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ON SPACE-LIKE CLASS A SURFACES IN ROBERTSON-WALKER

SPACE TIMES

BURCU BEKTAŞ DEMİRCİ, NURETTIN CENK TURGAY, AND RÜYA YEĞİN ŞEN

Abstract. In this article, we consider space-like surfaces in Robertson-Walker Space
times L4

1
(f, c) with comoving observer field ∂

∂t
. We study some problems related to such

surfaces satisfying the geometric conditions imposed on the tangential part and normal
part of the unit vector field ∂

∂t
naturally defined. First, we investigate space-like surfaces

in L4

1
(f, c) satisfying that the tangent component of ∂

∂t
is an eigenvector of all shape

operators, called class A surfaces. Then, we get a classification theorem of space-like class
A surfaces in L4

1
(f, 0). Also, we examine minimal space-like class A surfaces in L4

1
(f, 0).

Finally, we give the parametrizations of space-like surfaces in L4

1
(f, 0) when the normal

part of the unit vector field ∂
∂t

is parallel.

1. Introduction

In recent years, there has been significant interest among geometers in studying subman-
ifolds of product spaces resulting in numerous findings. Some of them are given by [5], [8],
[3], [7], [6].

Apart from Cartesian product spaces, the other example can be considered as Robertson
Walker-Space times which are 4-dimensional Lorentzian manifolds. The Robertson Walker-
Space times, denoted by L4

1(f, c), are defined as Cartesian products of space forms by
a real interval equipped with a Lorentzian warped product metric. Thus, the family of
Robertson Walker space times includes the de Sitter, Minkowski, and the anti-de Sitter
space time and also Friedmann’s cosmological models. In physics, Robertson Walker-Space
times are important due to the fact that they explain homogeneous, isotropic expanding
and contracting universes, see [15] and [1].

From geometrical point of view, there are some studies related to classification of surfaces
or hypersurfaces in Robertson Walker space times, see [11], [12], [13], [9], [10]. Especially,
B.-Y. Chen and J. Van der Veken [2] investigated space-like surfaces and Lorentzian sur-
faces in Robertson Walker space times having some important geometric properties such
as marginally trapped, positive relative nullity and totally geodesic, etc.

In product spaces, there exists a unit vector field spanning the factor R, denoted by ∂
∂t
,

and B. Mendonça and R. Tojeiro [4] mentioned the decomposition of it given as follows.
Given an isometric immersion φ : M → Qn

c × R, a tangent vector field T on M and a
normal vector field η along φ are defined by

(1.1)
∂

∂t
= φ∗T + η.

Here, Qn
c denotes the space forms. For the Robertson walker space times, there still exists

the unit vector field ∂
∂t

which is tangent to first factor and it can be decomposed in a similar
way as (1.1). Also, this unit vector field is known as a comoving observer field in general
relativity, [2].

2010 Mathematics Subject Classification. 53C42.
Key words and phrases. Robertson-Walker Space Times, Class A surfaces, Minimal surfaces.

1

http://arxiv.org/abs/2408.00475v1
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In [14], R. Tojeiro studied hypersurfaces in product spaces Qn
c ×R for which the tangent

component of ∂
∂t

in (1.1) is an eigenvector of all shape operators. Moreover, B. Mendonça
and R. Tojeiro [4] obtained the characterization of all such submanifolds in the product
spaces Qn

c×R. In this context, the following definition based on [14] and [4] for submanifolds
of the Cartesian product space can be given.

Definition 1.1. If the vector T in (1.1) is an eigenvector of all shape operators of M , then
M is said to be a class A surface.

In this article, we study space-like surfaces in Robertson-Walker space times satisfying
certain properties in terms of the vectors T and η in the decomposition (1.1). First, we
investigate space-like class A surfaces in L4

1(f, c) and then, we give a local classification
theorem for space-like class A surfaces in L4

1(f, 0). Also, we determine space-like class A
surfaces in L4

1(f, 0) with zero mean curvature vector. Finally, we prove that the vector field
η in (1.1) is parallel if and only if the space-like surface in L4

1(f, c) must be an element of
class A surfaces. By using this, we obtain the parametrizations of space-like surfaces in
L4
1(f, 0) with parallel vector field η.

