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MedSegBench: A comprehensive 
benchmark for medical image 
segmentation in diverse data 
modalities
Zeki Kuş    ✉ & Musa Aydin

MedSegBench is a comprehensive benchmark designed to evaluate deep learning models for medical 
image segmentation across a wide range of modalities. It covers a wide range of modalities, including 
35 datasets with over 60,000 images from ultrasound, MRI, and X-ray. The benchmark addresses 
challenges in medical imaging by providing standardized datasets with train/validation/test splits, 
considering variability in image quality and dataset imbalances. The benchmark supports binary and 
multi-class segmentation tasks with up to 19 classes and uses the U-Net architecture with various 
encoder/decoder networks such as ResNets, EfficientNet, and DenseNet for evaluations. MedSegBench 
is a valuable resource for developing robust and flexible segmentation algorithms and allows for fair 
comparisons across different models, promoting the development of universal models for medical 
tasks. It is the most comprehensive study among medical segmentation datasets. The datasets and 
source code are publicly available, encouraging further research and development in medical image 
analysis.

Background & Summary
Deep learning has become essential in medical image analysis and segmentation, offering powerful methods 
to help doctors and researchers better understand and diagnose diseases1. Deep learning can identify patterns 
and details in medical images that might be difficult for human eyes to detect using complex networks such as 
convolutional neural networks2. These techniques are precious for finding tumors in X-rays, classifying dif-
ferent cell types in whole-slide images, or segmenting different brain parts in MRI scans. However, working 
with biomedical datasets presents unique challenges, including variability of image quality and resolution, the 
need for well-annotated examples, imbalances of the datasets, and different modalities. Addressing these chal-
lenges and ensuring the effectiveness of deep learning methods in real-world medical settings requires large 
and diverse datasets3. These comprehensive collections of medical images help train the algorithms to handle 
different modalities and medical tasks. They also allow researchers to compare deep learning methods fairly, 
determine the most effective approaches for specific medical tasks, and develop universal models for different 
medical tasks.

Limited benchmark studies in the literature focus on medical imaging, with most concentrating on medical 
image classification problems4–8. Gelasca et al.4 present a comprehensive biomedical segmentation benchmark 
that evaluates bioimage analysis methods. It includes six datasets with associated ground truth and validation 
methods, covering different scales from subcellular to tissue levels. Rebuffi et al.5 propose the Visual Decathlon 
Challenge, a benchmark that evaluates models across ten diverse visual classification domains, including data-
sets such as Aircraft, CIFAR-100, and ImageNet. Medical Segmentation Decathlon6 supports creating and 
benchmarking semantic segmentation algorithms. It includes 2633 3D images from ten anatomical sites and 
modalities collected from multiple institutions and annotated by experts. Yang et al.7 introduce the MedMNIST 
Benchmark, a collection of ten pre-processed medical image datasets standardized to 28 × 28 pixels. It covers 
various medical image modalities and supports multiple classification tasks. Yang et al.8 extend MedMNIST with 
MedMNIST v2, a standardized collection of biomedical image datasets. This includes 12 datasets for 2D images 
and 6 for 3D images, covering various data modalities, scales, and classification tasks,
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This study introduces a comprehensive benchmark dataset for medical image segmentation (Fig. 1). It 
includes 35 distinct datasets with over 60,000 images covering various data modalities such as ultrasound, der-
moscopy, MRI, X-ray, OCT, and more. It provides a diverse resource for evaluating the performance of deep 
learning models in medical image segmentation tasks. The dataset includes a wide range of scales, from small 
collections with just a few dozen images to extensive datasets containing tens of thousands of samples. The 
segmentation tasks cover binary and multi-class problems, with some datasets featuring up to 19 classes. This 
benchmark offers several powerful advantages as a robust and versatile tool for the research community:

•	 Diversity of modalities: The benchmark includes datasets from various imaging modalities such as Ultra-
sound, MRI, X-Ray, OCT, Dermoscopy, Endoscopy, and various types of microscopy.

•	 Task complexity: It covers binary and multi-class segmentation tasks with up to 19 classes.
•	 Dataset sizes: There’s a wide range in the number of images per dataset, from as few as 28 to as many as 

21,165.
•	 Data split: All datasets follow a standard train/validation/test split, which is crucial for properly evaluating 

machine learning models.
•	 Standardization: All datasets are standardized to enhance comparability and ease of use. Samples across all 

datasets have been resized to three standard resolutions - 128, 256, and 512 pixels - and stored in a uniform 
format.

•	 Application areas: The datasets cover various medical applications, including cancer detection, COVID-19 
diagnosis, cell and nuclei segmentation, and organ segmentation.

We have evaluated each dataset on state-of-the-art segmentation model (U-Net9) with different encoder/
decoder network types (ResNet-18, ResNet-50, Efficient-Net, MobileNet-v2, DenseNet-121, Mix Vision 
Transformer)10. Each experiment is performed 3 times, and average results are reported.
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Fig. 1  Visual overview of the 35 datasets included in MedSegBench. Each dataset is represented by two 
sample images, showcasing the diversity of medical imaging modalities and segmentation tasks covered in this 
benchmark. The datasets span various anatomical regions and pathologies, including abdominal ultrasound, cell 
microscopy, chest X-rays, dermoscopy, endoscopy, fundus imaging, MRI, CT scans, and more.
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This benchmark is carefully designed to assess how well deep learning models can generalize across different 
medical domains, perform on small and large datasets, and handle varying task complexities. By including such 
a wide array of medical imaging challenges, this benchmark is a powerful tool for comprehensively evaluating 
the robustness, flexibility, and overall efficacy of segmentation algorithms in the medical imaging field.

Methods
Data preparation.  Dataset selection and standardization.  The MedSegBench dataset11 comprises 35 
distinct 2D medical image segmentation datasets, some of which are extracted from 3D slices. These datasets 
cover various data modalities such as Ultrasound, OCT, Chest X-ray, MR, and more. The original datasets dif-
fer in scales, segmentation tasks (binary/multi-class), classes, imaging modalities, and annotation styles. Hence, 
we have selected a standardized format and performed pre-processing to ensure a consistent format across all 
datasets.

Image resizing and label mapping.  Numerous medical image segmentation datasets are available in the lit-
erature, each presenting various challenges, including variations in annotations, image sizes, and file formats. 
Additionally, many of these datasets lack officially shared train/test/validation splits, making it challenging to 
compare different methods fairly. To address these issues, we performed pre-processing steps. All image and 
label pairs are resized to 128 × 128, 256 × 256, and 512 × 512 pixels using the bicubic interpolation method. 
Bicubic interpolation produces smoother images using a 4 × 4 pixel neighborhood, preserving details crucial 
for medical imaging2. It balances computational efficiency and image quality, making it ideal for large datasets 
like MedSegBench. Although we used 512 × 512 sized images in our experiments, we have made the 128 × 128 
and 256 × 256 sized versions publicly available for researchers with limited GPU memory. Also, we have applied 
a mapping to labels; pixels with values of 0 and 255 are mapped to 0 and 1 for binary segmentation tasks, and for 
multi-class segmentation tasks, pixels are mapped to integer values between 0 and (#Classes - 1). No additional 
augmentation or pre-processing steps are applied to the images and labels. Figure 2 has presented preprocessing 
steps.

