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Toeplitz Operators Defined between Kothe
Spaces
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Abstract. The aim of this paper is to define Toeplitz operators between
Kothe spaces, especially power series spaces. We determine the condi-
tions for continuity and compactness of these operators. We define the
concept of S-tameness of a family of continuous operators. We construct
some conditions on S-tameness for the families consisting of Toeplitz op-
erators.
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1. Introduction

The theory of Toeplitz operators defined on a Hilbert space such as the Hardy
and the Bergman spaces is well-studied. The significance of this theory lies in
the connection between operator theory and function spaces. The matrix of
a Toeplitz operator defined on Hardy space of unit disk H?(D) is a Toeplitz
matrix. Moreover, any bounded operator on H?(ID) whose associated matrix
is a Toeplitz matrix is a Toeplitz operator. We direct the reader to [§] for
more information about Toeplitz operators defined on H?(ID). In recent years,
Toeplitz operators, whose ”associated” matrix is Toeplitz, are defined for
more general topological vector spaces. For instance, in [3], Domanski and
Jasiczak developed the analogous theory for the space of A(R) real analytic
functions on the real line. This space is not a Banach space, even not a
metrizable space. In [6], Jasiczak introduced and characterized the class of
Toeplitz operators on the Fréchet space of all entire functions O(C).

In [6], Jasiczak defined a continuous linear operator on O(C) as a
Toeplitz operator if its matrix is a Toeplitz matrix. The matrix of an op-
erator is defined with respect to the Schauder basis (2™)nen,. In this case,
the symbol of a Toeplitz operator comes from the space O(C) @ (O(C));, here
(O(C))y, is the strong dual of O(C). The space of entire functions O(C) is iso-
morphic to a power series space of infinite type A (n). By taking inspiration
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from Jasiczak paper [6], we will define Toeplitz operators on more general
power series spaces of finite or infinite type. Similarly, we will show that the
symbol space is A, () @ (A, («))’, for r = 1, 00. We will also search the com-
pactness of these operators and mention the conditions for the tameness of
the families consisting of Toeplitz operators.

2. Preliminaries

In this section, we provide some fundamental facts and definitions essential
for the subsequent discussions. We will use the standard terminology and
notation of [9].

A complete Hausdorff locally convex space E whose topology defined
by countable fundamental system of seminorms (|| - || )ken is called a Fréchet
space. A matrix (an k) k,nen Of non-negative numbers is called a K6the matrix
if it is satisfies the following conditions:

1. For each n € N there exists a k € N with a, > 0.
2. apn < Gn,p+1 for each n, ke N.

For a Kothe matrix (an.k)n, ken,

o8]
K(any) = {x = (Tp)nen : 2|k := Z |zn|an, <o forall ke N}

n=1
is called a Kothe space. Every Kothe space is a Fréchet space. From Propo-
sition 27.13 of [9], the dual space of a Kothe space is

(K (an ) = {y — ()

By Grothendieck-Pietsch Criteria [9][Theorem 28.15] a Kothe space
K (ap,) is nuclear if and only if for every k € N, there exists a [ > k so

that
0
Qn,k
3 nk o,
n=1 n,l
For a nuclear Kothe spaces, |z|x = sup,ey |%n|ank, k& € N forms an equiv-

alent system of seminorms to the fundamental system of seminorms ||z|; =
3 | [#n|ank, k € N, see Proposition 28.16 of [9].

sup |yna, 3| < +oo for some k € N}.
neN 71

Dynin-Mitiagin Theorem [J][Theorem 28.12] states that if a nuclear
Fréchet space E with the sequence of seminorms (| f,|)nen has a Schauder
basis (fn)nen, then it is canonically isomorphic to a nuclear Kothe space de-
fined by the matrix (|| fn]x)n,ken. So, nuclear Kéthe spaces hold a significant
place in theory of nuclear Fréchet space.

Let o = () be a non-negative increasing sequence with lim a,, =

neN n—ao
0. A power series space of finite type is defined by

a0
Ay (a) = {x = (Tn)pen & Nzllg = Z || e ¥ < oo for all k e N}

n=1
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and a power series space of infinite type is defined by

0
Ay (a) := {x = (n)pen & 2]y = Z |z, | € < oo for all k € N} .

n=1
Power series spaces form an important family of Kéthe spaces and they con-
tain the spaces of holomorphic functions on C* and D¢,
O(C%) = Ay (ni) and OM%) = Ay(n¥)

where D is the unit disk in C and d € N.
Let £ and F be Fréchet spaces. A linear map T : E — F is called
continuous if for every k € N there exists p € N and Cj, > 0 such that

| T < Ckllz,

forallz € E. A linear map T : E — F is called compact if T'(U) is precompact
in F' where U is a neighborhood of zero of E.
In this paper, we fixed the symbol e,, to denote the sequence

(0,0,...,0,1,0,...)

where 1 is in the n*” place and 0 is in the others.
We will use the following Lemma to determine the continuity and com-
pactness of operators defined between K&the spaces.