2. Preliminaries

LetQn−1
c denote the n−1 dimensional Riemannian space-form with the constant sectional

curvature c, i.e.,

Qn−1
c =





Sn−1 if c = 1,
En−1 if c = 0,
Hn−1 if c = −1

and gc stand for its metric tensor.
If I is an open interval and f : I → R is a smooth, non-vanishing function, then the

Robertson-Walker space time L4
1(f, c) is defined as the Lorentzian warped product I11 ×f Q

3
c

whose metric tensor g̃ is
g̃ = −dt2 + f 2(t)gc.

Let Π1 : I ×Q3
c → I and Π2 : I ×Q3

c → Q3
c denote the canonical projections. For a given

vector field X in L4
1(f, c), we define a function X0 and a vector field X̄ by the decomposition

X = X0
∂

∂t
+ X̄.

Note that we have X0 = −g̃
(

∂
∂t
, X

)
and Π∗

1(X̄) = 0.
First, we would like to express the Levi-Civita connection of L4

1(f, c). Note that the
following lemma can be directly obtained from [2, Lemma 2.1].

Lemma 2.1. The Levi-Civita connection ∇̃ of L4
1(f, c) is

∇̃XY = ∇0
XY + (ln f)′

(
g̃(X̄, Ȳ )∂t +X0Ȳ + Y0X̄

)
(2.1)

whenever X and Y are tangent to L4
1(f, c), where ∇0 denotes the Levi-Civita connection of

the Cartesian product space L4
1(1, c) = I ×Q3

c .

2.1. Space-like surfaces in L4
1(f, c). Consider an oriented space-like surfaceM in L4

1(f, c)
with the Levi-Civita connection ∇ and metric tensor g. Through the misuse of terminology,

we shall denote the induced connection of L4
1(f, c) by ∇̃. Then, the Gauss and Weingarten

formulas

∇̃XY = ∇XY + h(X, Y ),(2.2)

∇̃Xξ = −Aξ(X) +∇⊥

Xξ(2.3)
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define the second fundamental form h, the shape operator A and the normal connection
∇⊥ of M , where X, Y are tangent to M and ξ is normal to M . Note that A and h are
related by

g̃(h(X, Y ), ξ) = g(AξX, Y ).(2.4)

Let φ : Ω → L4
1(f, c) be a local parametrization of M and put T = Π1 ◦ φ.

Remark 2.2. If gradT = 0 on M , then we have (M, g) ⊂ {t0} ×f(t0) Q
3
c . Throughout

this work, we are going to exclude this case and assume the existence of p ∈ M at which
gradT 6= 0.

Since M is a space-like surface, by considering the decomposition (1.1) one may define a
function θ and a positively oriented global orthonormal frame field {e1, e2; e3, e4} on M by

(2.5)
∂

∂t

∣∣∣∣
M

= sinh θ e1 + cosh θ e3.

where g(e1, e1) = g(e2, e2) = 1 and g̃(e3, e3) = −g̃(e4, e4) = −1. Throughout this article,
we consider such an orthonormal frame field {e1, e2; e3, e4} on M .

Note that we are going to use the notation

hαij = g̃(h(ei, ej), eα) = g(ei, Aeαej)

for the coefficients of the second fundamental form and ω12 will stand for the connection
form defined by

ω12(X) = g(∇Xe1, e2) = −g(∇Xe2, e1).

Then, the mean curvature vector of M is defined by

H =
1

2
tr h = −h

3
11 + h322

2
e3 +

h411 + h422
2

e4

and M is said to be minimal if H vanishes on M . Also, we are going to use the following
lemma:

Lemma 2.3. Let θ and e1 be as defined above. Then,

(2.6) f ′|M = − 1

sinh θ
e1 (f |M) .

Proof. Let p = (t0, p̃) ∈ M and consider an integral curve α = (α0, α̃) of e1 starting
from p. Then we have

e1(f |M)p =
d

du

∣∣∣∣
u=0

(f ◦ α)(u) = d

du

∣∣∣∣
u=0

f(α0(u)) = α′

0(0)f
′(α0(0))

Since α(0) = p and α′(0) = (e1)p, the last equation implies

e1(f |M)p = − sinh(θ(p))f ′(t0)

which yields (2.6). �

During this work, the manifolds that we are dealing with are smooth and connected
unless otherwise is stated.
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3. Basic Facts for Space-like Surfaces in Robertson-Walker Space Times

L4
1(f, c)

In this section, we give some basic facts about space-like surfaces in L4
1(f, c).

