought trends, offering a deeper understanding of hydrological drought
in the Euphrates Basin. These findings provide a reference for future studies on drought trend
mechanisms in various climatic regions.

Keywords: drought; ITA; 3D-ITA; Wilcoxon test; SSFI; trend stability

1. Introduction

Drought is a recurring natural disaster characterized by prolonged water shortages
in a region, significantly impacting the environment, economy, and ecosystems. Differing
from other natural disasters, drought typically develops gradually and expands its area
without warning [1,2]. Drought warning systems are less prevalent and limited in regions
like the Middle East. Hydrological drought is a condition characterized by insufficient
water resources resulting in the depletion of surface and underground water reservoirs due
to inadequate precipitation [3]. Various components of the water cycle, such as streamflow,
precipitation, and soil moisture, display considerable spatial and temporal variability. In-
frequently, these hydrological variables may exhibit extreme behaviors leading to severe
repercussions on ecosystems and posing risks to human life and property. The observed
changes in the climate system have contributed to the intensification of extreme hydrologi-
cal events [4,5], accentuating the significance of the hydrological cycle’s impact globally
and particularly affecting communities residing in river basins [4].

In recent years, global climate change has significantly impacted the hydrological
cycle, leading to an increase in the frequency and severity of drought events worldwide.
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These changes pose a particular threat to water-scarce regions such as the Euphrates Basin,
which plays a critical role in the region’s water resource management. Understanding
the stability of drought trends in this basin is essential for developing effective water
management strategies.

In light of global climate change, it is anticipated that the severity and frequency of
extreme events, including rising temperatures, alterations in precipitation patterns, and
drought occurrences, will intensify worldwide [6–11]. The analysis of hydro-climatological
variables evolution holds paramount importance for hydraulic structure design and water
resource management. It serves as a valuable tool for decision-makers to forecast hy-
drological droughts and formulate effective strategies for water resource management.
Additionally, expressing concrete concepts such as drought and wetness in a comprehen-
sible manner fosters better understanding across all segments of society. Consequently,
examining drought variability and disseminating its findings can establish rapport and
enhance awareness about water scarcity, benefiting diverse segments of society. At the basin
scale, water resources managers primarily focus on streamflow as the most crucial concern.
Climate anomalies demonstrate a comprehensive response resulting from both the physical
processes of the land surface and human activities [12,13]. Consequently, hydrological
drought, concerning runoff, incorporates not only the indication of water deficiency in
other hydrological parameters [14] but also the influences of human activities [15,16]. The
primary objective of this study is to assess the stability of hydrological drought trends in the
Euphrates Basin using innovative statistical methods. We hypothesize that the hydrological
drought trends in the Euphrates Basin have experienced significant temporal changes due
to climatic variations, which can be effectively captured using the innovative trend analysis
(ITA) and the triple Wilcoxon signed-rank test (Triple WT).

Drought is commonly assessed with drought indices, which are commonly derived
from meteorological and hydrological variables, such as precipitation, evapotranspiration,
temperature, and streamflow [17,18]. These indices serve to ascertain the duration, spatial
extent, frequency, and intensity of drought events [19]. In the literature, various types of
drought indices exist, each with distinct advantages and limitations. The selection of a
specific index depends on factors such as the prevalent drought type, hydro-climatological
conditions of the region, and the quality of available data [20]. Numerous studies have
utilized historical records and model simulation data in conjunction with various drought
indices to investigate dry and wet patterns at regional or global scales. For hydrological
drought assessment, commonly employed indices include the surface water supply index
(SWSI) [21], Palmer hydrological drought index (PHDI) [22], standardized flow index
(SSI) [23], streamflow drought index (SDI) [24], and standardized streamflow index (SSFI).
Among these, the standardized streamflow index (SSFI) is widely recognized as the most
utilized method for measuring runoff-based hydrological droughts due to its simplicity
and efficiency advantages. It is a member of the standardized drought index family and
was developed assuming that direct streamflow remains statistically constant. However,
the presence of non-stationary conditions in long-term observations poses a significant
challenge to the validity and applicability of traditional indices in the face of a changing
environment. This situation is not overlooked and warrants careful consideration in
drought assessment methodologies.

In recent times, there has been a growing concern regarding the existence of climate
change-related trends in hydro-meteorological data [25]. To identify trends in climate
variables at a global level, researchers have devised various methods [26–28]. Among these
methods, the non-parametric Wilcoxon Signed Rank Test (WT) [29] is one of the most widely
used for trend analysis. This test assesses whether the distributions of two variables are the
same by analyzing the differences in the data halves. This test is capable of detecting the
presence of a monotonous trend in a time series [30]. However, when dealing with intricate
phenomena like drought, determining a monotonous trend in a time series can only offer
insights at a macro scale. More comprehensive approaches are required to understand
and assess the complex dynamics of drought events. In this context, the innovative trend
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analysis (ITA) method, developed by Şen [31], stands out as a visual–graphical approach for
trend detection with mathematical calculations, allowing the capture of categorical trend
behavior in a given time series. Unlike classical methods, ITA does not rely on assumptions
such as serial independence, sample size, or the probability distribution function hypothesis.
Its flexibility in dividing data into distinct clusters enables the detection of various trend
types, including monotonous trends. Due to this adaptability, ITA has been utilized in
numerous studies and compared with classical approaches [25,32–35].

