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ABSTRACT The rapid growth of IoT has significantly changed modern technology by allowing devices,
systems, and services to connect easily across different areas. Due to the growing popularity of Internet of
Things (IoT) devices, attackers focus more and more on finding new methods, ways, and vulnerabilities
to penetrate [oT networks. Although IoT devices are utilized across a wide range of domains, the Internet
of Medical Things (IoMT) holds particular significance due to the sensitive and critical nature of medical
information. Consequently, the security of these devices must be treated as a paramount concern within the
IoT landscape. In this paper, we propose a novel approach for detecting various intrusion attacks targeting
Internet of Medical Things (IoMT) devices, utilizing an enhanced version of the LSTM deep learning
algorithm. To evaluate and compare the proposed algorithm with other methods, we used the CICIoMT2024
dataset, which encompasses various types of equipment and corresponding attacks. The results demonstrate
that the proposed novel approach achieved an accuracy of 98% for 19 classes, which is remarkably high for
classifications and presents a significant and promising outcome for [oMT environments.

INDEX TERMS Internet of Medical Things (IoMT), intrusion detection system, Internet of Things Security,
security of healthcare systems.

I. INTRODUCTION
It was 1999 when Ashton used the word ‘“Internet of
Things" (IoT) in his presentation [1]. IoT is defined as a
distributed networked system that communicates via wired or
wireless technologies. This special network contains sensors,
actuators, software, and network connectivity that allow these
objects to gather, occasionally process and exchange data.
These objects may also have limited computation, storage,
energy consumption, and communication capabilities [2].
This kind of network is used for a variety of areas
such as [3]:

The associate editor coordinating the review of this manuscript and
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Smart homes: 10T technology enables the automa-
tion and remote control of devices such as lighting,
thermostats, and security systems, enhancing conve-
nience and energy efficiency [4].

Industrial IoT: 11oT is used for smart manufacturing [5].
Smart vehicles: 10T is used to connect different types
of vehicles for control and management, traffic manage-
ment and fleet tracking [6].

Smart cities: 10T is utilized for infrastructure monitor-
ing, urban planning and energy management [7].

Smart agriculture : 10T is applied for precision farming,
livestock monitoring and resource management [8].
Climate Change: Researchers also deploy IoT for cli-
mate monitoring, disaster management, and renewable
energy integration. [9].
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The Internet of Medical Things (IoMT) has recently
emerged as one of the most critical domains within the
broader IoT ecosystem. IoMT is primarily used for remote
patient monitoring, enabling the continuous tracking of med-
ication adherence, vital signs, and the integration of medical
equipment and implants [10]. Other notable applications of
IoMT can be counted as wearable devices such as smart
watches, textile-based wearable systems, fitness trackers,
health monitoring devices, as well as telehealth services [11].
These innovations have significantly advanced the healthcare
sector by improving patient care and facilitating real-time
health management.

Like all IoT devices, IoMT devices are connected to
the internet and making them vulnerable to cyberattacks.
However, the critical nature of healthcare services and
the sensitivity of medical data amplify the significance
of security issues in IoMT environments. According to
CrowdStrike’s Global Threat Report 2024 [12], 8% of
intrusion attacks targeted healthcare systems. The report
further reveals that, in some cases, private mental and
physical healthcare data were either exposed or publicly
shared during these attacks.

To counter cyberattacks on IT systems, Intrusion Detec-
tion and/or Prevention Systems (IDS/IPS) are commonly
deployed. These systems monitor network traffic, detect
anomalies, and identify potential security breaches in real-
time. While some rely on signature-based detection, oth-
ers have integrated artificial intelligence-enhanced sensors.
From AI perspective, various technologies, techniques, and
models have been proposed by researchers, as outlined
in the Related Works section of this paper. Based on
our extensive experiments and results, we focused on
using the LSTM model to solve this problem. In this
research work, we propose a novel model utilizing the
LSTM model to accurately detect the various types of
attacks that occur in IoMT devices and networks as
a multi-classification tool. The CICIoMT24 dataset is
used to assess the effectiveness of the proposed LSTM
approach [13].

The CICIoMT2024 dataset was created by the Canadian
Institute for Cybersecurity (CIC) as a comprehensive dataset
designed for research in the Security of the Internet of
Medical Things to simulate real-world IoMT environments.
It includes various types of network traffic data including
benign and malicious activities.

The layout of this paper includes the following: In Sec-
tion II, a brief explanation of IoMT along with some
security subjects is provided and discusses the LSTM
model, while Section III reviews Related Works on IoMT
security. The used CICIoMT2024 Dataset is introduced with
preprocessing in Section IV. The proposed algorithm is
explained in detail in Section V, the Section VI tells about
the experiments and results discusses about limitations and
constraints and the Section VII concludes the research and
findings.