Lemma 3.1. Let M be a space-like surface in L4
1(f, c). Then, we have the followings:

∇e1e1 = h312 coth θ e2,(3.1a)

∇e2e1 =
(
(ln f)′csch θ + h322 coth θ

)
e2,(3.1b)

∇⊥

e1
e3 = −h411 tanh θ e4,(3.1c)

∇⊥

e2
e3 = −h412 tanh θ e4(3.1d)

e1(θ) = (ln f)′ cosh θ + h311,(3.1e)

e2(θ) = h312.(3.1f)

Proof. Assume that M is a space-like surface in L4
1(f, c). From (2.5), we get (e2)0 =

g̃
(
e2,

∂
∂t

)
= 0 and (e1)0 = −g̃

(
∂
∂t
, e1

)
= − sinh θ. Then, we have e2 = ē2 and e1 =

− sinh θ ∂
∂t
+ ē1. Considering (2.1) in Lemma 2.1 with these equations, one can obtain

∇̃e1

∂

∂t
= (ln f)′

(
cosh2 θ e1 + sinh θ cosh θ e3

)
,(3.2)

∇̃e2

∂

∂t
= (ln f)′e2.(3.3)

On the other hand, the equation (2.5) implies that

∇̃X
∂

∂t
= X(θ) cosh θe1 + sinh θ∇̃Xe1 +X(θ) sinh θe3 + cosh θ∇̃Xe3

from which we obtain
(
∇̃X

∂

∂t

)T

=X(θ) cosh θe1 + sinh θ∇Xe1 − cosh θAe3X,

(
∇̃X

∂

∂t

)⊥

=X(θ) sinh θe3 + sinh θh(X, e1) + cosh θ∇⊥

Xe3.

(3.4)

Comparing the equation (3.4) for X = e1 and (3.2), we get (3.1a), (3.1c) and (3.1e).
Similarly, the equation (3.4) for X = e2 and (3.3) give (3.1b), (3.1d) and (3.1f). �

From Lemma 3.1, we give the following proposition.

Proposition 3.2. Let M be a space-like surface in L4
1(f, c). Then, the following statements

are equivalent to each other:

(i) M is space-like class A surface in L4
1(f, c).

(ii) For the vector fields e1, e2 tangent to M , we have h(e1, e2) = 0.
(iii) For the vector vector fields e2, e4, we have e2(θ) = 0 and ∇⊥

e2e4 = 0.

Proof. From Definition 1.1 and (2.4), it can be easily seen that statements (i) and (ii)
are equivalent to each other. Statements (ii) and (iii) are direct consequences of (3.1d) and
(3.1f). �

Lemma 3.3. Let M be a space-like class A surface in L4
1(f, c) and p ∈ M . Then, there

exists a local coordinate system (u, v) defined on a neighborhood Np of p which can be
parameterized by

(3.5) φ(u, v) = (u, φ̃(u, v))
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for an immersion φ̃ : Ω ⊂ R2 → Q3
c satisfying

(3.6) gc(φ̃u, φ̃v) = 0 and ∂v(gc(φ̃u, φ̃u)) = 0.

Proof. Assume that M is a space-like class A surface in L4
1(f, c). Then, the equations

(3.1a) and (3.1b) become ∇e1e1 = 0 and ∇e2e1 = (ln f)′csch θe2. Define X = − 1
sinh θ

e1 and
Y = γe2. Then, we have

[X, Y ] = csch θ (−e1(γ) + γ(ln f)′csch θ) e2.(3.7)

Thus, we choose a smooth function γ satisfying e1(γ) = γω which makes [X, Y ] = 0. Hence,
there exists a neighborhood Np of p on which a local coordinate system (u, v) is defined
such that

(3.8) X = − 1

sinh θ
e1 = ∂u, Y = γe2 = ∂v.