The existing literature indicates that comprehensive studies using these methods to
detect drought trends are limited. In particular, there has been insufficient research on trend
stability. Güçlü [36] develops the three-dimensional innovative trend analysis (3D-ITA) to
detect trend stability over the time series. This model also provides more trend information
than the ITA approach by demonstrating the stability of decreasing, increasing, and non-
trending conditions. Moreover, the WT accounts for differences between two halves of the
time series and determines if any trend exists. The Triple WT is proposed to compare and
evaluate the trend stability of drought indices with 3D-ITA. This is a novel application of
the WT, and comparisons are made by dividing the time series into three segments instead
of two halves. This innovation offers a more detailed and comprehensive evaluation of
trend analysis and stability.

This study investigates the temporal evolution of hydrological drought magnitude
and extreme events in the Euphrates Basin, Türkiye’s most critical water resource, over
the period from 1967 to 2020. Previous research on the basin has primarily focused on
traditional drought analysis techniques. However, recent advancements in statistical meth-
ods, such as 3D-ITA [36] and the Triple WT [29], offer more robust tools for evaluating
trend stability. This study hypothesizes that applying these advanced techniques to the
Euphrates Basin will uncover previously undetected trends and provide a more accurate
assessment of drought trend stability. To test this hypothesis, trend stability is assessed
for the first time in the region using the 3D-ITA method and the Triple WT. The analysis
encompasses all stations within the basin, with the SSFI computed at short (3 months),
medium (6 months), and long (12 months) time scales using streamflow data from four
available stations. Drought trends at these time scales are evaluated by comparing the
results from ITA, 3D-ITA, classical WT, and Triple WT. Furthermore, this study explores
the reasons for the observed discrepancies in the identified trends. The methodology and
findings presented are expected to significantly contribute to future research in the region
and enhance trend analysis investigations related to different climate variables.

2. Materials and Methods
2.1. Study Area

The Euphrates–Tigris Basin represents the largest and most significant water source in
the Middle East, covering an area of 879,790 km2 across six different countries [37–39]. In
the context of Türkiye, the Euphrates-Tigris Basin (Figure 1) is delineated into two distinct
basins: the Euphrates Basin and the Tigris Basin. Given the transboundary nature of the Eu-
phrates River, its main channel and tributaries bear substantial influence on the agricultural
and industrial sectors of all three countries, namely Syria, Iraq, and Türkiye (Syria and Iraq
being downstream countries). Notably, the implementation of the Southeastern Anatolia
Project (GAP) by Türkiye, initiated in the 1960s, has engendered noteworthy political
tensions with neighboring nations. Specifically, the Turkish segment of the Euphrates Basin
is further subdivided into the Upper Euphrates Basin and the Middle Euphrates Basin,
while the corresponding Iraqi and Syrian regions are referred to as the Lower Euphrates
Basin. The Turkish section of the Euphrates River spans a length of 1263 km, encompasses a
drainage area of 52,600 km2, and exhibits a total annual flow rate of 31.13 km3, contributing
to 16.80% of Türkiye’s overall water potential.
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Figure 1. Geographical location of the study area.

The upper region of the Euphrates Basin encompasses mountainous terrain that
experiences higher precipitation levels when compared to the lower basins, which are
characterized by hot and arid climatic conditions. Consequently, the Euphrates River
receives a continuous inflow of water from rain and melting snow during spring and
especially summer seasons throughout the year. Among the notable contributors to the
river’s flow are prominent tributaries, including the Murat River, Karasu River, Tohma
River, Peri River, Çaltı River, and Munzur River. Furthermore, several noteworthy dams
within Türkiye, such as the Keban Dam, Karakaya Dam, Atatürk Dam, Birecik Dam, and
Karkamış Dam, are strategically situated along the main channel of the Euphrates River,
reinforcing their significance in the water resource management of the region.

The Euphrates Basin, which spans across southeastern Türkiye, is characterized by a
semi-arid climate. The region experiences hot, dry summers and cold, wet winters. The
average annual temperature ranges from 10 ◦C to 18 ◦C, while the annual precipitation
varies between 300 mm and 600 mm, depending on the elevation and location within the
basin. The Euphrates River has a mixed regime, greatly affected by snowmelt and seasonal
rainfall. While flows increase in spring due to snowmelt, flows decrease in summer due to
decreased rainfall.

The land use within the Euphrates Basin is diverse, with significant portions dedicated
to agriculture, particularly in the lower basin areas where irrigation is essential. The upper
basin is characterized by forested areas and natural vegetation, while urban development
is primarily concentrated around key cities and settlements along the river. The soils in the
Euphrates Basin vary widely, with the upper basin predominantly consisting of clayey and
loamy soils, which have moderate to high water retention capacities. In contrast, the lower
basin features more sandy soils, which are less effective at retaining moisture, making these
areas more susceptible to drought conditions.

2.2. Streamflow Data and Homogeneity

Within the basin, a network of measurement stations, overseen by the State Hydraulic
Works (DSI) in Türkiye, diligently records daily runoff time series. In the present inves-
tigation, these daily measurements are utilized to compute average monthly flow values
and subsequently conduct an analysis of drought conditions. The study area encompasses
a total of 122 measurement stations, with data recording periods ranging from 1937 to
2022. However, to uphold the reliability of the analysis, mitigate errors stemming from
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inaccurate or corrupted data, and ensure uninterrupted data coverage for ITA and 3D-ITA,
the selection is refined to include only 4 stations (Table 1).