Train/Validation/Test Splits.  We have followed three different scenarios based on MedMNIST v28 to create train/
test/validation splits, using a seed value of 42 for consistency and reproducibility: (1) Utilizing the source train/test/ 
validation splits if published by the authors; (2) Using the source validation set as the test set and splitting the 
source training set into 90% training and 10% validation (9:1 ratio) if the source training and validation splits are 
published by the authors12; (3) Randomly splitting the dataset into 70% training, 10% validation, and 20% test 
sets if no public train/test/validation splits are available (7:1:2 ratio)13,14.

Data storage and licensing.  Most of these datasets are publicly published under Creative Commons Licenses, some 
of which are CC-BY-NC, CC-BY-SA, and CC-BY-NC-SA, permitting the redistribution of datasets. In addition, 
other datasets whose license status is not disclosed are shared publicly for educational purposes, and re-distribution 
permission has been obtained from the authors by email. We have published datasets in MedSegBench under 
Creative Commons Licences, and source codes have been published under Apache License 2.0.

Table 1 presents the summary information for all MedSegBench datasets. In addition, Table 2 shows the 
data-modality-based overview for MedSegBench datasets. Furthermore, Table 3 provides an overview of various 
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Fig. 2  Flowchart of an image preprocessing pipeline: An input image is resized using bicubic interpolation to 
dimensions of 128 × 128, 256 × 256, or 512 × 512 pixels. Following this are two decision points: Is Label? and Is 
Binary?. If the image is not a label, it proceeds to finish. If it is a binary label, it maps pixel values (255 to 1, 0 to 0). 
If it’s a label and not binary, it maps pixels between 0 and (#classes-1) before finishing.
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datasets, detailing their sub-categories and the number of samples for training, validation, and testing. In the 
following sections, we will describe the details of each dataset.

Details.  AbdomenUSMSBench.  The AbdomenUSMSBench created from AbdomenUS15,16 consists of 926 
ultrasound images of the abdominal region, each with a resolution of 449 × 464 pixels. This dataset is designed 
for multi-class segmentation tasks and includes nine distinct classes. We have used the official train and test 
splits, and the train set is split into a training and validation set with a ratio of 9:1. The samples are resized to 
1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).

Bbbc010MSBench.  The Bbbc010MSBench dataset derived from Bbbc01017,18, contains 100 microscopy images, 
each with a resolution of 696 × 520 pixels. These images are created for binary segmentation tasks and are orig-
inally captured for a screen in Fred Ausubel’s Massachusetts General Hospital (MGH) lab. The dataset is split 

Dataset Namesource Modality Pathology/Organ Studied
Binary or Multi-
class (# Classes) # Images # Train/Val/Test

AbdomenUSMSBench15,16 Ultrasound Gallbladder, Kidney, Liver, 
Spleen, Vessel Multi-class (9) 926 569/64/293

Bbbc010MSBench17,18 Microscopy Caenorhabditis elegans Binary 100 70/10/20

Bkai-Igh-MSBench19–21 Endoscopy Colon polyps Multi-class (3) 1,000 700/100/200

BriFiSegMSBench22,23 Microscopy Lung, Cervix, Breast, Eye Binary 1,360 1005/115/240

BusiMSBench24,25 Ultrasound Breast Binary 647 452/64/131

CellNucleiMSBench26,27 Nuclei Nuclei Binary 670 469/67/134

ChaseDB1MSBench28 Fundus Eye (Retinal vessels) Binary 28 19/2/7

ChuacMSBench29 Fundus Eye (Retinal vessels) Binary 30 21/3/6

Covid19RadioMSBench30–32 Chest X-Ray Lung Binary 21,165 14,814/2,115/4,236

CovidQUExMSBench33,34 Chest X-Ray Lung Binary 2,913 1,864/466/583

CystoFluidMSBench37–39 OCT Eye (Cystoid macular edema) Binary 1,006 703/101/202

Dca1MSBench40,41 Fundus Eye (Retinal vessels) Binary 134 93/13/28

DeepbacsMSBench42,43 Microscopy Bacterial cells Binary 34 17/2/15

DriveMSBench44,45 Fundus Eye (Retinal vessels) Binary 40 18/2/20

DynamicNuclearMSBench46,47 Nuclear Cell Nuclear Cells Binary 7,084 4,950/1,417/717

FHPsAOPMSBench48,49 Ultrasound Fetal head, pubic symphysis Multi-class (3) 4,000 2,800/400/800

IdribMSBench50,51 Fundus Eye (Optic discs) Binary 80 47/6/27

Isic2016MSBench52,53 Dermoscopy Skin (Lesions) Binary 1,279 810/90/379

Isic2018MSBench54–56 Dermoscopy Skin (Lesions) Binary 3,694 2,594/100/1,000

KvasirMSBench57,58 Endoscopy Gastrointestinal polyps Binary 1,000 700/100/200

M2caiSegMSBench59,60 Endoscopy Surgical tools and abdominal 
tissues Multi-class (19) 614 245/307/62

MonusacMSBench61,62 Pathology Lung, Prostate, Kidney, and 
Breast Multi-class (6) 310 188/21/101

MosMedPlusMSBench35,36 CT Lung Binary 2,729 1,910/272/547

NucleiMSBench63 Pathology Cell Nuclei Binary 141 98/14/29

NusetMSBench64,65 Nuclear Cell Nuclear cells Binary 3,408 2,385/340/683

PandentalMSBench66,67 X-Ray Mandible Binary 116 81/11/24

PolypGenMSBench68,69 Endoscopy Colon polyps Binary 1,412 984/140/288

Promise12MSBench70,71 MRI Prostate Binary 1,473 1,031/147/295

RoboToolMSBench37 Endoscopy Surgical tools Binary 500 350/50/100

TnbcnucleiMSBench72,73 Pathology Nuclei in histopathology 
images Binary 50 35/5/10

UltrasoundNerveMSBench74 Ultrasound Neck (Brachial Plexus 
Nerves) Binary 2,323 1,651/223/449

USforKidneyMSBench75,76 Ultrasound Kidney Binary 4,586 3,210/458/918

UWSkinCancerMSBench77 Dermoscopy Skin (Cancer) Binary 206 143/19/44

WbcMSBench78,79 Microscopy White Blood Cell Multi-class (3) 400 280/40/80

YeazMSBench80,81 Microscopy Yeast Cells Binary 707 360/96/251

Table 1.  An overview of the 35 datasets included in MedSegBench for medical image segmentation. For each 
dataset, the table lists the dataset name with source references, imaging modality, the pathology or organ studied, 
whether the segmentation task is binary or multi-class (along with the number of classes), the total number of 
images, and the distribution of images into training, validation, and test sets. The datasets cover various imaging 
modalities such as Ultrasound, MRI, X-ray, OCT, and others, covering a wide range of medical applications and 
challenges.
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into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are 
mapped to 0 and 1.