Now, we consider a parametrization of M in L4
1(f, c)

(3.9) φ(u, v) = (T (u, v), φ̃(u, v))

where gradT 6= 0 and φ̃ : Ω ⊂ R2 → Q3
c is an immersion. From the equations g̃

(
e1,

∂
∂t

)
=

sinh θ and g̃
(
e2,

∂
∂t

)
= 0, we have

∂T
∂u

= 1,
∂T
∂v

= 0

on Np, respectively. Thus, M has a parametrization given by (3.5) with gc(φ̃u, φ̃v) = 0.
Moreover, we get

(3.10) g̃(φu, φu) = 1 + f 2gc(φ̃u, φ̃u) = csch 2θ

Considering e2(θ) = 0 from Proposition 3.2 and (3.10), we have ∂v(gc(φ̃u, φ̃u)) = 0. Thus,
we get the desired result. �

The proof of the following corollary directly follows from the proof of Lemma 3.3.

Corollary 3.4. A space-like surface in L4
1(f, c) satisfies AηT = λT for a smooth function λ

and a normal vector η if and only if it can be locally parameterized by (3.5) for an immersion

φ̃ satisfying (3.6).

4. Class A surfaces in L4
1(f, 0)

In this section, we will give the local classification theorem of space-like class A surfaces
for c = 0. Thus, we focus on the surface M given in Lemma 3.3.

4.1. Local Classification Theorem. Let M̄ denote the surface in E3 parameterized by φ̃
with a unit normal vector field Ñ and Ẽ, G̃ stand for the coefficients of the first fundamental
form of M̃ , i.e., Ẽ = g0(φ̃u, φ̃u) and G̃ = g0(φ̃v, φ̃v).

First, we construct a geometrical frame field on M as follows.
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Lemma 4.1. Let M be a space-like surface in L4
1(f, 0) parameterized by (3.5). Then, there

exists an orthonormal frame field {e1, e2, e3, e4} on M given by

e1 =
1√

−1 + f 2Ẽ

∂u, e2 =
1

f
√
G̃
∂v,

e3 =
1√

f 2Ẽ2 − Ẽ

(
fẼ,

1

f
φ̃u

)
,

e4 =
1

f
(0, Ñ).

(4.1)

Moreover, the functions θ and h412 satisfy

θ = − sinh−1


 1√

−1 + f 2Ẽ


 ,(4.2)

h412 =
f√
EG

g0(φ̃uv, Ñ).(4.3)

Proof. By considering the parametrization of the immersion φ in (3.5) and the first
condition in (3.6), one can observe that the vector fields e1, e2, e3, e4 are as given in (4.1).
From Lemma 2.3 and (4.1) we have f ′(t) = f ′(u) whenever (t, p̃) = φ(u, v) ∈M . Therefore,
by a direct computation using (2.1) and (4.1) we get desired results. �

Now, we consider the following examples of space-like class A surfaces in L4
1(f, 0).

Example 4.2. For some smooth functions x1, x2, consider the following space-like surface
in L4

1(f, 0)

(4.4) φ(u, v) = (u, x1(u), x2(u), v)

with −1 + f 2(x′21 (u) + x′22 (u)) > 0. Say V (u) =
√
x′21 (u) + x′22 (u). Then, the equation (4.1)

turns into

e1 =
1√

−1 + f 2V 2
∂u, e2 =

1

f
∂v,

e3 =
1

fV
√
f 2V 2 − 1

(
f 2V 2, x′1, x

′

2, 0
)
,

e4 =
1

fV
(0,−x′2, x′1, 0)

(4.5)

and sinh θ = − 1√
−1 + f 2V 2

. Thus, it can be seen that e2(θ) = 0 and ∇⊥

e2e4 = 0. From

Proposition 3.2, we get that M is a space-like class A surface in L4
1(f, 0). For later use, we

also give the nonzero components of the second fundamental form h of M as

h311 =
fV ′ − V (f 2V 2 − 2) f ′

(f 2V 2 − 1)3/2
, h322 = − V f ′

√
f 2V 2 − 1

,

h411 =
f (x′2x

′′

1 − x′1x
′′

2)

V − f 2V 3
, h422 = 0.