Table 1. Gauging stations and features.

No. Station No. Lat. (N) Long. (E) Altitude (m) Drainage Area (km2) Recording Period

1 D21A001 40◦6′29′′ 41◦23′8′′ 1830 233.2 1967–2020
2 E21A022 39◦32′19′′ 42◦46′49′′ 1552 5882.4 1967–2020
3 E21A035 37◦59′38′′ 38◦14′13′′ 1252 154.8 1967–2020
4 E21A051 39◦34′45′′ 40◦10′5′′ 1355 8185.6 1967–2020

The selection process for measurement stations incorporates multiple criteria to ensure
robustness. Initially, stations with a recording period of fewer than 50 years are excluded
from the analysis. There are no dams or hydraulic structures upstream of any of the stations
that could influence the flow regime. Subsequently, the dataset is further refined by limiting
it to monthly time series with less than 10% data gaps and no consecutive missing data
exceeding 24 months. The data consists of the annual minimum, average, and maximum
flow rates in m3/s. The maximum flow rate is recorded instantaneously throughout the
year, the annual average value is calculated using the 365 daily averages, and the annual
minimum flow rate is selected as the lowest value among these 365 daily averages. This
approach aligns with similar methodologies employed in prior studies focusing on the
analysis of streamflow time series [30,40]. Detailed technical specifications for the selected
stations can be found in Table 1.

To ensure the robustness of our analysis, a homogeneity test was conducted to identify
and confirm the homogeneity of the gauging stations before performing the trend analysis.
The location of the gauging stations and the flow measurement methods have remained
consistent since their establishment. Additionally, the physical environment and conditions
surrounding these stations have not changed over the years. Therefore, any variations
observed in the time series are assumed to reflect changes in local climatic conditions
rather than alterations in measurement conditions, allowing us to consider the dataset as
homogeneous [41]. To determine the homogeneity of the flow time series in this study, the
runs test [42] was applied. The hypothesis in this test is that the data in the same time series
come from the same cluster and are homogeneous.

2.3. Standardized Streamflow Index (SSFI)

Hydrological drought is a phenomenon marked by adverse deviations in groundwater
levels [3] and river flow patterns [43]. This form of drought can be quantified through
various indices that rely on precipitation, streamflow, low flows, secondary runoff, ground-
water levels, and water balance. In this study, the assessment of hydrological drought
employs the SSFI, which is a flow-based index specifically designed to characterize and
evaluate river flow conditions. It also facilitates the comprehension of whether prevailing
flow conditions deviate from the long-term average for a particular location. Positive SSFI
values signify above-average wetter (below-average flow drier) flow conditions.

Among several other drought indexes, the SSFI holds widespread global application
introduced by Modarres [44] and endorsed by reputable organizations, such as the World
Meteorological Organization and the Global Water Partnership [45]. Its ease of use stems
from its calculation based on monthly flow data. Specifically, it involves the transformation
of the streamflow data from the probability distribution functions.

The study extends the analysis to encompass the total flow series spanning 3 months,
6 months, and 12 months. Consequently, the magnitude of drought is evaluated on temporal
scales, enabling the determination of inter-annual fluctuations in rainy and dry seasons [46].
The classification based on the values of the SSFI is presented in Table 2, facilitating the
categorization of hydrological conditions as per the SSFI values.
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Table 2. Drought classification is based on SSFI values [44].

SSFI Value Classification

20.0 + extremely wet (EW)
1.5 to 1.99 very wet (VW)
1.0 to 1.49 moderately wet (MW)

−0.99 to 0.99 near normal (NN)
−1.0 to −1.49 moderately dry (MD)
−1.5 to −1.99 severely dry (SD)
−2.0 and less extremely dry (ED)

2.4. Trend Analysis Methods

Trend detection in meteorological, hydrological, water, and air quality measurements
has been present in the literature for over thirty years [30]. In addition to the Mann–
Kendall approach, linear regression, Şen slope trend tests, and the ITA method are widely
used in different regions of the world. Şen’s method offers significant advantages in
detecting both monotonic and non-monotonic trends. While other methods only identify
three types of trends (monotonically increasing, monotonically decreasing, and trendless
cases), Şen’s methodology defines five different trend types (monotonically increasing,
monotonically decreasing, non-monotonically increasing, non-monotonically decreasing,
and trendless cases). Furthermore, the ITA method also provides visual results by showing
the distribution of data points on a graph.

In the current literature, comprehensive studies employing methods for detecting
drought trends are still limited. Particularly, there is insufficient research on trend stabilities.
Based on this gap, this study has, for the first time, identified trend stabilities using ITA,
3D-ITA, and the WTs. The WT is a non-parametric method used to determine whether the
differences between two dependent samples are statistically significant. This test can be
applied regardless of whether the data distribution is normal, making it a robust alternative,
especially for small samples. In this study, the WT has been utilized for the first time to
assess differences between two halves by dividing the series into three equal periods (Part
1–Part 2 and Part 2–Part 3), to determine the stability of trends within these time series.