Bkai-Igh-MSBench.  The Bkai-Igh-MSBench dataset is derived from the BKAI-IGH NeoPolyp dataset19–21 and 
consists of 1,200 endoscopy images, each with a resolution of 1280 × 995 pixels. It is designed for multi-class seg-
mentation tasks with three distinct classes. We can not use publicly shared test sets because of a lack of ground 
truth annotations. The dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 
3 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).

BriFiSegMSBench.  The BriFiSegMSBench, which originates from the BriFiSeg dataset22,23, includes 1,360 
microscopy images with a resolution of 512 × 512 pixels. This dataset is intended for binary segmentation tasks 
and contains two classes. The images are single-channel samples derived from various cell lines, such as A549, 
HeLa, MCF7, and RPE1. The dataset is divided into training and validation sets with a 9:1 ratio. Additionally, 
task-specific images and annotations are provided in npz file format (see Table 3). The samples are resized to 
1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

Modality
Number of 
Images

Total Number of 
Datasets

Computed Tomography 2,729 1

Dermoscopy 5,179 3

Endoscopy 4,526 5

Fundus 312 5

Magnetic Resonance Imaging 1,473 1

Microscopy 2,281 5

Nuclear Cell 10,492 2

Nuclei 670 1

Optical Coherence Tomography 1,006 1

Pathology 501 3

Ultrasound 12,482 5

X-Ray 24,194 3

Table 2.  Overview of the medical imaging modalities represented in the MedSegBench benchmark datasets. For 
each modality, the table lists the total number of images and datasets included in MedSegBench.

Dataset Name Sub-categories # Train/Val/Test

BriFiSegMSBench

C1: Target 1 A549;

201/23/48

C2: Target 2 A549;

C3: HeLa;

C4: MCF7;

C5: RPE1

BusiMSBench
C1: Benign; 305/43/89

C2: Malignant 147/21/42

Covid19RadioMSBench

C1: Covid; 2,531/361/724

C2: Lung; 4,208/601/1,203

C3: Normal; 7,134/1,019/2,039

C4: Viral Pneumonia 941/134/270

IdribMSBench

C1: Microaneurysms;

47/6/27
C2: Hemorrhages;

C3: Hard Exudates;

C4: Optic Disc

UWSkinCancerMSBench
C1: Melenoma; 83/11/25

C2: Not-Melenoma 60/8/19

WbcMSBench

C1: Lymphocyte; 146/20/43

C2: Monocyte; 63/9/43

C3: Neutrophil; 44/6/13

C4: Eosinophil 23/3/8

Table 3.  Overview of datasets and their sub-categories with Train/Validation/Test splits. Each dataset is split into 
specific sub-categories by authors, and the corresponding number of samples for each sub-category is listed in 
Train/Val/Test format.
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BusiMSBench.  The BusiMSBench dataset is derived from the Breast Ultrasound Images Dataset24,25 and con-
tains 647 ultrasound images with an average resolution of 500 × 500 pixels. This dataset is designed for binary 
segmentation tasks, categorizing data into benign and malignant classes. It is split into three parts: train/val/test, 
in a 7:1:2 ratio. Additionally, class-based images (benign and malignant) and annotations are provided in.npz 
file format (see Table 3). The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer 
values between 0 and 1.

CellNucleiMSBench.  The CellNucleiMSBench comes from the 2018 Data Science Bowl26,27 and consists of 670 
nuclei images with a resolution of 320 × 256 pixels. This dataset is specifically designed for binary segmentation 
tasks. We could not use 65 test images because ground truths are not published officially. Therefore, the source 
dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 pixels, and 
the labels are mapped to integer values between 0 and 1.

ChaseDB1MSBench.  ChaseDB1MSBench is based on the CHASE_DB1 dataset28, released in 2012 by Kingston 
University, London, and St. George’s, University of London, consists of 28 fundus images with a resolution of 
999 × 960 pixels. This dataset is designed for binary segmentation tasks, including two classes. We split the 
source dataset into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 pixels, and 
the labels are mapped to integer values between 0 and 1.

ChuacMSBench.  The ChuacMSBench, derived from the CHUAC dataset29, includes 28 fundus images with 
189 × 189 pixels. It is designed for binary segmentation tasks. The source dataset is split into three parts: train/
val/test, in a 7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer 
values between 0 and 1.

Covid19RadioMSBench.  The COVID-19 Radiography Database30–32 is the source of the Covid19RadioMSBench  
dataset, which consists of 21,165 chest X-ray images, each with a resolution of 299 × 299 pixels. This dataset is 
designed for binary segmentation tasks. We divide the source dataset into three parts: train/val/test sets with 
a ratio of 7:1:2. It is developed by a collaborative effort of researchers from Qatar University, the University of 
Dhaka, and partners from Pakistan and Malaysia, working alongside medical professionals. It includes chest 
X-ray images for COVID-19 positive cases and Normal and Viral Pneumonia images. The authors have also 
categorized the images into four groups: COVID, Lung_Opacity, Normal, and Viral Pneumonia. We provide 
these category-based images and their corresponding annotations in.npz file format (see Table 3). The samples 
are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

CovidQUExMSBench.  The CovidQUExMSBench, based on the COVID-QU-Ex Dataset33,34, consists of 2,913 
chest X-ray images, each with a resolution of 256 × 256 pixels. This dataset is specifically designed for binary 
segmentation tasks. We use only infection segmentation samples. The source dataset is split into three parts: 
train/val/test, in a 7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to inte-
ger values between 0 and 1.

MosMedPlusMSBench.  The MosMedPlusMSBench, based on the MosMedDataPlus35,36 dataset, comprises 
2,729 Covid-19 CT images, each sized 512 × 512 pixels. This dataset is designed for binary segmentation tasks. 
We split source data into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 pix-
els, and the labels are mapped to integer values between 0 and 1.

CystoFluidMSBench.  The CystoFluidMSBench is based on Intraretinal Cystoid Fluid dataset37–39, comprises 
1,006 OCT (Optical Coherence Tomography) images, most of which are sized at 512 × 512 pixels. This data-
set is designed for binary segmentation tasks. The images are carefully chosen by medical experts at Liaquat 
University of Medical and Health Sciences (LUMHS) Jamshoro, who are trained to identify Cystoid Macular 
Edema (CME) and its progression, providing a confirmatory diagnosis of CME. The source dataset is split into 
three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 pixels, and the labels are 
mapped to integer values between 0 and 1.

Dca1MSBench.  The Dca1MSBench is derived from the DCA1 dataset40,41 and contains 134 fundus images, 
each with a resolution of 300 × 300 pixels. The Cardiology Department of the Mexican Social Security Institute, 
UMAE T1-LeÃ³n, provides the images. This dataset is specifically created for binary segmentation tasks. The 
dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and 
the labels are mapped to integer values between 0 and 1.

DeepbacsMSBench.  The DeepbacsMSBench, based on the DeepBacs dataset42,43, consists of 34 samples of fun-
dus images, each with a size of 1024 × 1024 pixels. It is designed for binary segmentation tasks. We use official 
train/validation/test splits published officially by authors. The samples are resized to 1 × 512 × 512 pixels, and 
the labels are mapped to integer values between 0 and 1.