(4.6)

Example 4.3. Let α : Iv → S2 be an arc-length parameterized curve with unit normal n
and curvature κ. Consider the following space-like surface in L4

1(f, 0) given by

(4.7) φ(u, v) = (u, φ1(v)α(v) + φ2(u, v)α
′(v) + φ3(u, v)n(v))
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where φ1(v), φ2(u, v) and φ3(u, v) are smooth functions defined by

φ2(u, v) =

∫ u

u0

R(ξ) sin(τ(ξ, v))dξ + ψ1(v)

φ3(u, v) =

∫ u

u0

R(ξ) cos(τ(ξ, v))dξ + ψ2(v)

(4.8)

for some smooth functions R, τ , ψ1 and ψ2 satisfying τv = κ and

(4.9) ψ′

1 = κψ2 − φ1, ψ′

2 = −κψ1.

Since it is space-like, we have (−1+ f 2R2)(φ′

1 − φ2) > 0. By a direct computation, one can
obtain that

e2 =
1

f(φ′

1 − φ2)
∂v e4 =

1

f
(0, cos τα′ − sin τn),(4.10)

sinh θ = − 1√
−1 + f 2R2

.(4.11)

It can be seen that e2(θ) = 0 and ∇⊥

e2
e4 = 0. Thus, Proposition (3.2) implies that M is a

space-like class A surface in L4
1(f, 0).

Moreover, if κ = 0, then the surface described in Example 4.3 turns into the surface of
revolution given by the following example.

Example 4.4. Consider the following space-like surface parameterized by

(4.12) φ(u, v) = (u, ζ1(u) cos v, ζ1(u) sin v, ζ2(u))

for some smooth functions ζ1 > 0 and ζ2. Let define V (u) =
√
ζ ′21 (u) + ζ ′22 (u). Then, (4.1)

turns into

e1 =
1√

−1 + f 2V 2
∂u, e2 =

1

fζ1
∂v,

e3 =
1

fV
√

−1 + f 2V 2

(
f 2V 2, ζ ′1 cos v, ζ

′

1 sin v, ζ
′

2

)
,

e4 =
1

fV
(0, ζ ′2 cos v, ζ

′

2 sin v,−ζ ′1),

By a direct computation, we obtain the nonzero coefficients of the second fundamental form
h of M as

h311 =
V (2− f 2V 2) f ′ + fV ′

(−1 + f 2V 2)3/2
, h322 =

V 2
√
−1 + f 2V 2f ′ + ζ ′1
V − f 2V 3

,

h411 =
f (ζ ′2ζ

′′

1 − ζ ′1ζ
′′

2 )

V (−1 + f 2V 2)
, h422 = − ζ ′2

V
√

−1 + f 2V 2
.

(4.13)

Now, we give the local classification of space-like class A surfaces in L4
1(f, 0).

Theorem 4.5. A space-like surface in L4
1(f, 0) is a class A surface if and only if it is locally

congruent to one of the following surfaces:

(i) The cylinder described in Example 4.2,
(ii) The surface described in Example 4.3.
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Proof. Assume that M is a space-like class A surface in L4
1(f, 0) and let p ∈ M . Then,

Lemma 3.3 implies that there exists local coordinates (u, v) on a neighborhood Np of p

which can be parameterized by (3.5) immersion φ̃ satisfying (3.6). Then, from Proposition

3.2, we have g̃(h(e1, e2), e4) = h412 = 0. Thus, the equation (4.3) gives g0(φ̃uv, Ñ) = 0.
Therefore, we express

φ̃uv =
g0(φ̃uv, φ̃v)

g0(φ̃v, φ̃v)
φ̃v =

G̃u

2G̃
φ̃v

from which we get

(4.14) φ̃v =

√
G̃(u, v)α(v)

for an R3-valued function α satisfying g0(α, α) = 1. Then, there occur two following cases
according to the function α.

Case (i.) α is a constant vector in R3. In this case, up to a suitable isometry, we may
assume α = (0, 0, 1). Considering (4.14), the case (i) of the theorem can be obtained.