Lemma 2.1. Let K(an i) and K (b, i) be Kothe spaces.

a. T : K(an,k) = K(bn,i) is a linear continuous operator if and only if for
each k there exists m such that

|1 Ten]|x
neN HenHm

b. If K(bn k) is Montel, then T : K(an k) — K(bnx) is a compact operator
if and only if there exists m such that for all k

|1 Ten]|x
neN HenHm

Proof. Lemma 2.1 of [2]. o

We want to note that a Fréchet space E is Montel if each bounded set in
F is relatively compact and every power series space is Montel, see Theorem
27.9 of [9].

In the next proposition, it will be shown that the continuity condition
is sufficient to ensure that linear operators defined only on the basis elements
are well-defined.

Proposition 2.2. Let K (ay k), K(bn k) be Kdthe spaces and (an)nen € K (b k)

be a sequence. Let us define a linear map T : K(an ) — K(bp k) such as

a0
Te, = a, and Tx = Z znTe,,

n=1
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Tpen. If the continuity condition

vk e N dmeN sup [ Ten]x

neN HenHm

for everyneN and z = Y. °

n=1

holds, then T is well-defined and continuous operator.

Proof. Let z = Zf=1 Tpen be an arbitrary element of K (a, ) and assume

that for every k € N there exists a m € N such that
| Ten]k
sup

neN HenHm

Now we define the sequence

N N
Yn = Z T(xnen) = Z anen
n=1 n=1

for every N € N. Then for every k € N, there exist m € N and C' > 0 such
that for sufficiently large N,M e N, N > M,
N N

luv=ymle =1 D, @TE)le< D) l|wlledm
I=M+1 I=M+1

T

lex]m

N
<C >, l|zlledm

I=M+1

which is arbitrarily small, since |2[m = >, |Zn||en|lm < o0. This says that
the sequence (yn)nen € K (bk.n) is a Cauchy sequence and therefore has a
limit. Let us say the A}im yn = y. Hence, we have

—00

[ee]
Yy = ]\}'lj,noo YN = ngl an(en) = T(Z‘) € K(bk,n)-

Therefore T' is well-defined from K (ax ) to K (bg,») and T is continuous from
Lemma 211 o

A grading on a Fréchet space F is a sequence of seminorms {|-|,, : n € N}
which are increasing, that is,

[zl < flz < Jzls < -

for each z € E and which define the topology. Every Fréchet space admits
a grading. A graded Fréchet space is Fréchet space with a choice of grading.
For more information, see [5]. In this paper, unless stated otherwise, we will
assume that all Fréchet spaces are graded Fréchet spaces.

A pair of graded Fréchet spaces (E, F) is called tame provided that
there exists an increasing function o : N — N, such that for every continuous
linear operator T from F to F', there exists an N and C > 0 such that

|Tz]n < Clz|owm) Vze E and n > N.

A Fréchet space FE is called tame if (F,E) is tame. Tameness gives us a
kind of control on the continuity of the operators. In [4], Dubinsky and Vogt
used this notion to find a basis in complemented subspaces of some infinite
type power series spaces. We refer to [I] and [7] for the other studies about
tameness.
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In this paper, instead of all operators defined on a Fréchet space, we
will restrict ourselves to a subfamily of operators. With this aim, we will give
the following definition.

Definition 2.3. Let S : N — N be a non-decreasing function. A family of
linear continuous operators A < L(E, F) is called S-tame if for every operator
T € A there exist kg € N and C > 0 such that

T < Clal|s Vze E k> ko.

S-tameness of a family can be given by considering only elements of
bases similar to Lemma 2.1}

Lemma 2.4. Let K(any) and K(b,) be Kéthe spaces and S : N — N
be a non-decreasing function. A family of linear continuous operators A <
L(K(ank), K(bnx)) is S-tame if and only if for every operator T € A there
exist ko € N and C > 0 such that

ITenllx < Cllenllsm VneN, k> k.

Proof. Let us assume that for every T' € A there exist a kg € N and C > 0
such that

|Tenlk < Clenl s Vne N,k > ko.