DriveMSBench.  The DriveMSBench dataset, based on the DRIVE dataset44,45, includes 40 fundus images, each 
with dimensions of 565 × 584 pixels. The images are obtained from a diabetic retinopathy screening program in 
the Netherlands. It is designed for binary segmentation and uses official splits for training, validation, and test-
ing. The samples are resized to 3 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.
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DynamicNuclearMSBench.  The DynamicNuclearMSBench, created from the DynamicNuclearNet 
Segmentation dataset46,47, consists of 7084 samples of nuclear cell images, each 128 × 128 pixels in size. This data-
set is utilized for a binary segmentation task. Training, validation, and test splits that are officially published are 
used. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

FHPsAOPMSBench.  The FHPsAOPMSBench dataset is based on a prior dataset48,49 and comprises 4,000 ultra-
sound images, each with a resolution of 256 × 256 pixels. This dataset is designed for a multi-class segmentation 
task, including three distinct classes. The source dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The 
samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).

IdribMSBench.  The IdribMSBench is based on the Indian Diabetic Retinopathy Image Dataset50,51 and includes 
80 high-resolution fundus images (4288 × 2848 pixels) for a binary segmentation task. We use official train/vali-
dation/test splits published officially by authors. The authors have also categorized the labels into four categories: 
Microaneurysms, hemorrhages, Hard Exudates, and Optic Discs. These category-based labels and annotations 
are provided in a npz file (see Table 3). The samples are resized to 3 × 512 × 512 pixels, and the labels are mapped 
to integer values between 0 and 1.

Isic2016MSBench.  The Isic2016MSBench is derived from the ISIC 2016 Challenge52,53, which consisted of 
1,279 dermoscopy samples of varying sizes designed for binary segmentation tasks. We use official training, 
validation, and test splits published by authors. The samples are resized to 3 × 512 × 512 pixels, and the labels are 
mapped to integer values between 0 and 1.

Isic2018MSBench.  The Isic2018MSBench is derived from the ISIC 2018 Challenge54–56, which consisted of 
3,694 dermoscopy samples of varying sizes designed for binary segmentation tasks. We use official training, 
validation, and test splits published by authors. The samples are resized to 3 × 512 × 512 pixels, and the labels are 
mapped to integer values between 0 and 1.

KvasirMSBench.  The KvasirMSBench, derived from the Kvasir-SEG dataset57,58, consists of 1,000 endoscopy 
images with resolutions ranging from 332 × 487 to 1920 × 1072 pixels. The dataset includes images of gastro-
intestinal polyps and their segmentation masks, which an experienced gastroenterologist has annotated and 
verified. It is structured for a binary classification task. The source dataset is divided into three parts: train/val/
test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 pixels, and the labels are mapped to integer values 
between 0 and 1.

M2caiSegMSBench.  M2caiSegMSBench is based on a prior dataset59,60 comprising 614 pathology samples and 
designed for multi-class segmentation tasks, including 19 distinct classes. The images within this dataset exhibit 
variable dimensions, and we use official train/validation/test splits. The samples are resized to 3 × 512 × 512 
pixels, and the labels are mapped to integer values between 0 and (#Classes - 1).

MonusacMSBench.  MonusacMSBench is based on the MoNuSAC challenge61,62. It consists of 310 samples and 
is designed for multi-class segmentation with 6 classes. The images in this dataset are H&E stained digitized 
tissue images from several patients acquired at multiple hospitals using a standard 40x scanner magnification. 
The annotations are provided by expert pathologists. We use the officially published train/validation/test splits 
from the challenge. The samples are resized to 3 × 512 × 512 pixels, and the labels are mapped to integer values 
between 0 and (#Classes - 1).

NucleiMSBench.  The NucleiMSBench is based on a prior dataset63, consisting of 141 pathology samples, each 
with an image size of 2000 × 2000 pixels. This source dataset is designed for binary segmentation tasks. The 
source dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 
pixels, and the labels are mapped to integer values between 0 and 1.

NusetMSBench.  The NusetMSBench, derived from the NuSet dataset64,65, contains 3,408 pathology samples 
designed for binary segmentation problems. We split the source dataset into three parts: train/val/test, in a 7:1:2 
ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

PandentalMSBench.  The PandentalMSBench is created from the Panoramic Dental X-rays dataset66,67 and con-
tains 116 X-ray samples of varying sizes. It is specifically intended for binary segmentation tasks. The dataset 
comprises anonymized and deidentified panoramic dental X-rays of 116 patients taken at Noor Medical Imaging 
Center in Qom, Iran. The source dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The samples are 
resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

PolypGenMSBench.  The PolypGenMSBench is based on a prior endoscopy dataset68,69 consisting of 1,412 
endoscopy samples, each with an image size of 1920 × 1080 pixels. It is designed for binary segmentation tasks. 
It includes colonoscopy video frames captured from a diverse patient population at six different centers in Egypt, 
France, Italy, Norway, and the United Kingdom. We provide these images, and annotations are captured from 
these centers in a npz file. The source dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The sam-
ples are resized to 3 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.
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Promise12MSBench.  The Promise12MSBench, derived on the PROMISE12 dataset70,71, contains 1,473 MR 
samples, each with an image size of 512 × 512 pixels. It is designed for binary classification. We split the source 
dataset into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and the 
labels are mapped to integer values between 0 and 1.

RoboToolMSBench.  The RoboToolMSBench, based on the RoboTool dataset37, consisting of 500 samples, is 
designed for binary segmentation tasks. The source dataset is divided into three parts: train/val/test, in a 7:1:2 
ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

TnbcnucleiMSBench.  The TnbcnucleiMSBench is based on a prior dataset72,73, consisting of 50 pathology sam-
ples, each with an image size of 512 × 512 ×  pixels. This dataset is based on the merging of two different datasets: 
the first dataset, generated at the Curie Institute, consists of annotated H&E stained histology images at 40× 
magnification, and the second dataset, provided by the Indian Institute of Technology Guwahati, also consists 
of annotated H&E stained histology images captured at 40× magnification. It is designed for binary segmenta-
tion tasks. We split the source dataset into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 
3 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

UltrasoundNerveMSBench.  The UltrasoundNerveMSBench, derived from prior dataset74, contains 2,323 ultra-
sound samples, each with an image size of 580 × 420 pixels and designed for binary segmentation tasks. The 
primary task in this dataset is to segment a collection of nerves known as the Brachial Plexus (BP) in ultrasound 
images. Due to the lack of test image annotations, we split the source dataset into three parts: train/val/test, in a 
7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer values between 
0 and 1.

USforKidneyMSBench.  The USforKidneyMSBench is derived from the CT2USforKidneySeg dataset75,76, com-
prised of 4,586 ultrasound samples, each with an image size of 256 × 256 pixels, and designed for binary segmen-
tation tasks. The source dataset is split into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 
1 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

UWSkinCancerMSBench.  The UWSkinCancerMSBench is based on the Skin Cancer Detection dataset77, consist-
ing of 206 dermoscopy samples, designed for binary classification tasks The dataset includes images extracted from 
the public databases DermIS and DermQuest, along with manual segmentations of the lesions. We split the source 
dataset into three parts: train/val/test, in a 7:1:2 ratio. The authors have also categorized the labels into Melenoma 
and Not-Melenoma. These category-based labels and annotations are provided in a.npz file (see Table 3). The sam-
ples are resized to 3 × 512 × 512 pixels, and the labels are mapped to integer values between 0 and 1.