Case (ii.) α is a non constant vector in R3, that is, α′ 6= 0. In this case, by re-defining v
properly, one may assume g0(α

′, α′) = 1. Thus, α : Iv → S2 is an arc-length parameterized
spherical curve. Let κ and n be a curvature and a normal vector of α, where we have
α′′ = κn− α and n′ = −κα′. Then, the immersion φ̃ in E3 can be written as

(4.15) φ̃(u, v) = φ1(u, v)α(v) + φ2(u, v)α
′(v) + φ3(u, v)n(v)

for some smooth functions φ1, φ2, φ3. Since g̃(φ̃u, φ̃v) = 0, the equations (4.14) and (4.15)

give
∂φ1

∂u
= 0 which implies φ1 = φ1(v). Considering (4.2) and e2(θ) = 0 together, we have

Ẽ(u, v) = R2(u) for a non-vanishing function R. Thus, we get

(4.16)
∂φ2

∂u
= R sin τ,

∂φ3

∂u
= R cos τ,

for a smooth function τ = τ(u, v). Integrating (4.16), we get the equations (4.8) for φ2 and
φ3 with some functions ψ1 and ψ2. On the other hand, by a direct computation using (4.7),

(4.16) and g0(φ̃u, φ̃v) = 0, we obtain

(4.17)
∂φ2

∂v
+ φ1 − κφ3 = 0,

∂φ3

∂v
+ κφ2 = 0.

Taking the derivative of (4.16) and (4.17) with respect to v and u, we get ∂τ
∂v

= κ and (4.8)
for some smooth functions ψ1 and ψ2. By using (4.8) and (4.17), we obtain (4.9). Thus,
M is congruent to the surface given in case (ii) of the theorem. Hence, the proof of the
necessary condition is completed.

The proof of the sufficient condition is obtained from Example 4.2 and Example 4.3. �

4.2. Minimal Surfaces. In this subsection, as an application of Theorem 4.5 we study
minimal class A surfaces in L4

1(f, 0). First, we will focus the surface given in (i) of Theorem
4.5.

Proposition 4.6. The class A space-like surface described in (i) of Theorem 4.5 is minimal
if and only if it is congruent to the surface given by

(4.18) φ(u, v) = (u, x1(u), c1x1(u) + c2, v)

for constants c1, c2 and a function x1 satisfying

(4.19) x1 =

∫ u

u0

dξ

f(ξ)
√
c3f 4(ξ) + (c21 + 1)
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where u0, c3 are real constants.

Proof. Assume thatM is a minimal class A surface described in (i) of Theorem 4.5, that
is, h311 + h322 = h411 + h422 = 0. From the equations in (4.6), we find x′2x

′′

1 − x′1x
′′

2 = 0 whose
solution is given by x2(u) = c1x1(u)+c2 for some constants c1, c2. By a further computation,
considering h311 + h322 = 0 and (4.6) we obtain the following differential equation

fx′′1 − 2f 2(1 + c21)f
′x′1

3 + 3f ′x′1 = 0.

Then, the solution of this equation is given by (4.19). �

Remark 4.7. The surface given by (4.18) lies on a totally geodesic hypersurface of L4
1(f, 0).

Now, we will examine the surface given in (ii) of Theorem 4.5 with minimality condition.

Lemma 4.8. The class A space-like surface described in (ii) of Theorem 4.5 is a minimal
surface if and only if κ = 0.

Proof. Assume that M is a minimal class A surface described in (ii) of Theorem 4.5.
Let M̄ denote the surface in E3 parameterized by

φ̃(u, v) = φ1(v)α(v) + φ2(u, v)α
′(v) + φ3(u, v)n(v).

By a direct computation, we obtain that the principal directions of M̄ are ē1 = 1
R
φ̃∗(∂u)

and ē2 =
1

φ′

1
−φ2

φ̃∗(∂v) with the corresponding principal curvatures k1, k2 given by

(4.20) k1 =
τu

R
, k2 =

cos τ

φ′

1 − φ2
.

Since τv = κ(v), we get ē2(k1) = 0 which means k1 = k1(u). By a direct computation, we
obtain that k1 and k2 are related with

(4.21) ē1(k2) =
sin τ

φ′

1 − φ2

(k2 − k1).

On the other hand, (4.1) implies

(4.22) e4 =
1

f
(0, cos τα′ − sin τn).

Considering (4.20) and (4.22), we obtain

(4.23) h411 + h422 =
fR2k1

−1 + f 2R2
+
k2

f
.

SinceM is a minimal surface, that is, h411+h
4
22 = 0, k2 =

f 2R2k1

1− f 2R2
which implies k2 = k2(u).