VOLUME 13, 2025

Il. BACKGROUND

A. INTERNET OF MEDICAL THINGS

The Internet of Medical Things has emerged as a new
concept in IoT terminology and is a subset of IoT in
which medical devices are equipped with smart equipments
to create, transfer and store medical data. Its technology
facilitates the healthcare sector by enabling the connection
and integration of medical devices, healthcare systems, and
patient data.

Zois at their paper described a set of exemplary health
applications that use such capabilities as telemedicine
services, smart medication management systems, real-time
health data tracking, and remote patient monitoring [14].
Furthermore, by giving medical staff real-time access to
patient data and facilitating prompt interventions and indi-
vidualized treatment plans, [oMT devices have the potential
to improve patient outcomes and the general quality of care.
Additionally, people can gain a great deal from IoMT devices
by being able to regularly review their health records and
take preventative measures without having to visit the doctor
as often as without IoMT. However, lower hospital expenses
may result from the adoption of IoMT devices in healthcare
by eliminating avoidable problems and minimizing the visits
to hospitals. The Internet of Medical Things has the potential
to totally change the healthcare sector by lowering costs and
enabling remote health monitoring.

For medical issues and easy usage, the [oMT devices are
used either as implantable (such as cochlear implant, or deep
brain stimulator) or wearable (such as Smart watches, ECG,
and blood pressure monitors). Avinashiappan et al. classify
IoMT devices according to their locations as: Community,
In-Hospital, In-Clinic, In-home and On-body [15]. Since
we are talking about devices that use the internet for
connection, apparently it is considerable that these devices
are susceptible to cyberattacks and illegal access to patient
data by cybercriminals [16].

Despite the Internet of Medical Things presents a revolu-
tion in healthcare, according to Yaacoub et al., its potential
is marred by significant security concerns [17]. At Device-
Level Security and Network-Level Security, the followings
can be considered for measures:

o There should be put in place measures like secure boot to
prevent unauthorized code execution and ensure timely
firmware updates to address vulnerabilities.

o To prevent unwanted access to devices and data,
usage of role-based access control and enforcement of
multi-factor authentication (MFA) should be considered.

« Robust encryption methods should be utilized to encrypt
data while it is in use, in transit, and at rest, making it
unreadable in the event of a breach.

« To reduce vulnerabilities during development, develop-
ers should adhere to secure coding techniques.

o To mitigate the impacts of the attacks and to isolate
[IoMT devices from vital healthcare systems, segmenta-
tion of the network should be considered.
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o Usage of Intrusion Detection and Prevention Systems
(IDS/IPS) to stop harmful network activity directed
at IoMT devices and continuous monitoring to spot
suspicious device activities and network traffic is
essential.

o In IoMT networks, Al (ML/DL) techniques can be
utilized for anomaly detection and real-time threat
detection.

B. LONG SHORT-TERM MEMORY (LSTM) NETWORKS IN
DEEP LEARNING

Long Short-Term Memory (LSTM) is a special kind of recur-
rent neural network (RNN) architecture, which eliminates
the vanishing gradient problem [18]. The key components of
an LSTM Cell are Input Gate, Forget Gate, Cell State, and
Output Gate.

At a LSTM Cell, Input Gate controls the flow of
information into the cell state and decides which parts of
the current input should be updated. At Forget Gate which
information from the previous cell state should be forgotten is
determined. Cell State stores information over time. By being
updated based on the input and the previous cell state,
decisions of the input and forget gates accomplished. Then
the Output Gate decides which parts of the cell state should
be the output.

Since LSTMs can retain information for extended periods
of time and are built to solve the vanishing gradient problem,
they are especially helpful in sequences where earlier inputs
affect later outputs so they have the ability to handle long-
term dependencies.

Ill. RELATED WORKS

In healthcare and medical systems, security measures must
be implemented with exceptional care and rigor due to the
critical nature of medical data and the growing frequency
of cyberattacks targeting healthcare infrastructures. Conse-
quently, ensuring the security of the IoMT has become a
significant research focus, motivated by both the sensitivity
of medical information and the increasing threat landscape.
Intrusion detection systems (IDS) play a crucial role in
safeguarding sensitive medical data within IoMT environ-
ments by identifying malicious activities and unauthorized
access. Various studies have explored the application of
deep learning (DL) and machine learning (ML) methods to
bolster IDS effectiveness in IoMT networks. For example,
Anitha et al. explored some ML techniques to detect attacks,
concluding that kNN yielded the best results with an accuracy
of 89.79% [19]. Their work utilized IEEE Data Port datasets
for binary classification purposes.