WbcMSBench.  The WbcMSBench, based on prior datasets78,79, is a microscopy imaging dataset consisting 
of 80 samples, with image sizes of 120 × 120 and 300 × 300 pixels. It is designed for multi-class segmentation 
tasks, including 3 classes. The dataset is based on two sources: Dataset 1, obtained from Jiangxi Tecom Science 
Corporation, China, contains 300 images of white blood cells with a resolution of 120 × 120 pixels. Dataset 
2 consists of 100 color images with a resolution of 300 × 300 pixels, collected from the CellaVision blog. The 
authors have grouped the samples into four categories: Lymphocyte, Monocyte, Neutrophil, and Eosinophil, and 
we provide these category-based images and corresponding labels in npz file format (see Table 3). The source 
dataset is divided into three parts: train/val/test, in a 7:1:2 ratio. The samples are resized to 3 × 512 × 512 pixels, 
and the labels are mapped to integer values between 0 and (#Classes - 1).

YeazMSBench.  The YeazMSBench, derived from the YeaZ dataset80,81, consists of 707 microscopy images with 
varying sizes and is designed for binary segmentation tasks. We split the source dataset into three parts: train/
val/test, in a 7:1:2 ratio. The samples are resized to 1 × 512 × 512 pixels, and the labels are mapped to integer 
values between 0 and 1.

Data Records
We have publicly shared each dataset with varying sizes (128 × 256, and 512 sized) in MedSegBench at 
Zenodo11. The MedSegBench consists of 35 pre-processed 2D medical image segmentation datasets (some of 
them extracted 3D slices) from various data modalities and tasks (binary/multi-class). The data storage for-
mat published by MedMNISTv28 is followed. We save each dataset in Numpy npz format, named as {data-
set}_{size}.npz. Each npz file contains following keys: [“{train,val,test}_images”, “{train,val,test}_label”]. Also, 
some authors have published class- or category-based images and labels. We have also added this information 
with the following keys into the npz file and explained them in source code files: [“{train,val,test}_images_ 
{classno}”, “{train,val,test}_label_{classno}”]. All images and labels are stored in uint8 data type. {train,val,test}_
images: Numpy array contains train, validation and test images with N × W × H × C shape for RGB datasets, 
and N × W × H for gray-scale datasets. Here, N refers to the number of samples, W is the width, H is the height, 
and C denotes the number of channels. {train,val,test}_label: It includes train, validation and test labels with 
N × W × H shape. {train,val,test}_images_{classno} and {train,val,test}_label_{classno}: These hold class or 
category-based train, validation, and test images and labels with shapes N × W × H × C (for RGB images, and 
N × W × H for gray-scale images), respectively.
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Technical Validation
Baseline methods.  In this study, we chose the U-Net architecture as the baseline structure for image seg-
mentation tasks. We have selected six encoder/decoder networks to enhance performance and adaptability. 
These include ResNet18, ResNet50, and DenseNet121, commonly used as benchmarks in segmentation research. 
ResNet18 is chosen over ResNet34 primarily due to its lower computational complexity and faster training times, 
which are advantageous when working with large datasets or limited computational resources. Despite being 
shallower, ResNet18 provides a good balance between depth and efficiency, making it suitable for capturing 
essential features in medical images, especially when combined with the U-Net architecture that enhances spa-
tial resolution through its encoder-decoder structure82,83. ResNet50, with its deeper architecture, offers more 
detailed feature extraction capabilities, allowing it to handle more complex segmentation tasks. DenseNet121 
is included for its efficient use of parameters and its dense connectivity, which mitigates the vanishing gradient 
problem and is beneficial for capturing fine details in medical images84. We have also selected EfficientNet and 
MobileNetv2 because they are lightweight models offering a more computationally efficient alternative to ResNets 
and DenseNet. Furthermore, we have added a transformer-based approach using the Mix Vision Transformer, 
acknowledging the growing interest in transformer models for vision tasks.

The U-Net structure and diverse encoder/decoder networks are implemented using the qubvel-segmentation 
framework10. We have not used pre-trained ImageNet weights; we train each model from scratch on our data-
sets. We have trained each model with three randomly selected seed values to ensure the robustness of our 
results. All images are resized to 512 × 512 pixels, a standardized dimension for the training, validation, and test-
ing phases. Training is conducted over 200 epochs using the Adam Optimizer with a learning rate of 1e-3. For 
binary segmentation tasks, we used dice loss, while categorical cross-entropy loss is used for multi-class tasks. A 
batch size of 128 is selected throughout the training process. We have not applied weight decay methods or any 
data augmentation techniques, focusing on the raw performance of the models. The model weights correspond-
ing to the best validation IOU are recorded for each network configuration. Further details regarding the model 
implementation, training, and evaluation steps are available in our code repository.

Performance measures.  We have evaluated each model on 35 different datasets using four performance 
measures: Precision (PREC), Recall (REC), F1-score (F1), and Intersection over Union (IOU). Precision meas-
ures the accuracy of positive predictions, highlighting its ability to avoid false positives, while Recall evaluates 
the model’s capacity to identify all relevant positive instances, minimizing false negatives. The F1-Score, as the 
harmonic mean of Precision and Recall, provides a balanced view, which is especially useful when there is an 
unbalanced class distribution. IoU, primarily used in image segmentation and object detection, evaluates the 
overlap between predicted and actual regions, ensuring accurate localization and identification of objects. We 
have individually reported PREC, REC, F1, and IOU scores for each dataset and averaged the results.

Results
The average PREC and REC results obtained from three different runs are shown in Table 4, and average F1 
and IOU scores are reported in Table 5 for each individual dataset. Also, Table 5 shows the average results for 
each baseline method. Additionally, we have provided detailed performance metrics for each seed and model 
across all datasets, alongside image-wise performance metrics to assess robustness and reliability. All related 
data, including model weights for each model with three seeds, are available on our Zenodo page85 and Github 
repository (see Code availability section).