Considering this with (4.20) and (4.21), we obtain τv = κ = 0. �

Hence, we give the following proposition:

Proposition 4.9. The class A surface described in (ii) of Theorem 4.5 is minimal if and
only if it is congruent to the surface given by (4.12) in Example 4.4 for some smooth
functions ζ1 and ζ2 satisfying

fζ ′′1 =f ′ζ ′1
(
2f 2

(
ζ ′1

2 + ζ ′2
2
)
− 3

)
+
√
f 2 (ζ ′1

2 + ζ ′2
2)− 1,

fζ ′′2 =f ′ζ ′2
(
2f 2

(
ζ ′1

2 + ζ ′2
2
)
− 3

)
.

(4.24)
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Proof. Suppose that M is a class A surface described in (ii) of Theorem 4.5 and it is
minimal. Thus, (4.8) implies that M is congruent to the surface parameterized by (4.12)
for some smooth functions ζ1 > 0 and ζ2. By considering (4.13), we obtain the equations
in (4.24). �

By combining Proposition 4.6, Remark 4.7 and Proposition 4.9, we obtain the following
result:

Theorem 4.10. Let M be a space-like surface in L4
1(f, 0) which has no open part lying

on a totally geodesic hypersurface of L4
1(f, 0). Then, M is minimal and class A surface if

and only if it is locally congruent to the surface (4.12) for some smooth functions ζ1 and ζ2
satisfying (4.24).

5. space-like Surfaces in L4
1(f, 0) satisfying ∇⊥η = 0

In this section, we consider space-like surfaces in L4
1(f, 0) having a parallel normal vector

field η in (1.1). First, we will give the following lemma to obtain the classification theorem.

Lemma 5.1. Let M be a space-like surface in L4
1(f, c). Then, the vector field η in (1.1) is

parallel if and only if M is a class A surface in L4
1(f, c).

Proof. Suppose that M is a space-like surface in L4
1(f, c) and ∇⊥

Xη = 0 for any tangent
vector field X . From the equation (2.5), we know that η = cosh θe3. Thus, we get that
θ is a nonzero constant and ∇⊥

Xe3 = 0. Note that when θ is zero, ∂
∂t

= e3 which means
T = 0. We omit this case. From Proposition 3.2, it can seen that M is a class A surface in
L4
1(f, c). �

By using Lemma 5.1, we will state the following Theorem.

Theorem 5.2. A space-like surface in L4
1(f, 0) having the parallel vector field η in (1.1) is

locally congruent to one of the following surfaces:

(i) The cylinder given by

(5.1) φ(u, v) =

(
u, c1

∫ u

u0

dξ

f(ξ)
, c2

∫ u

u0

dξ

f(ξ)
+ c3, v

)

for some constants u0, c1, c2 and c3.
(ii) The surface parameterized by (4.7), where A1 is a smooth function and the functions

A2, A3 are given by

A2(u, v) =c sin τ(v)

∫ u

u0

dξ

f(ξ)
+ A4(v)

A3(u, v) =c cos τ(v)

∫ u

u0

dξ

f(ξ)
+ A5(v)

(5.2)

for constants c, u0, smooth functions τ, A4 and A5 satisfying (4.9) and τ ′(v) = κ(v).

Proof. Suppose that M is a space-like surface in L4
1(f, 0) with parallel vector field η.

Then, Lemma (5.1) implies that M is a class A surface. Thus, we have two surfaces given
in Theorem 4.5. Now, we are going to study these surfaces, separately.

Case (i). M is congruent to the cylinder described in Example 4.2 for some smooth
functions x1, x2. In this case, since θ is constant, we have

(5.3) x′1
2(u) + x′2

2(u) =
c21

f 2(u)

for a constant c1 > 0. From the equation (3.1d), we get h411 = 0. Thus, the equation (4.6)
gives x′2x

′′

1 − x′1x
′

2 = 0 which yields x2(u) = a1x1(u) + a2 for some constants a1, a2. By
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combining this equation with (5.3), we get x′1 = c1
f
. Then, (4.4) turns into (5.1). Hence,

we have the case (i) of the theorem.
Case (ii). The surface described in Example 4.3. In this case, similar to the case (i), we

have

(5.4) R =
c

f
.

Using (4.22) and h411 = 0, we get τu = 0. Thus, (4.8) turns into (5.2). Hence, we have case
(ii) of the theorem.

The converse can be shown through a straightforward calculation. �
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Medeniyet University, İstanbul, Türkİye
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