The trend analysis in this study was conducted using MATLAB R2020b. It was also
used to visualize the graphs, which facilitated the implementation of the 3D-ITA and the
visualization of complex data trends. Moreover, IBM SPSS 20. Statistics, with its extensive
library of statistical packages, was utilized for the application of the classical and the Triple
WTs. These software platforms were selected for their robustness in handling large datasets
and performing intricate computations necessary for the comprehensive analysis presented
in this study.

2.4.1. Innovative Trend Analysis (ITA) and 3D-ITA

Detection of trends in any hydro-meteorological data has been a prevalent topic in the
last decades. Along this line, the ITA approach has gained widespread adoption in recent
years due to its distinct advantages. This method offers the ability to identify visually
monotonic or non-monotonic trends without relying on underlying assumptions [31].
Additionally, the ITA method facilitates the classification of time series into five distinct
trend types (Figure 2). For its application, the data records are initially split into two halves,
which are subsequently sorted in ascending order. The sorted data points are then plotted
on a cartesian coordinate system and compared with the 1:1 (45◦) line drawn on the same
graph. If the scattered data points cluster around or align closely with the 1:1 line, then there
is no discernible trend in the time series. Conversely, when the scattered data points deviate
notably above or below this line, it signifies the presence of an increasing or decreasing
trend, respectively.
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A monotonic trend is identified when the data exhibits a consistent pattern of either
continuous increase, continuous decrease, or no trend at all. In contrast, a non-monotonic
trend implies that the data do not exhibit a uniform trend pattern; some data points may
decrease while others increase within the same graph, and vice versa (Figure 2). In this
study, ITA is organized by dividing three different periods (first, second, and third periods)
to assess and compare the streamflow drought in the distant (first–second) and recent
(second–third) past. Hence, the trends of SSFI are determined by whether they increased or
decreased from the past to the present.

In this study, the proposed three-dimensional model, which includes the 1:1:1 straight
line and is an example of the ITA type, not only depicts the specified trend types but also
demonstrates trend stabilities (Figure 3). For the 3D-ITA method, similar computational
steps to the Şen-ITA test and additional procedures are applied. Trend types with stability
can be identified through a visual examination of the scattered data positions about the
1:1:1 straight line in the 3D-ITA graph and the 1:1 straight line in the classical ITA graph.
This visual inspection serves as a critical assessment tool to determine whether the trends
are stable. Similar calculation steps of the Şen-ITA method and more are as follows for the
suggested 3D-ITA method [36]:

1. A given record including n data, x1, x2, . . . , xn is divided into three parts
{

y1,n/3
}

,
{

y2,n/3
}

,
and

{
y3,n/3

}
; {

y1, n
3

}
=

{
x1, x2, . . . , x n

3

}
(1){

y2, n
3

}
=

{
x n

3 +1, x n
3 +2, . . . , x 2n

3

}
(2){

y3, n
3

}
=

{
x 2n

3 +1, x 2n
3 +2, . . . , xn

}
(3)

2. All parts are ranked in descending order, hereby, there are three ordered parts with
the same number of elements namely {r1}, {r2}, and {r3};

{r1} =
{

min
(

y1, n
3

)
, . . . , yi, . . . , max

(
y1, n

3

)}(
1 < i < n

3
)

(4)

{r2} =
{

min
(

y2, n
3

)
, . . . , yj, . . . , max

(
y 2n

3

)}(
1 < j < n

3
)

(5)

{r3} =
{

min
(

y3, n
3

)
, . . . , yk, . . . , max

(
y3, n

3

)}(
1 < k < n

3
)

(6)

3. On the x-z surface, the {r1} values as part 1 on the x-axis versus the {r2} values as part
2 on z-axis are scattered;
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4. On the x-y surface, the {r1} values as part 1 on the x-axis versus the {r3} values as part
3 on the y-axis are scattered (Figure 3);

5. On the z-y surface, the {r2} values as part 2 on the x-axis versus the {r3} values as part
3 on the z-axis are scattered (Figure 3);

6. Straight lines that are 1:1 straight (dashed lines) are put on the surfaces as the main
structure of ITA (Figure 3);

7. Additionally, a 1:1:1 straight line is drawn in a 3D graph and the values of {r1}, {r2},
and {r3} are scattered against each other as spheres (Figure 3);

8. There is stable no trend condition in the time series if all spheres fall on the 1:1:1
straight line;

9. If the spheres’ projections on the surfaces are above (below) the 1:1 straight line then
there is a significant stable increasing (decreasing) trend;

10. If there is any trend type according to the classical ITA but the projections have
different trend types, then there is an unstable trend.

Consequently, the trend type with stability can be characterized through a visual
inspection of the scattered data positions relative to the 1:1:1 straight line on the 3D-ITA
graph and the 1:1 straight line on the classical ITA graph. Hypothetical illustrations using
random values for the 3D-ITA method are presented in Figure 3 [36]. The proposed 3D trend
model provides additional insights into the stability of various trend types, supplementing
the information offered by the classical ITA approach.