Then for every x = >

ne1 Tn€n, We can write

[e0] [e¢] [e0]
||| = Z znT(en)| < Z lznl|Tenlr < C Z |xn|“6nHS(k)
n=1 k n=1 n=1
o8]
=C Z |Znlan, sy = Clz]sm)-
n=1
This says that A is S-tame. The other direction is straightforward. o

In this paper, we will call an operator which is defined between K&the
spaces as a Toeplitz operator if its matrix is a Toeplitz matrix defined with
respect to the Schauder basis (e, )nen. In sections 3 and 4, we will concentrate
on lower triangular Toeplitz matrices and upper triangular Toeplitz matrices,
respectively. We will determine the continuity and compactness of the oper-
ators whose associated matrix is related to these matrices. By collecting the
results obtained in sections 3 and 4, we share the results about the continuity
and compactness of a Toeplitz operator defined between power series spaces
in section 5.
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3. Operators Defined by A Lower Triangular Toeplitz Matrix

Let 6 = (0,)nen be any sequence. The lower triangular Toeplitz matrix de-
fined by 6 is

6 0 0 O
0 6 0 O
02 61 6y O

0s 62 61 6

We want to define an operator fg : K(an) — K(by k) by taking fgen as the
b column of the above matrix, that is,

o0
Tyen = (0,---,0,60,01,02,---) = Z Oi_ne;j

provided that fgen € K(b,) for every n € N. Therefore, for every x =
3 znen € K(an ), the operator Ty is given by

[ee]
Tyx = Z [ Y

n=1

In fact, we can not guarantee that the operator fg is correctly defined
between two general Kothe spaces K (ay ) and K (by 1), because we do not

know if the series Z _1%n Tgen converges in K (b, i) for every z € K(a, ) in
this general case. Below, we will examine the cases where this operator can
be correctly defined, and in these cases, we will analyze the continuity and
compactness of this operator. Throughout this paper, we will assume that
the sequences 6 satisfy the following condition

YneN ds>n 0s # 0.

Otherwise, 6 produces a finite rank operator, which is obviously continuous
and compact.

The idea of Proposition Bl is the same as [10, Theorem 2.1]. Therein
one can also find a generalized form of Theorem [3.3}

Proposition 3.1. Let K (an k), K (bn,) be Kéthe spaces and assume that 0 be a
sequence and so = min{t : 6; # 0}. If Tp : K(anx) — K(by k) is a continuous
operator, then 6 € K (b, 1) and the following holds

VkeN dmeN,C >0 brtso.k < Canm Vn € N.

Proof. Let fg : K(an,) — K(by ) be a continuous operator. For every n € N,
. o0
Tgen:(0,...,0,90,91,92,... Z j—

Jj=n

n€JEK nk)
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Since fgel € K(bn,i), this gives us 6 € K (b, ). By Lemma 21] for all k e N
there exist m € N and C; > 0 such that

0
[Toen|x = Z |0jfn|bj,k < Cilenllm = Cran,m Vn € N.

j=n

Then, for all n and j > n, we have [0;_,|b; » < C1an,m. Hence we can write
that bn1sy,k < Caan,m for some Cy > 0. This completes the proof. o

For compact Tp : K(ank) — K(bnk) operators, the relationship be-
tween Ko6the matrices (an, i )n,ken and (b k)n ken is as follows:

Proposition 3.2. Let K(ay ) and K (b, ) be Kithe spaces such that K (by, 1)
is Montel and assume that 0 € K (b, ) and so = min{t : 8, # 0}. If Ty :
K(an,) = K(by k) is a compact operator, then the following holds

dmeN VkeN 3C >0 bntsok < Canm Vn e N.

Proof. The proof is similar to the proof of Proposition [3.11 O

The converse of Proposition Bl is true when K (b, ) is a power series
space of finite type.

Theorem 3.3. Let K(an,) be a Kithe space, A1(B) be a power series space
of finite type and assume that 0 be a sequence and sp = min{t : 6; # 0}.
Ty : K(an,i) — A1(B) is well-defined and continuous if and only if 6 € A1(B)
and the following condition holds:

VkeN ImeN,C>0 e~ FPnre0 < Capom VneN. (3.1)

Proof. If the operator fg is continuous, Proposition B.1] gives us that 6 €
A1(B) and (B) holds. For the other direction, let us assume 6 € A1(8). By
using the condition ([B]) we have the following: for every k € N, there exist
m € N and C1,Cy > 0 such that

0
IToenls < |Toenllor = D 10j—nle™ 2

Jj=n
0 . )
1 S I —_———
= Z |0j_n|€7W’Bjek2+2kﬂn+soe WZan Brtso
Jj=n+so
< 1
150 1 )
Jj=n+so
0 ) )
= Cian.m Z |0j_n|€——z(k+2>ﬁje*m(ﬁj*ﬁnﬂo)
.l 2
Jj=n+so

0

< C(1an,m Z |0j—n

Jj=n+so

_ 1 .
e Tl = O 10ll2(k+2)@n,m = Co2an,m
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for every n € N. In the second line of the inequalites we use the fact that
11 1
k24+2k 2k 2(k+2)

for every k € N. Therefore, fgen € A1(B) for every n € N and for every k € N
there exist m € N such that

I Tyen |k

neN HenHm

that is, T : K(ank) — A1(B) is well defined and continuous by Proposition
o

We can characterize the compactness of the operators fg s K(ank) —
A1 (B) as the follows.