Table 4 presents a comprehensive overview of the average precision and recall results for six encoder net-
works across various datasets. These networks include ResNet-18 (RN-18), ResNet-50 (RN-50), Efficient-Net 
(EN), Mobile-Net-v2 (MN-v2), DenseNet-121 (DN-121), and Mix Vision Transformer (MVT). The results are 
divided into two main categories: precision and recall. In terms of precision, DenseNet-121 consistently demon-
strated strong performance across numerous datasets. For example, it achieved the highest precision scores 
in datasets such as BusiMSB (0.794), ChuahMSB(0.870) and Dca1MSB (0.801). Similarly, Efficient-Net also 
demonstrated strong precision, particularly in datasets like Isic2016MSB and Isic2018MSB, where it scored 
0.912 and 0.857, respectively. Although the Mix Vision Transformer is not evaluated on all datasets because 
it only accepts at least three channel images as input, it performed competitively where applicable, reach-
ing high precision in datasets like Bkai-Igh-MSB (0.983). Regarding Recall, DenseNet-121 has emerged as a 
top performer, obtaining the highest recall in datasets such as Bbbbc010MSB (0.920) and WbcMSB (0.970). 
Efficient-Net also performed well in recall metrics, particularly in datasets like DynamicNuclearMSB (0.966) 
and USforKidneyMSB (0.982). The results indicate that DenseNet-121 and Efficient-Net are particularly robust 
across precision and recall metrics, suggesting their effectiveness in various applications. Overall, the analysis 
highlights DenseNet-121’s consistently high performance across multiple datasets, making it a reliable choice for 
tasks requiring high precision and recall. Efficient-Net also stands out, especially in recall, indicating its potential 
for applications where recall is critical.

Table 5 provides a comprehensive evaluation of six encoder networks across various datasets, using F1-score 
and Intersection over Union (IOU) as performance metrics. DenseNet-121 consistently performs well, fre-
quently yielding the top F1 and IOU metrics scores across numerous datasets. For example, in the Bbbc010MSB 
and CellNucleiMSB datasets, DenseNet-121 records the highest F1-scores of 0.920 and 0.907, respectively, and 
similarly high IOU scores, indicating its robustness in handling diverse data types. Efficient-Net also shows 
significant performance, particularly in datasets like Isic2016MSB and USforKidneyMSB, where it achieves the 
highest F1-scores of 0.903 and 0.981, respectively. This indicates that Efficient-Net is particularly effective in sce-
narios requiring high precision and recall, as shown in its F1 scores. ResNet-50 performs best with an F1-score 
of 0.931 and an IOU of 0.870 for the DeepbacsMSB. Additionally, it has also attained the highest F1-score of 
0.786 and an IOU of 0.648 in the DriveMSB dataset. For the FHPsAOPMSB dataset, ResNet-18 has achieved 
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the highest F1-score of 0.961 and an IOU of 0.929. While Mix Vision Transformer does not frequently perform 
as well as DenseNet-121, it shows competitive performance in specific datasets such as UWSkinCancerMSB, 
achieving the second-highest F1 Score of 0.881. This indicates its potential in specialized applications, particu-
larly in medical imaging contexts. Overall, DenseNet-121 is the most robust and effective network, frequently 
outperforming other networks in yielding high F1-scores and IOU values. Table 5 has also demonstrated how 
the F1-score provides clearer insights than Precision or Recall alone. The CellNucleiMSBench consists of 670 
images for nuclei segmentation tasks, where the number of nuclei (positive class) is significantly lower com-
pared to the background (negative class). For example, DenseNet-121 achieved a Precision of 0.927 and a Recall 
of 0.898 on this dataset, resulting in an F1-score of 0.907. This high F1-score reflects a balanced performance, 
ensuring the model is precise and sensitive in nuclei detection. In another example, the Bbbc010MSBench with 
100 microscopy images designed for binary segmentation, the distribution between the classes can be uneven, 
especially in identifying specific cellular structures. DenseNet-121 has achieved a Precision of 0.922 and a Recall 
of 0.920, resulting in an F1-score of 0.920. This demonstrates that the model effectively balances precision and 
recall. Lastly, Isic2018MSBench involves segmenting skin lesions, where the area covered by lesions (positive 
class) can vary widely compared to healthy skin (negative class). EfficientNet attained a Precision of 0.857 and 
a Recall of 0.923, resulting in an F1-score of 0.868. This indicates that the model maintains a strong balance 
between accurately identifying lesions and minimizing missed detections.

Dataset

Precision (PREC) Recall (REC)

RN-18 RN-50 EN MN-v2 DN-121 MVT RN-18 RN-50 EN MN-v2 DN-121 MVT

AbdomenUSMSB 0.976 0.973 0.950 0.964 0.955 — 0.652 0.654 0.670 0.655 0.671 —

Bbbc010MSB 0.919 0.926 0.918 0.918 0.922 — 0.912 0.909 0.904 0.900 0.920 —

Bkai-Igh-MSB 0.983 0.961 0.939 0.944 0.952 0.983 0.563 0.625 0.705 0.737 0.642 0.563

BriFiSegMSB 0.812 0.816 0.812 0.803 0.817 — 0.873 0.886 0.882 0.861 0.898 —

BusiMSB 0.729 0.753 0.765 0.766 0.794 — 0.727 0.665 0.728 0.672 0.714 —

CellNucleiMSB 0.924 0.920 0.913 0.901 0.927 0.928 0.882 0.886 0.894 0.872 0.898 0.883

ChaseDB1MSB 0.788 0.789 0.780 0.794 0.793 0.774 0.733 0.738 0.725 0.703 0.739 0.705

ChuacMSB 0.713 0.710 0.643 0.644 0.870 — 0.470 0.451 0.526 0.458 0.444 —

Covid19RadioMSB 0.991 0.991 0.991 0.991 0.992 — 0.990 0.990 0.991 0.991 0.991 —

CovidQUExMSB 0.741 0.738 0.753 0.739 0.760 — 0.824 0.810 0.815 0.827 0.826 —

CystoFluidMSB 0.889 0.870 0.874 0.879 0.888 0.874 0.848 0.872 0.856 0.844 0.851 0.865

Dca1MSB 0.776 0.788 0.775 0.781 0.801 — 0.757 0.757 0.740 0.732 0.740 —

DeepbacsMSB 0.957 0.956 0.955 0.958 0.959 — 0.905 0.907 0.897 0.886 0.900 —

DriveMSB 0.817 0.789 0.799 0.811 0.827 0.784 0.756 0.790 0.748 0.750 0.751 0.784

DynamicNuclearMSB 0.924 0.929 0.937 0.926 0.928 — 0.965 0.965 0.966 0.963 0.965 —

FHPsAOPMSB 0.962 0.964 0.964 0.965 0.961 — 0.960 0.951 0.956 0.955 0.959 —

IdribMSB 0.150 0.153 0.139 0.150 0.172 0.110 0.089 0.072 0.065 0.078 0.068 0.041

Isic2016MSB 0.890 0.897 0.912 0.912 0.913 0.897 0.907 0.910 0.919 0.901 0.905 0.917

Isic2018MSB 0.838 0.839 0.857 0.864 0.878 0.854 0.911 0.907 0.923 0.908 0.896 0.907

KvasirMSB 0.816 0.770 0.839 0.842 0.874 0.644 0.768 0.755 0.860 0.780 0.804 0.697

M2caiSegMSB 0.737 0.756 0.801 0.762 0.759 0.794 0.224 0.225 0.228 0.225 0.230 0.227

MonusacMSB 0.945 0.951 0.951 0.951 0.951 0.951 0.589 0.589 0.589 0.589 0.589 0.589

MosMedPlusMSB 0.816 0.817 0.807 0.821 0.826 0.808 0.786 0.802 0.796 0.793 0.798 0.767

NucleiMSB 0.250 0.233 0.223 0.199 0.225 0.196 0.394 0.395 0.449 0.281 0.479 0.481