Water 2024, 16, x FOR PEER REVIEW 8 of 20 
 

 

{𝑟𝑟1} = �𝑚𝑚𝑚𝑚𝑚𝑚 �𝑦𝑦1,𝑛𝑛3
� , … ,𝑦𝑦𝑖𝑖 , … ,𝑚𝑚𝑚𝑚𝑚𝑚 �𝑦𝑦1,𝑛𝑛3

�� �1 < 𝑖𝑖 <
𝑛𝑛
3
�   (4) 

{𝑟𝑟2} = �min �𝑦𝑦2,𝑛𝑛3
� , … ,𝑦𝑦𝑗𝑗 , … , max �𝑦𝑦2𝑛𝑛

3
�� �1 < 𝑗𝑗 <

𝑛𝑛
3
�   (5) 

{𝑟𝑟3} = �𝑚𝑚𝑚𝑚𝑚𝑚 �𝑦𝑦3,𝑛𝑛3
� , … , 𝑦𝑦𝑘𝑘 , … ,𝑚𝑚𝑚𝑚𝑚𝑚 �𝑦𝑦3,𝑛𝑛3

�� �1 < 𝑘𝑘 <
𝑛𝑛
3
�   (6) 

3. On the x-z surface, the {r1} values as part 1 on the x-axis versus the {r2} values as part 
2 on z-axis are scattered; 

4. On the x-y surface, the {r1} values as part 1 on the x-axis versus the {r3} values as part 
3 on the y-axis are scattered (Figure 3); 

5. On the z-y surface, the {r2} values as part 2 on the x-axis versus the {r3} values as part 
3 on the z-axis are scattered (Figure 3); 

6. Straight lines that are 1:1 straight (dashed lines) are put on the surfaces as the main 
structure of ITA (Figure 3); 

7. Additionally, a 1:1:1 straight line is drawn in a 3D graph and the values of {r1}, {r2}, 
and {r3} are scattered against each other as spheres (Figure 3); 

8. There is stable no trend condition in the time series if all spheres fall on the 1:1:1 
straight line; 

9. If the spheres’ projections on the surfaces are above (below) the 1:1 straight line then 
there is a significant stable increasing (decreasing) trend; 

10. If there is any trend type according to the classical ITA but the projections have dif-
ferent trend types, then there is an unstable trend. 
Consequently, the trend type with stability can be characterized through a visual in-

spection of the scattered data positions relative to the 1:1:1 straight line on the 3D-ITA 
graph and the 1:1 straight line on the classical ITA graph. Hypothetical illustrations using 
random values for the 3D-ITA method are presented in Figure 3 [36]. The proposed 3D 
trend model provides additional insights into the stability of various trend types, supple-
menting the information offered by the classical ITA approach. 

 
Figure 3. Sample trend identification by 3D-ITA model. 
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2.4.2. Wilcoxon Signed-Rank Test (WT)

The Wilcoxon signed-rank test (WT) is a robust non-parametric method preferred when
data do not follow a normal probability distribution function [29]. Due to its rank-based
approach, it is less sensitive to the distributional properties of the data, thereby offering
a wide range of applications. The classical Wilcoxon test aims to determine whether the
distributions of two variables are the same by considering the differences in two paired
data sets. For this purpose, the differences between paired observations are calculated
according to Equations (7)–(9), and the absolute values of these differences are taken [47].
These absolute values are then ranked in ascending order with ranks. The sum of the ranks
corresponding to positive differences (T−) and the sum of the ranks corresponding to
negative differences (T+) are calculated. These sums are then used in the relevant equation,
as specified by Karagöz [48].

Di = Xi − Yi (7)
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Di = Xi − Yi (8)

T = T+ + T− (9)

where Di represents the difference between the first set of data, Xi, and the second, Yi,
and the test statistic value for Wilcoxon is calculated as ZW in Equation (10), which assists
in determining trend conditions based on the value of Za/2 σT (for two-tailed tests). The
distribution has a standard deviation value of σT (Equation (11)) and is denoted by the
arithmetic mean value µT . The hypothesis is based on the principle that µT equals zero [29],
it is assumed to be zero. Thus, H0: T+ = T−, where the sum of positive and negative
differences between trial outcomes equals each other.

ZW = T−µT
σT

= T
σT

(10)

σT =
√

n(n+1)(2n+1)
6

(11)

Furthermore, the trend formation can be understood by comparing the ZWT value with
Za/2. If |ZWT | > |Za/2|, there is a trend formation. Here, Za/2 = ±2.576 indicates a very
strong trend at a 99% confidence interval, Za/2 = ±1.96 indicates a strong trend at a 95%
confidence interval, Za/2 = ±1.645 indicates a moderate trend at a 95% confidence interval,
and, finally, Za/2 = ±1.282 implies a weak trend at an 80% confidence interval. Confidence
intervals of 90% and above are preferred in trend analysis studies [49]. However, in this
study, confidence intervals of 90% and above are also used to better compare the proposed
method with the classical WT.

This study proposes an improved method by modifying the classical WT. This method-
ology establishes a similar relationship between classical ITA [31] and 3D-ITA [30]. The
Triple WT aims to determine trend stabilities by dividing the data into three equal parts, sim-
ilar to the 3D-ITA methodology, but without any change. Here, the Triple WT is employed
for a stability analysis that considers the differences in data from unsorted parts.

3. Results and Discussion

In this study, the runs test was applied to assess the accuracy of the flow data. The
dataset’s homogeneity was evaluated at a 5% significance level, preventing misinterpreta-
tion of extreme events. The results in Table 3 show that the homogeneity tests conducted
at four stations yielded significant findings, aiding in determining whether the dataset
was homogeneous.

Table 3. Monthly results of runs homogeneity test.