Theorem 3.4. Let K(ay 1) be a Kithe space, A1(B) be a power series space
of finite type and assume that 6 be a sequence and so = min{t : 6; # 0}.

Ty : K(ank) — A1(B) is compact if and only if 6 € A1(B) and the following
condition holds:

JmeN VkeN 3C>0 e~ Pt < Capm  YneN. (3.2)

Proof. If Ty is compact, then Ty is continuous and 6 € A1 () from Proposi-
tion Bl Proposition says that the condition ([B:2]) holds. For the other
direction, assume that 6 € A1(8) and the condition ([B.2]) holds. By the same
calculation of the proof of Theorem [B.3] we can write that there exists an
m € N such that for all ke N

| Toenl

neN Henum

From Lemma I} we can say that Ty : K(an ) — A1(B) is compact. o

Proposition 3.5. Let K(an ) be a Kdthe space and A1(B) be a power series
space of finite type. Assume there exists a non-decreasing function S : N — N
such that the following condition holds:

VkeN 3C >0 ek < Cay, s VneN. (3.3)

Then, the family of the operators Ty : K(ank) — A1(B) for 6 € A1(B), that

is,
Ar=1{Tp: 0 Ai(B)}
is S-tame, where S(k) = S(2k) for every k € N.
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Proof. Let 6 € A1(B). By using [B3), for every k € N, there exist C1,Cs > 0
such that

~ &L 2 & 1 1
[Toenll = > 165-nle™ 265 = > [6; e e 200

j=n Jj=n

© o0
< < Z |9jn|e_ﬁﬂj>e—ﬁﬂn <Oy < Z |9jn|€_ﬁﬁi)an78(2k)
j=n

j=n
&L 1
< C ( Z |0jn|e_ﬁﬁj‘"“) lenllsery < Cill0l2kllenl sy < Callenl gy
j=n

Therefore, for every 0 € A1(f) and for all k € N, there exists C' > 0 so that
we write

[Toenl < Cllealsg:
that is, the family Ay is S-tame. o

Now we turn our attention to the power series space of infinite type.
For the converse of Proposition 3.1l we need the stability condition on the
sequence 8 when K (b, ) is power series space of infinite type A, (5). A
sequence (3 is called stable if
ﬁQn

sup —— < o0.
neN Mn

Theorem 3.6. Let = (53,),,cy be a stable sequence. Ty : K(ank) = Ax(B8)
is well-defined and continuous if and only if 0 € Ay (B) and the following
condition holds:

VkeN ImeN,C>0 kP < Capm VneN. (3.4)

Proof. Let assume 6 be a sequence and sg = min{t : §; # 0}. If the operator
Ty is continuous, Proposition Bl gives us that 6 € Ay, (3) and for every k € N,
there exist m € N, C' > 0 such that

ekﬁn+so < Can,m

and then we have
eFBn < Can,m

for every n € N. This says that ([3.4) holds since 8 is an increasing sequence.
For the converse, we assume that [ is stable. Then there exists an M > 1
such that

Bon < M By, ¥n e N.
Since [ is increasing we have the following: if j = 2t > 2n,
Bj = Por S MBy < MPoy—py, = MBj_y < MBj_pns1
and if j =2t 4+ 1 > 2n, we have t + 1 > n and
Bj = Bat+1 < Baryo < MPBry1 < MBaryon = MBj_ni1.
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Therefore, we have

Bj < MﬂjfnJrl
for all j = 2n. Now let us assume that 6 € A, () and the condition ([B4)
holds. Then, for every k € N there exist m € N, C;,Cy > 0 such that

. 2n—1 0
HTgenHk = Z |9j7n|€kﬁj + Z |9j7n|ekﬁj
j=n j=2n
2n—1 0
S I o A N o
Jj=n j=2n
2n—1 0 ©
< MFkBn Z |9j7n| + Z |9j7n|eMkﬁj_"+l < eMFEBn Z |9j7n|6Mkﬁ-7—"+1
j=n Jj=2n j=n
0
< Crangm ) 105l 7m0 < C1[0] arkllenllm < Calenlm.
Jj=n

holds for every n € N. We employed that 8; < MBj_n4+1 for every j = 2n in
the first line. Therefore, Tyen € A (B) for every n € N and for all k € N there
exist m € N such that R
|Toen |
neN HenHm

that is, Tp is well-defined and continuous by Proposition o

< 0

We can characterize the compactness of the operators fg s K(ank) —
A (B) as the follows.