NusetMSB 0.949 0.950 0.953 0.950 0.953 — 0.951 0.951 0.951 0.952 0.952 —

PandentalMSB 0.956 0.955 0.952 0.945 0.965 — 0.967 0.968 0.963 0.958 0.965 —

PolypGenMSB 0.763 0.739 0.783 0.824 0.794 0.557 0.584 0.538 0.684 0.582 0.632 0.570

Promise12MSB 0.911 0.900 0.900 0.903 0.909 — 0.903 0.896 0.902 0.905 0.906 —

RoboToolMSB 0.878 0.874 0.893 0.885 0.905 0.885 0.854 0.864 0.867 0.835 0.868 0.893

TnbcnucleiMSB 0.813 0.834 0.748 0.772 0.819 0.746 0.758 0.760 0.762 0.770 0.770 0.797

UltrasoundNerveMSB 0.799 0.801 0.779 0.786 0.798 — 0.796 0.782 0.814 0.791 0.802 —

USforKidneyMSB 0.979 0.979 0.981 0.980 0.980 — 0.980 0.978 0.982 0.980 0.980 —

UWSkinCancerMSB 0.920 0.925 0.928 0.939 0.926 0.930 0.857 0.829 0.882 0.857 0.839 0.872

WbcMSB 0.961 0.962 0.965 0.959 0.963 0.966 0.966 0.966 0.968 0.963 0.970 0.969

YeazMSB 0.935 0.931 0.936 0.931 0.934 — 0.974 0.979 0.971 0.977 0.978 —

Table 4.  The average precision and recall results for six different encoder networks. RN-18: ResNet-18; RN-50: 
ResNet-50; EN: Efficient-Net; MN-v2: Mobile-Net-v2; DN-121: DenseNet-121; MVT: Mix Vision Transformer. 
Results are presented for each dataset, with the highest scores for precision and recall highlighted. A dash (—) 
indicates that the network is not evaluated for that particular dataset due to input channel constraints.
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Table 6 shows the mean and standard deviation of the performance metrics for six different encoder net-
works. Efficient-Net (EN) and DenseNet-121 (DN-121) demonstrate the highest F1 scores, both achieving a 
value of 0.772. This indicates that these models have a balanced performance in terms of precision and recall. 
DenseNet-121 also obtains the highest precision at 0.848 with a standard deviation of ±0.011, indicating reliable 
precision across datasets and effectively minimizing false positives. On the other hand, Efficient-Net leads in 
recall with a score of 0.788 with a standard deviation of ±0.017, indicating its strength in capturing true posi-
tives. Additionally, DenseNet-121 reaches the highest IOU of 0.702 with a standard deviation of ±0.010, indi-
cating stable performance. This is closely followed by Efficient-Net, which achieves an IOU of 0.700. It suggests 
that these two models provide the most accurate predictions. Overall, DenseNet-121 and Efficient-Net reached 
similar high-performance metrics, with both models performing well in F1 score, precision, recall, and IOU. 
However, DenseNet-121’s complex architecture causes higher computational demands, whereas Efficient-Net 
provides a more efficient design, making it suitable for resource-constrained applications. When analyzing the 
performance of DenseNet-121 (showing the best average performance on 3 of the 4 measures) across different 
datasets, no specific characteristic is observed. DenseNet-121 performs well across diverse datasets, excelling 
in handling class imbalance (CellNucleiMSB, Isic2016MSB, Isic2018MSB) and complex multi-class segmenta-
tion tasks (FHPsAOPMSB, WbcMSB). Its architecture, featuring dense connections, enables effective learning 
from minority classes and intricate feature hierarchies. It achieves good results for datasets with either high 
(CovidQUExMSB, DynamicNuclearMSB, Isic2018MSB) or low sample sizes (ChaseDB1MSB, ChuacMSB, 

Dataset

F1-Score (F1) Intersection over Union (IOU)

RN-18 RN-50 EN MN-v2 DN-121 MVT RN-18 RN-50 EN MN-v2 DN-121 MVT

AbdomenUSMSB 0.642 0.640 0.640 0.635 0.643 — 0.632 0.630 0.628 0.624 0.632 —

Bbbc010MSB 0.915 0.917 0.910 0.908 0.920 — 0.844 0.848 0.837 0.833 0.854 —

Bkai-Igh-MSB 0.554 0.617 0.692 0.733 0.630 0.554 0.546 0.604 0.676 0.713 0.615 0.546

BriFiSegMSB 0.826 0.834 0.831 0.816 0.840 — 0.717 0.728 0.724 0.702 0.738 —

BusiMSB 0.674 0.632 0.711 0.655 0.695 — 0.578 0.547 0.624 0.565 0.615 —

CellNucleiMSB 0.889 0.892 0.894 0.880 0.907 0.891 0.822 0.827 0.830 0.815 0.838 0.826

ChaseDB1MSB 0.758 0.761 0.750 0.744 0.764 0.735 0.611 0.615 0.601 0.594 0.618 0.582

ChuacMSB 0.487 0.451 0.499 0.462 0.522 — 0.357 0.334 0.369 0.340 0.400 —

Covid19RadioMSB 0.991 0.990 0.991 0.991 0.992 — 0.982 0.981 0.983 0.982 0.983 —

CovidQUExMSB 0.740 0.734 0.744 0.742 0.756 — 0.627 0.620 0.633 0.631 0.647 —

CystoFluidMSB 0.852 0.857 0.849 0.842 0.853 0.855 0.759 0.765 0.754 0.747 0.761 0.763

Dca1MSB 0.762 0.767 0.753 0.751 0.765 — 0.618 0.625 0.606 0.604 0.623 —

DeepbacsMSB 0.930 0.931 0.925 0.921 0.929 — 0.869 0.870 0.860 0.853 0.867 —

DriveMSB 0.782 0.786 0.770 0.775 0.782 0.781 0.643 0.648 0.626 0.634 0.643 0.641

DynamicNuclearMSB 0.941 0.942 0.948 0.940 0.942 — 0.895 0.897 0.906 0.893 0.897 —

FHPsAOPMSB 0.961 0.957 0.959 0.959 0.960 — 0.929 0.923 0.927 0.927 0.928 —

IdribMSB 0.100 0.090 0.078 0.092 0.089 0.053 0.061 0.054 0.046 0.056 0.054 0.030

Isic2016MSB 0.878 0.887 0.903 0.891 0.893 0.891 0.803 0.814 0.836 0.820 0.825 0.822

Isic2018MSB 0.849 0.849 0.868 0.865 0.861 0.853 0.761 0.762 0.790 0.783 0.785 0.773

KvasirMSB 0.739 0.698 0.812 0.754 0.794 0.569 0.645 0.596 0.733 0.668 0.718 0.457

M2caiSegMSB 0.214 0.215 0.218 0.216 0.223 0.217 0.190 0.191 0.196 0.192 0.200 0.194

MonusacMSB 0.557 0.559 0.559 0.559 0.559 0.538 0.540 0.540 0.540 0.540 0.540 0.540