Month

Significance Levels (%) According to Cal. Zr for Homogeneity

Station

D21A001 E21A022 E21A035 E21A051

Jan 58.9 0.6 58.3 1.3
Feb 99.0 16.9 99.0 1.3
Mar 58.3 41.0 27.2 58.3
Apr 41.0 41.0 9.9 9.9
May 58.3 41.0 99.0 58.3
Jun 58.3 78.3 58.3 99.0
Jul 58.3 16.9 9.9 5.4

Aug 27.2 16.9 0.6 0.1
Sep 58.3 9.9 0.1 58.3
Oct 16.9 2.8 0.1 1.3
Nov 27.2 58.3 99.0 41.0
Dec 99.0 5.4 58.3 0.3
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Inhomogeneity in a time series can distort the interpretation of extreme events and
trends, often resulting in abrupt changes in the mean [50]. The consistent test results
underscored the importance of addressing inhomogeneity in monthly flow series. Based
on the results presented in Table 3, while certain months exhibited inhomogeneities, the
dataset as a whole is considered largely homogeneous. It is important to note that the
annual scale is generally more stable in homogeneity studies, as it tends to smooth out
seasonal fluctuations. This stability at the annual level provides additional confidence in the
reliability of the findings. The accuracy of the measurements, which produced consistent
outcomes without being affected by any water structures, further reinforces this assessment.
Overall, under stable observation conditions, the data were judged to be homogeneous at
the 5% significance level.

Figures 4–7 illustrate the ITA and 3D-ITA graphs for short-, medium-, and long-term
droughts as indicated by the SSFI at stations D21A001, E21A022, E21A035, and E21A051.
The first column presents ITA graphs with monthly time scales ranging from 3 months to
12 months, while the subsequent columns display the corresponding 3D-ITA graphs for the
same intervals. Similarly, Tables 4–7 provide the results of the WT and the Triple WT for
various time scales.

In the ITA and classical WT analyses, the data is divided into two halves: the first half
spans 27 years from 1967 to 1993, and the second half covers the period from 1994 to 2020.
For the 3D-ITA and Triple WT analyses, the data is divided into three periods: the first
period covers 18 years from 1967 to 1984, the second period spans 1985 to 2002, and the
third period includes 2003 to 2020. As in the ITA applications, these halves and periods are
arranged in ascending order.
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Figure 4. ITA and 3D-ITA results for the D21A001 station. (a) While the first column presents ITA
charts ranging from 3 months to 12 months, here the data is divided into two halves: the first half
covers 27 years from 1967 to 1993, and the second half covers the period from 1994 to 2020. In the
analysis, in the second column, the (b) 3D-ITA (same time intervals from 3 to 12 months) the data are
divided into three periods: the first period covers the 18 years between 1967 and 1984; the second
period covers 1985–2002; and the third period covers the years 2003–2020.
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Figure 5. ITA and 3D-ITA results for the E21A022 station. (a) While the first column presents ITA
charts ranging from 3 months to 12 months, here the data is divided into two halves: the first half
covers 27 years from 1967 to 1993, and the second half covers the period from 1994 to 2020. In the
analysis, in the second column, the (b) 3D-ITA (same time intervals from 3 to 12 months) the data are
divided into three periods: the first period covers the 18 years between 1967 and 1984; the second
period covers 1985–2002; and the third period covers the years 2003–2020.
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analysis, in the second column, the (b) 3D-ITA (same time intervals from 3 to 12 months) the data 
are divided into three periods: the first period covers the 18 years between 1967 and 1984; the second 
period covers 1985–2002; and the third period covers the years 2003–2020. 
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Figure 6. ITA and 3D-ITA results for the E21A035 station. (a) While the first column presents ITA
charts ranging from 3 months to 12 months, here the data is divided into two halves: the first half
covers 27 years from 1967 to 1993, and the second half covers the period from 1994 to 2020. In the
analysis, in the second column, the (b) 3D-ITA (same time intervals from 3 to 12 months) the data are
divided into three periods: the first period covers the 18 years between 1967 and 1984; the second
period covers 1985–2002; and the third period covers the years 2003–2020.
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Figure 7. ITA and 3D-ITA results for the E21A051 station. (a) While the first column presents ITA
charts ranging from 3 months to 12 months, here the data is divided into two halves: the first half
covers 27 years from 1967 to 1993, and the second half covers the period from 1994 to 2020. In the
analysis, in the second column, the (b) 3D-ITA (same time intervals from 3 to 12 months) the data
are divided into three periods: the first period covers the 18 years between 1967 and 1984; and the
second period covers 1985–2002; and the third period covers the years 2003–2020.

Table 4. The WT results for different time intervals of SSFI.

Station
First–Second Halves (SSFI3) First–Second Halves (SSFI6) First–Second Halves (SSFI12)

ZW Trend Sig. Levels (%) ZW Trend Sig. Levels (%) ZW Trend Sig. Levels (%)

D21A001 −1.037 No >10 −1.891 - 10 −2.714 - 1
E21A022 −2.214 - 5 −3.176 - 1 −4.663 - 1
E21A035 −8.037 - 1 −7.274 - 1 −6.438 - 1
E21A051 3.934 + 1 0.362 No >10 −4.344 - 1

Table 5. Triple WT results for SSFI3.