Theorem 3.7. Let = (8,),,cy be a stable sequence. Ty : K(ank) = Ax(B8)
is compact if and only if 0 € Ao (B) and the following condition holds:

ImeN VkeN 3C>0 kP < Cap VYn =k (3.5)

Proof. Let assume 6 be a sequence and sp = min{t : 6; # 0}. If fg is compact,
then 6 € A1(8) from Proposition Bl Proposition [3.2 says that there exists a
m € N such that for all £ € N there exists a C' > 0 such that

ekﬁn+so g Can,m

for every n € N. This says that the condition (B3] is satisfied since J is an
increasing sequence.

For the converse, assume that 6 € A (3) and (3.5) holds. By the same
calculation of the proof of Theorem [3.6] we can write that there exists m € N
such that for all k e N R

|Toen] k

< o0
n=k HenHm

and then R
o I Leenllr

< Q0.
neN Henum

From Lemma I we can say that T} : K (an,;) — Ax(B) is compact. o
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Proposition 3.8. Let 3 = (8,),,cy be a non-negative increasing stable sequence
with lim B, = o0. Assume that there exists a non-decreasing function S :
n—oo

N — N such that
VekeN 3C >0 e < Cay, s VYneN. (3.6)
Then, the family of operators Ty : K(ank) = Ax(B) for 6 € Ap(B)
Ay ={Tp: 0 e Ao(B)}
Q2n

is S-tame, where S(k) = S(ME) for every k € N and here M = sup -

neN tn
Proof. The proof is similar to the proof of Theorem B7l Let 6 € Ay (8). In
the proof of Theorem we showed that for all k,n e N

0
[Toenll < M 37 15 |MEms < MB5n ]
j=n

Using the condition (3.0), we can write that for all k£ € N there exists a C' > 0
such that

| Toenlr < e 10] ar < Cansary = Cay, 501

Then we have the following

Vk 3C>0 |Toenr < Clenll s
for every 6 € Ay (3). This says that the family A is S-tame. o

4. Operators Defined by an Upper Triangular Toeplitz Matrix

Let 6 = (0,)neny be any sequence. The upper triangular Toeplitz matrix
defined by 6 is

Oy 01 02 03

0 60y 61 0,

0 0 6y 6

0 0 0 6

We want to define a linear operator Ty K(ank) — K(bn,x) by taking Tyen
as the n** column of the above matrix, that is,

n
Teen = (anl, Gn,g, ey 91, 90, 0, 0, . ) = Z On,jej.
=1
Therefore, for every z = ZZ):l Tnen € K(an,k), the operator Yv’g is given by

[ee]
Tyx = Z [ Y

n=1

In fact, we can not guarantee that the operator Tg is correctly defined
between two general Kothe spaces K (ay i) and K (by, i), because we do not
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know if the series Zfil xn%en converges in K (by, ;) for every x € K(an k) in
this general case. Below, we will examine the cases where this operator can
be correctly defined, and in these cases, we will analyze the continuity and
compactness of this operator. Similiar to the previous section, we will assume
that the sequences 6 satisfy the following condition

VneN ds>n 0s # 0.

Otherwise, 6 produces a finite rank operator, which is obviously continuous
and compact.

In [T0, Theorem 2.2], you can find the same idea for Proposition ] and
a generalized form of Theorem for G -spaces.

Proposition 4.1. Let K (an i), K (by i) be Kithe spaces and assume that 0 be a

sequence and sg = min{t : 0y # 0}. If Jv“g s K(an,k) = K(bpk) is continuous,
then 6 € (K (ank)) and the following holds:

VkeN dmeN,C >0 bp—so.k < Canm Vn > sg.

Proof. Let Jv“g : K(an,x) — K(bnk) be a continuous operator. Then by
Lemma 2.1 for all k € N there exist m € N and C; > 0 such that

HTeenHk = Z |9n7j|bj,k < Cian,m Vn € N.
j=1
Then, for alln and j < n
|0n—j1bj.k < Cran,m.

Since (b, ) is a Kothe matrix, there exists a ko € N satisfying b1 , # 0. Let

us take Cy = bIC; . Then we can write
RO

|0n71| < CZGJn,m

and this says that 0 € (K(an,)). Further, we have that for every k € N,
there exist m € N and C7 > 0 so that

|950 |bn780 <O An,m

and

hold for all n > sg. By choosing C' = we have

~1
)

105, |

bn—so.k < C3Gp,m Yn > sg.