MosMedPlusMSB 0.780 0.790 0.781 0.785 0.791 0.761 0.674 0.682 0.674 0.679 0.686 0.650

NucleiMSB 0.282 0.274 0.278 0.205 0.275 0.253 0.169 0.164 0.167 0.119 0.166 0.150

NusetMSB 0.949 0.949 0.951 0.950 0.951 — 0.906 0.906 0.909 0.907 0.910 —

PandentalMSB 0.961 0.961 0.957 0.950 0.965 — 0.926 0.926 0.919 0.907 0.932 —

PolypGenMSB 0.573 0.541 0.666 0.588 0.621 0.477 0.495 0.457 0.587 0.512 0.545 0.382

Promise12MSB 0.895 0.888 0.892 0.896 0.900 — 0.828 0.817 0.821 0.827 0.832 —

RoboToolMSB 0.856 0.859 0.874 0.847 0.879 0.882 0.765 0.769 0.788 0.753 0.798 0.798

TnbcnucleiMSB 0.779 0.785 0.738 0.762 0.788 0.759 0.641 0.652 0.596 0.621 0.654 0.618

UltrasoundNerveMSB 0.782 0.776 0.787 0.772 0.786 — 0.671 0.664 0.675 0.660 0.676 —

USforKidneyMSB 0.979 0.978 0.981 0.980 0.980 — 0.960 0.958 0.963 0.961 0.960 —

UWSkinCancerMSB 0.864 0.846 0.890 0.879 0.856 0.881 0.795 0.766 0.818 0.803 0.779 0.813

WbcMSB 0.962 0.963 0.966 0.959 0.966 0.967 0.930 0.931 0.937 0.926 0.936 0.938

YeazMSB 0.953 0.953 0.952 0.952 0.954 — 0.912 0.912 0.909 0.910 0.914 —

Table 5.  The average F1-score and IOU results for six encoder networks. RN-18: ResNet-18; RN-50: ResNet-50; 
EN: Efficient-Net; MN-v2: Mobile-Net-v2; DN-121: DenseNet-121; MVT: Mix Vision Transformer. Results are 
presented for each dataset, with the highest scores for F1 and IOU highlighted. A dash (—) indicates that the 
network was not evaluated for that particular dataset due to input channel constraints.!
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YeazMSB). Additionally, it performs well with datasets from different data modalities (BriFiSegMSB, KvasirMSB, 
Promise12MSB). While it generally outperforms other methods in multi-class problems, its performance is 
comparatively lower than in binary segmentation tasks. Overall, DenseNet-121 demonstrates versatility across 
various imaging modalities and dataset sizes, with consistent performance indicated by low standard deviations 
in metrics. These characteristics make it a reliable choice for diverse medical imaging tasks.

Datasets with classes that look similar present challenges for segmentation models because it’s hard to tell 
them apart. In our study, models have performed consistently across datasets like ultrasound images of benign 
and malignant lesions, WbcMSBench with cytoplasm and nucleus segmentation, and fundus images in the 
ChaseDB1MSB and DriveMSB datasets with similar retinal vessel patterns (Tables 4 and 5). This shows that 
our benchmark effectively evaluates models on tasks with structurally similar classes. However, the ChuacMSB 
dataset has performed less than other retinal vessel segmentation tasks. This might be due to its different imag-
ing techniqueâ€”coronary angiographyâ€”which introduces unique visual features. The models also showed 

Methods F1 PREC REC IOU

RN-18 0.762 ± 0.008 0.834 ± 0.011 0.774 ± 0.014 0.689 ± 0.008

RN-50 0.759 ± 0.010 0.833 ± 0.010 0.772 ± 0.017 0.686 ± 0.010

EN 0.772 ± 0.011 0.832 ± 0.012 0.788 ± 0.017 0.700 ± 0.012

MN-v2 0.762 ± 0.009 0.834 ± 0.010 0.769 ± 0.013 0.689 ± 0.009

DN-121 0.772 ± 0.009 0.848 ± 0.011 0.781 ± 0.014 0.702 ± 0.010

MVT 0.663 ± 0.016 0.760 ± 0.019 0.696 ± 0.021 0.585 ± 0.017

Table 6.  Average and standard deviation of performance metrics for six different encoder networks across all 
datasets in MedSegBench. RN-18: ResNet-18; RN-50: ResNet-50; EN: Efficient-Net; MN-v2: Mobile-Net-v2; DN-
121: DenseNet-121; MVT: Mix Vision Transformer. The highest score for each metric is highlighted in bold.

DriveMSBench

CellNucleiMSBench CovidQUExMSBench

Isic2016MSBench M2caiSegMSBench

PolypGenMSBench

CystoFluidMSBench FHPsAOPMSBench

Promise12MSBench

MosMedPlusMSBench

BusiMSBench

Input Predicted GTInput Predicted GT Input Predicted GTInput Predicted GT Input Predicted GTInput Predicted GT

NusetMSBench

TnbcnucleiMSBench WbcMSBench DeepbacsMSBench

Fig. 3  Segmentation results for selected datasets across different modalities, showcasing the performance of the 
best models as reported in Table 5. Each row includes three datasets, with columns representing the input image, 
the predicted segmentation by the selected model, and the ground truth segmentation.
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consistent results on dermoscopy datasets (Isic2016MSB, Isic2018MSB, and UWSkinCancerMSB) and COVID-
19 CT images (CovidQUExMSB and MosMedPlusMSB), highlighting their robustness with visually similar 
classes. These results show the models’ strengths and areas for improvement when dealing with classes that 
resemble each other.

We also visually compared the results. Figure 3 illustrates the segmentation results for selected datasets. We 
have selected one dataset from each data modality (two for some modalities due to binary/multi-class tasks) to 
maintain diversity. Each row displays three datasets, with the columns showing the inputs, predicted images 
by the best model according to IOU and the corresponding ground truth labels. The figure shows that the top 
models have achieved strong segmentation results compared to the ground truth labels. However, there are 
some misclassified pixels for both binary and multi-class segmentation tasks. Multi-class segmentation presents 
a significant challenge for segmentation models, even the top-performing ones. This comprehensive visualiza-
tion demonstrates the effectiveness and versatility of the models across various imaging modalities and medical 
conditions.

In conclusion, MedSegBench11 represents a significant advancement in medical image segmentation by pro-
viding a comprehensive benchmark that spans a wide array of imaging modalities and segmentation tasks. With 
35 datasets and over 60,000 images, it offers a robust benchmark for evaluating the performance of deep learning 
models, particularly highlighting the effectiveness of DenseNet-121 and Efficient-Net architectures. Despite its 
strengths, the benchmark primarily focuses on 2D image segmentation, which may not fully address the com-
plexities of 3D medical imaging. Future research could expand this work by incorporating more 3D datasets and 
exploring the potential of transformer-based models to enhance segmentation accuracy further.

Usage Notes
This dataset was created to compare different models fairly over various segmentation models from different 
data modalities and create universal models. It is not suitable for clinical or medical use.

Code availability
The Python data API, source code files, and evaluation scripts for binary and multi-class segmentation tasks can 
be found at MedSegBench https://github.com/zekikus/MedSegBench.
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