Station
Part 1–Part 2 (SSFI3) Part 2–Part 3 (SSFI3)

ZW Trend Sig. Levels (%) ZW Trend Sig. Levels (%)

D21A001 2.681 + 1 −3.046 - 1
E21A022 1.074 No >10 −0.237 No >10
E21A035 −1.703 - 10 −7.050 - 1
E21A051 0.270 No >10 2.531 + 5

Table 6. Triple WT results for SSFI6.

Station
Part 1–Part 2 (SSFI6) Part 2–Part 3 (SSFI6)

ZW Trend Sig. Levels (%) ZW Trend Sig. Levels (%)

D21A001 2.247 + 5 −3.762 - 1
E21A022 0.809 No >10 −0.780 No >10
E21A035 −1.663 - 10 −6.824 1
E21A051 −0.824 No >10 1.167 No >10

When comparing all figures in the ITA and 3D-ITA, as the monthly time scale increases
(from 3 months to 12 months), the trend differences between extreme conditions (from
extreme drought to extreme wet) notably decrease across all stations. These results are also
supported by the WT.
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Table 7. Triple WT results for SSFI12.

Station
Part 1–Part 2 (SSFI12) Part 2–Part 3 (SSFI12)

ZW Trend Sig. Levels (%) ZW Trend Sig. Levels (%)

D21A001 0.788 No >10 −3.884 - 1
E21A022 −0.341 No >10 −2.526 - 1
E21A035 −2.588 - 1 −6.803 - 1
E21A051 −1.645 - 10 −1.001 No >10

According to ITA applications, the short-, medium-, and long-term drought indices for
station E21A035 exhibit significantly decreasing trends in both ITA and 3D-ITA analyses.
The 3D-ITA results particularly highlight the stability of these trends, demonstrating
consistency across different periods of the data (from the first to the second part and
the second to the third part). Conversely, the decreasing trend of the SSFI indices (ED,
SD, and MD, see Table 2) at lower values indicates an increasing trend in drought across
various time scales. These findings are corroborated by the WT and Triple WT at a 1%
significance level; the WT yielded Zw values of −8.037, −7.274, and −6.438 for station
E21A035 across increasing time scales. Similarly, the Triple WT results closely matched
those of the classical WT, indicating strong trends in the short-, medium-, and long-term
drought indices. Overall, while the ITA and WT produced comparable results, the 3D-ITA
and the proposed Triple WT are particularly effective in reflecting the stability or instability
of trends in drought indices.

The stations D21A001, E21A022, and E21A051 exhibit unstable trends, as demonstrated
by the 3D-ITA results (Figures 4, 5 and 7) and Triple WT (Tables 5–7), which reveal different
trend conditions across various time segments. The SSFI indices for station D21A001
display a monotonic decreasing trend according to the classical ITA (Figure 4). This trend
becomes even more pronounced as the time scale increases. Similarly, in 3D-ITA, the
trend change within the same segment for different time scales becomes more noticeable,
mirroring the WT results.

In Table 4, while the SSFI3 data shows no trend (Zw = −1.037) at the 10% significance
level, SSFI6 and SSFI12 exhibit decreasing trends at the 10% and 1% significance levels,
respectively. Furthermore, the Triple WT also confirms the instability of these trends. For
SSFI3, there is an increasing trend (Zw = 2.681) from the first to the second part and a
decreasing trend (Zw = −3.046) from the second to the third part at the 1% significance level.
Similarly, SSFI6 shows an increasing trend (Zw = 2.247) from the first to the second part at
the 5% significance level and a decreasing trend (Zw = −3.762) from the second to the third
part at the 1% significance level. Finally, SSFI12 implies no trend (Zw = 0.788) from the first
to the second part at the 10% significance level and a decreasing trend (Zw = −3.884) from
the second to the third part at the 1% significance level.

Low values corresponding to extreme drought, severe drought, and moderate drought
(ED, SD, and MD) display an increasing trend for SSFI3 and SSFI6 compared to the classical
ITA, but almost no trend for SSFI12. This is particularly evident between the second and
third segments in 3D-ITA, where the values exhibit a decreasing trend from the second
part to the third part. Consequently, non-monotonic trend types are revealed across all
segments and time scales.

Stations E21A022, SSFI3, SSFI6, and SSFI12 exhibit non-monotonic trends according
to the ITA method. Additionally, a break around SSFI = 1 is observed in all ITA graphs,
and they become more pronounced as the time scale increases. While there is no trend for
SSFI values greater than 1 for SSFI3 and SSFI6, a decreasing trend is observed for SSFI12.
According to the 3D-ITA results, a generally non-monotonic trend is observed, except for
the trend between the second and third periods, where these indices show no trend from
the second part to the third part. Although these results generally align with the WT and
Triple WT, some differences are noticeable. The trend instability is confirmed with the
Triple WT, which shows almost no trend from the first part to the second part and from the
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second part to the third part across different time scales of SSFI, except for a decreasing
trend from the second part to the third part in SSFI12. This is similar to the classical WT
results presented in Table 4. While SSFI3 data show a decreasing trend (Zw = −2.214) at the
5% significance level, SSFI6 and SSFI12 also exhibit decreasing trends (Zw = −3.176 and
Zw = −4.663, respectively) at the 1% significance level.