This completes the proof. o

For compact Tg : K(an,r) — K(bn,) operators, the relationship be-
tween Ko6the matrices (an, i )n,ken and (b g )n ken is as follows:
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Proposition 4.2. Let K (ay ) and K (b, ) be Kithe spaces such that K (by, 1)
is Montel and assume that 0 € K(b, ) and sop = min{t : 8, # 0}. If Ty :
K(an k) = K(bnk) is a compact operator, then the following holds

dmeN VkeN 3JIC >0 bn—so.k < Canm Yn > sp.
Proof. The proof is similar to the proof of Proposition .1l O

The converse of Proposition Bl is true when K (b, ) is a power series
space of finite type.
Theorem 4.3. Let Ay (a) be a nuclear power series space of infinite type,
K (by, ) be a Kéthe space and assume that 6 be a sequence and so = min{t :
0: # 0}. The operator Tg t Ao () = K (b ) is well-defined and continuous
if and only if 0 € (A ()" and the following condition holds:

VkeN dmeN,C>0 bp—sy .k < Ce™om Vn > so. (4.1)
Proof. If the operator Ty is continuous, Proposition E.1] gives us that 6 €

(A (a))” and @I) holds. Let us assume that 6 € (A (a)) and @) holds.
Then there exists some m; € N and C; > 0 such that

|9n—1| < Cpe™on Vn € N.

From the condition ([@I), for every k € N, there exist my € N and Cy > 0
such that

n n—so n—so
— . . — . . MmiQn—j+1},
|Toenr = Z |9nﬁ|b],k = Z |9nﬁ|b],k <O Z € "k
j=1 j=1 j=1
n—so n—so
<Oy Y emansiigmiaiig < Cremian ) gmacitn
J=1 J=1

n
= Che™on Z M2y

j=1+s0

On the other hand, Ay (a) is nuclear then Y. | e~™3% is convergent for
some m3 € N and then for some D > 0 we have

n

Z M2 < De(m2+m3)an

Jj=1
since
n n )
Z emgajef(ngrmg)an < Z 6m2aj67(m2+m3)aj < Z e~ — D < +00.
=1 j=1 j=1

Then we can write

n n
| Toenlr < Cae™en Y7 em229 < Che™on ) M2
j=1+s0 Jj=1

< DCye™ O e(m2tma)en — DChlen iy +mat+ms-
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Therefore, Tgen € K(byy) for every n € N and for all k¥ € N, there exist
m = my + ma + mg € N such that

| Tenl
neN Henum

that is, Ty is well defined and continuous by Proposition 22 o

3

We can characterize the compactness of the operators Ty : Ao (B) —
K (by, 1) as follows.

Theorem 4.4. Let Ay () be a nuclear power series space of infinite type and
K (by;) be a Montel Kéthe space. Ty : Agy(a) — K(bnk) is compact if and
only if 6 € (A () and the following condition holds:

dneN VkeN 3IC >0 bp—so.x < Ce™mn Vn > sg. (4.2)
Proof. If Ty is compact, 6 € (Ax () from Proposition B and Lemma 211
says that there exists a m € N such that for all ke N

| Toenllr
n Henum

This gives us that there exists a C' > 0 such that

n
1050 |bn—so.k < |Toen] = Y 10n—jlbj < Clen]m = Ce™.
j=1
This says that the condition ([@2)) is satisfied.
For the converse, assume 6 € (Ay(«)) and the condition ([£2) holds.
By the same calculation of the proof of the Theorem [£3] we can write that
there exists a m € N such that for all ke N

| Toenl
n lenlm
Lemma 2] gives us that Ty : Ay (a) — K (by, 1) is compact. o

Proposition 4.5. Let Ay () be a nuclear power series space of infinite type
and K (b ) be a Kdithe space. Assume that there exists a non-decreasing
function S : N — N such that the following condition holds

VkeN 3C >0 b, < CeSklon VneN. (4.3)
Then, the family of the operators Ty : Ay(ar) — K (by k) for 0 € (Ag(a)),
that is,
Ay ={Tp: 0 (Ap())'}

18 2S-tame.

Proof. The proof is similiar to the proof of Theorem 3l Let us assume
0 € (Aw (). Then there exists some m; € N and C; > 0 such that

01| < Crem™ e VneN.
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Since A (cv) is nuclear then Y7 e~™2% is convergent for some ms € N and
using similiar to steps in the proof of Theorem we can show that there
exists a D > 0 such that

n
Z ekaj < De(kerg)an
Jj=1

for every k € N. For every k € N satisfying S(k) = mj + mq, there exists
Cs,C3 > 0 such that

n

n
[Toenll = Y 10n—slbjn < C1 D) €™ vt

J=1 J=1

n
< Che™on Z eS(k)aj < Cgemlane(s(k)+mg)an < 03625(k)an _ Heﬂ,HQS(k)'
Jj=1

Then, we have the following
[Toenlx < Callenllase
for all k satisfying S(k) = m1 + ms, that is, the family A is 2S-tame. o

For the converse of Proposition [£.4] we need a stable sequence o when
K (ay, 1) is power series space of finite type Aq(a).

Theorem 4.6. Let o = (), e @ stable sequence. Ty : Ai(o) — K (bp. 1)
is well-defined and continuous if and only if 0 € (A1(@)) and the following
condition holds

VkeN ImeN,C>0 by < Ce™mon VneN. (4.4)

Proof. Let assume 0 be a sequence and sg = min{t : 6; # 0}. If the operator
Ty is continuous, Proposition B1] gives us that 6 € (Ay()) and for every
k € N, there exist m € N, C' > 0 such that

1 1
bp < Ce mnteo < Ce™m

for every n € N. This says that ([@4) holds since /3 is an increasing sequence.

For the converse, we assume that assume that « is stable, § € (A1(«))" and
(#2) holds. Then there exist some my € N and C > 0 such that
1
|0n—1| < Cle_m_lan Vn e N.

By stability of «, we will show that there exists M > 0 such that for every
n € N and j < n it holds that

an < M(ap—ji1 + ;). (4.5)

Since « is stable, there exists a M > 0 such that as < My for every ¢t € N.
Assume that n =2torn=2t+land 1 <j<n

an < g < Moy < M(op—ji1 + o)
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since in this case t+1 < jor t+1 < n—j+1 and then we have oy, 41+ =
at+1. Therefore the inequality (43 is satisfied. By using the condition (£4),
we can write that for every k € N, there exist ms € N and C3 > 0 such that

1

— __1
b, < Coe” m2mF20 < Che™ m2 ™

for every n € N. Let us say ms = min(mq,ms). Then we have

~ n n 1 ) 1 R
|Toenlli = Y 10n—jlbji < C1Cy Y €™ mion—itteT ma®

Jj=1 Jj=1

n
< C,Ch Z o~ g (@n—j+1+ay)
j=1
n 1 1
<C1Cy Y e T < CyCone” i
j=1
Now we choose a m4 € N so that my > m3M, then

1 1 141
— +— <0 and lim nel™ma® Tm1)en — 0.
mz M my n—0o0

Then there exists a D > 0 such that for all n e N

ne” MO < D mion
and for some C3 > 0 and for all n e N
T 7ﬁan 7ian
[Then|r < C1Cone” ™3 < Cse ™™ < Csllenm,-
Therefore, for all k € N, there exist m € N such that

| Toenlli
SUp < 00,
neN Henum

that is, Ty : Ay(a) — K (by 1) is well-defined and continuous by Proposition
o

The following theorem characterize the compactness of the operators
Tg ) A1 (Oz) g K(bn,k)-

Theorem 4.7. Let oo = (an)nen be a stable sequence and K (by ) be a Montel
Kathe space. Ty : A1(a) = K (by i) is compact if and only if 0 € (A1(«))’ and
the following condition holds:

JmeN VkeN 3C>0 b g < Ce™mon Vn >k (4.6)

Proof. Let assume 6 be a sequence and sg = min{t : §; # 0}. If the operator
Ty is continuous, then 6 € (A;(«))’ from Proposition [£1] and Proposition 2]
says that for every k € N, there exist m € N, C' > 0 such that

1 1
bpp < Ce” mnteo L Ce™m

for every n € N. This says that ([€6]) holds since « is an increasing sequence.
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For the converse, assume that 6 € (A;(a))” and the condition (6] holds.
By the same calculation of the proof of the Theorem [£6] we can write that
there exists m € N such that for all ke N

| Toenlli
n leallm ’
that is, Ty : Ay(@) — K (an ) is compact from Lemma 211 o
Proposition 4.8. Let o = (an)nen be a stable sequence and M = bup%
neN On

Assume that there exists a non-decreasing function S : N — N such that the
following condition hold:

VkeN 3C>0 bk < Ce™ S on YneN. (4.7)
Then, the family of the operators Ty : Ay (ar) — K(by i) for 0 € (A1(B)), that

18,
A1 = {Te :0e (Al(a))’}
is S-tame where S(k) = (M + 1)S(k) for every k € N.
Proof. The proof is similar to the proof of the Theorem Since 0 €
(A1(@))’, there exists some my € N and Cy > 0 such that
|9n—1| < 016_"’%10‘" Vn e N.