However, at the 12-month time scale (SSFI12), a distinct trend becomes evident. Sur-
prisingly, at station E21A051, the trend shifts as one moves from a 3-month to a 12-month
time scale. There is also an increase in the number of data points showing negative differ-
ences during drought periods (ED, SD, and MD), despite extreme drought having only a
limited dataset. Additionally, minor fluctuations are observable in these trends, leading
to their classification as either increasing or decreasing forms. According to classical ITA
results, although there is a monotonically decreasing trend for SSFI3, non-monotonic de-
creasing trends are observed for other time scales. Considering the instability of trends in
3D-ITA, no trend conditions are observable in many segments across different time scales.
However, as the SSFI time scales increase, it can be inferred that trends become more stable.
According to the Triple WT results, the SSFI results are dominantly different for SSFI3,
SSFI6, and SSFI12. Specifically, SSFI3 shows no trend (Zw = 0.270) from the first to the sec-
ond part at the 10% significance level, and an increasing trend (Zw = 2.531) from the second
to the third part at the 5% significance level. For SSFI6, no trend is observed across different
segments. Finally, for SSFI12, there are decreasing trends from the first to the second part
and no trend from the second to the third part, both at the 10% significance level.

In brief, across all stations, as monthly time scales increase from 3 months to 12 months,
trend differences between extreme drought conditions (ED to EW) decrease, as supported
by both ITA comparisons and statistical tests. E21A035 consistently shows a significantly
decreasing trend across various time segments in ITA and 3D-ITA analyses, corroborated by
strong WT results. Conversely, stations D21A001, E21A022, and E21A051 exhibit unstable
trends across different time segments, with notable variations observed in SSFI indices
confirmed by the Triple WT. Overall, while classical ITA and WTs yield comparable re-
sults, 3D-ITA and Triple WTs effectively demonstrate trend stability or instability across
diverse time scales and periods, providing valuable insights into drought dynamics at the
studied stations.

Hydrological drought can largely be considered as a consequence of meteorologi-
cal droughts [1]. Due to the impacts of hydrological drought signals, closely monitoring
the temporal trends of drought is critical for the planning and management of water re-
sources. There is no comprehensive study covering detailed drought index trends in the
Euphrates Basin, which is vital for Türkiye’s water potential. However, fragmented studies
have indicated that the drought indices in the region generally show a decreasing trend
across all time scales [51–53]. The hydrological drought interpolation maps prepared by
Boloorani et al. [51] demonstrate that extreme, severe, and moderate droughts prevail
throughout the entire Euphrates Basin. Katipoğlu and Acar [54] evaluated the meteorologi-
cal drought indices of 2014 and the hydrological droughts of 2001 in the Euphrates Basin,
finding that severe and extreme droughts covered a large area of the basin.

As the view that climate variability has lost its homogeneity due to climate change has
become widespread, researchers have increasingly applied non-parametric methods [35].
In this context, the ITA method has been used to identify trends in drought time series
and compared with traditional methods, especially the Mann–Kendall Test [55,56]. The
ITA has different applications in the open literature [25,57–62]. It is noticed that there are
not enough studies on the stability of drought trends in the literature. [30] used the WT to
show numerically for the first time whether the distributions of two variables are the same.
In this way, it was possible to obtain numerical trend values and graphical representation.
In this study, a comprehensive comparison of the stability and variability of drought trends
is made using ITA, 3D-ITA, WT [29], and Triple WT. This comprehensive comparison
highlights the effectiveness of these methods in analyzing drought trends.
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Finally, these findings are crucial for understanding the spatial and temporal distribu-
tions of hydrological droughts and their potential impacts on water management. In this
context, stable/unstable trends of hydrological drought in the Euphrates Basin provide
valuable information for the region’s water resources management and sustainable devel-
opment strategies. However, future research is essential to assess whether these trends
persist and to evaluate the effectiveness of drought management strategies.

4. Conclusions

This study presents a thorough evaluation of drought trend stability using three-
dimensional innovative trend analysis (3D-ITA) and the newly proposed triple Wilcoxon
signed-rank test (Triple WT) across four monitoring stations in the Euphrates Basin. The
results demonstrate considerable variability in drought trend stability among different sta-
tions, with a consistent decline in trends observed at station E21A035, indicating increased
vulnerability to extended drought periods in these sub-regions. These stable trends are
confirmed through both ITA and 3D-ITA methodologies, as well as by significant statistical
evidence from the WT and Triple WT analyses.

While these results are consistent with prior studies on the Euphrates Basin, the
application of 3D-ITA and Triple WT has provided a more nuanced perspective on trend
stability, revealing instabilities that traditional methods may not capture. Notably, stations
D21A001, E21A022, and E21A051 exhibit unstable trends with considerable variability and
non-monotonic behaviors, particularly across different time scales.

The methodologies applied in this study, particularly 3D-ITA and Triple WT, offer
significant adaptability and could be effectively utilized in other regions with comparable
climatic conditions. The insights derived from this research are instrumental in inform-
ing water management strategies for semi-arid areas, and future research could expand
these findings to other geographical contexts, thereby enhancing the applicability of trend
analysis in hydrological studies.
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25. Dabanlı, İ.; Şen, Z.; Yeleğen, M.Ö.; Şişman, E.; Selek, B.; Güçlü, Y.S. Trend assessment by the innovative-Şen method. Water Resour.
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