By using ([£71), we can write that for every k € N satisfying S(k) > my, there
exists a Cy, C3,Cy > 0 such that

" n 1 " 1 1
[Then|r = Z |9n—j|bj,k < Z e*Ean—jﬂbj’k <Oy Z e my n—itl o T s () %

J=1 J=1 J=1

n
Z —(— (an—j+1+an) < 03 Z e JVIS(k) [e2D) ane_#(k)a"
j=1 j=1

< Cae” TFST < Cyllen]| (4 1)5(k)
Then for all k € N satisfying S(k) = m;, then, we have the following
| Toenllr < Cslenllars1yser)

that is the family A; is S-tame, where S(k) = (M + 1)S(k) for all ke N. o

5. Toeplitz Operators Defined between Power Series Spaces

When given a Toeplitz matrix
O 0_1 0_2
01 6y 01
0 0, 6 |
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one can express this matrix as a sum of a lower and an upper Toeplitz matrix
in the following way:

0o 0_1 0_p - o 0 0 - 00 0_y 0_,
0 0o 0_y - 0 0, 0 - 0 0 0,

0, 64 Og ---|= |6 64 96 . 0 96’

Here 6y = 6, + 0} and we can choose 8, and §{ to be non-zero. Let define the
sequences
0= (6,601,005, ...)

and _

0 =(65,0-1,0_2,0_3,...).
Therefore every Toeplitz matrix can be associated with two sequences. De-
noting the operator defined by the Toeplitz matrix as Ty, one can write this
operator as a sum of two operators defined by a lower and an upper Toeplitz
matrix, that is,

Ty = fg + Té
In this section, we collect some results regarding the continuity and
compactness of a Toeplitz operator by utilizing the theorems proven in the
previous sections.

Theorem 5.1. Let @ be a stable sequence. A Toeplitz operator Ty : A1(a) —
A1 (B) is well-defined and continuous if 0 € A1 (B)D(A1()) and the following
condition holds:

VieN ImeN,C>0 e kP < Cemmon VneN. (5.1)

Proof. Let assume that Toeplitz matrix associated with Ty is given by se-
qunces 6 and 6. We can choose 0, and 6§ to be non-zero. Then Toeplitz
operator Ty is defined as

Ty = fé + fé.
From Theorem (B3), YA’é is well-defined and continous if and only if § € A1 (B)
and the condition (&) is satisfied. From Theorem E.6G] Yv’é is well-defined
and continous if and only if € (A1(@)) and the condition (B is satisfied.

Therefore, these give us that Ty is well-defined and continuous if § = 9 (&) 0 e
A1 (B) ® (A1(«)) and the condition (BT is satisfied. o

Theorem 5.2. Let « be a stable sequence. A Toeplitz operator Ty : A1 (o) —
A1(B) is compact if a 6 € A1(B8) D (A1(a))" and the following condition holds:

JmeN VkeN 3C >0 e P < Cemmon Vn =k (5.2)

Proof. The proof is similar to the proof of Theorem B.1] and follows from
Theorem B4 and Theorem (7] o

Remark 5.1. The condition in Theorem[5.2 is satisfied for the sequences o =
(n)neN and B = (n2)n€N'
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Theorem 5.3. Let 8 be a stable sequence and Ay () be a nuclear power series
space of infinite type. A Toeplitz operator Ty : A () — A (B) is well-defined
and continuous if 0 € Ao (8) ® (A ()’ and the following condition holds:

VkeN dmeN,C>0 ekhn < Ceman Y=k  (5.3)
Proof. This follows from Theorem and Theorem o

Theorem 5.4. Let 3 be a stable sequence and Ay () be a nuclear power series
space of infinite type. A Toeplitz operator Ty : Ay () — Ay (B) is compact if
0 e Ay(B) ® (A () and the following condition holds:

ImeN VkeN 3C >0 kP < Ceman Yn=k (5.4)
Proof. This follows from Theorem B.7] and Theorem [£41 o

Remark 5.2. The condition in Theorem[5.]) is satisfied for the sequences o =
(n*)nen and B = (n)nen.

Theorem 5.5. Let Ay (a) be a nuclear power series space of infinite type and
A1(B) be a nuclear power series spaces of finite type. Ty : Aon(a) = A1(B) is
well-defined, continuous and compact if 0 € A1(5) @ (A (5))’.

Proof. Continuity follows from Theorem and Theorem Compactness
follows from Theorem [3.4] and Theorem [£.4 o

Remark 5.3. By considering the conditions in Proposition [31] or Proposition
[4] the Toeplitz operator Ty is not well defined from Ai(a) to Ax(B).
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