In another study, Ksibi et al. employed the novel ECU-
IoHT dataset. Their binary classification efforts, leveraging
the Random Forest ML algorithm, achieved an accuracy of
99.76% after using SMOTE for data balancing [20]. Tanzila
Saba advocated for ensemble classifiers, such as bagged
decision trees based on the bagging algorithm, to detect
attacks against Smart City Hospitals. Her model achieved
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93.2% accuracy using the KDDCup’99 dataset, which
encompasses 5 classes [21]. Alsalman proposed FusionNet,
a model combining Support Vector Machine, K-Nearest
Neighbors, Random Forest, and Multi-Layer Perceptron
for anomaly detection. According to his paper, this model
reached 98.5% accuracy on the WUSTL EHMS 2020 Dataset
and 99.5% on ICU-IoMT for binary classification [22]. Sun
et al. attained a 98.5% accuracy by using Particle Swarm
Optimization and AdaBoost on the NSL-KDD dataset, which
includes 5 classes, including normal traffic [23]. Balhareth et
al. worked with the CICIDS2017 dataset, applying Mutual
Information and XGBoost for feature selection, resulting in a
binary classification accuracy of 98.79% [24].

Deep learning, known for its ability to autonomously
uncover complex patterns, has also been widely used in IDS
for IToMT. Awotunde et al. used a Deep Auto Encoder on
the NF-ToN-IoT dataset as an intrusion detection mechanism
for secured IoMT systems, achieving 89% accuracy for a
10-class multi-classification [25]. Kulshrestha and Kumar,
in their study using the ToN-IoT dataset, claimed around
99% accuracy for 4-class classification with the AdaBoost
classifier [26]. Khan et al. proposed a hybrid CNN-LSTM
model to address feature interdependencies and improve
feature learning, which they applied to the IoT Malware
dataset, achieving an approximate 99% accuracy for binary
classification [27].

Combining more classifiers often uses additional system
resources, yet hybrid Al techniques have demonstrated effi-
cacy in enhancing IDS performance. Liagat et al. proposed a
hybrid DL architecture combining CNN and cuDNNLSTM
for the IoMT environment employing the Bot-IoT dataset.
They compared multiple configurations, concluding that
CNN with cuDNNLSTM was the most effective, achieving
an accuracy close to 99.99% for 3-class classification [28].
Faruqui et al. devised a model combining CNN and LSTM
to improve cybersecurity in IoMT, reporting an average
accuracy rate of 97.63% for 12 classes on the CIC-IDS2017
dataset, although it is not specific to IoMT [29].

Otoum et al. employed a Federated Transfer Learning-
based IDS, and at most with achieving 95.1% accuracy
rate for 3-classes multi-classification on the CICIDS2017-
Tuesday dataset [30]. Ravi et al.’s CNN-LSTM model on
the WUSTL EHMS 2020 dataset achieved 99% accuracy
with 10-fold cross-validation in binary classification [31].
Khan et al. developed the XSRU-IoMT model based on a
bidirectional simple recurrent unit (Bid-SRU), achieving a
99.38% accuracy for 8-class multi-classification on the ToN-
IoT dataset [32]. Dadkhah et al. generated the CICIoMT2024
dataset to simulate an IoMT environment for IDS research.
They tested Logistic Regression, AdaBoost, DNN, and
Random Forest, achieving nearly 100% accuracy in binary
classification but observing a decrease in accuracy to
73.3% in 19-class scenario [33]. Sdnchez et al. studied the
application of fine-tuning Transformer designs also using the
CICIoMT2024 dataset and assessed it using the Aposemat
I0oT-23 dataset. Their experiments on their proposed model

VOLUME 13, 2025



G. Akar et al.: L2D2: A Novel LSTM Model for Multi-Class Intrusion Detection Systems

IEEE Access

TABLE 1. Related works for loMT IDS with Al.

Classification Type

Author Dataset ML/DL Technique (Number of Classes) Accuracy
Anitha et al. [19] IEEE Data Port KNN Binary 89.79%
Ksibi et al. [20] ECU-IoHT Random Forest Binary 99.76%
Tanzila Saba [21] KDDCup-99 Bagged Decision Trees Multi-class (5) 93.20%
Alsalman [22] ‘WUSTL EHMS 2020, FusionNet Binary 98.5%,
ICU-IoMT (SVM, KNN, RF, MLP) 99.5%
Sun et al. [23] NSL-KDD PSO-AdaBoost Multi-class (5) 98.50%
Balhareth et al. [24] CICIDS2017 XGBoost Binary 98.79%
Awotunde et al. [25] NF-ToN-IoT Deep Autoencoder Multi-class (10) 89%
Kulshrestha et al. [26] ToN-IoT AdaBoost Multi-class (4) 99%
Khan and Akhunzada [27] ToT Malware CNN-LSTM Binary ~99%
Liaqat et al. [28] Bot-IoT CNN-cuDNNLSTM Multi-class (3) ~99.99%
Faruqui et al. [29] CIC-IDS2017 CNN-LSTM Multi-class (12) 97.63%
Otoum et al. [30] CICIDS2017 Federated Transfer Learning Multi-class (3) 95.10%
Ravi et al. [31] WUSTL EHMS 2020 CNN-LSTM Binary 99%
Khan et al. [32] ToN-IoT Bid-SRU Multi-class (8) 99.38%
Dadkhah et al. [33] CICIoMT2024 Loglgﬁﬁegﬁgxﬁ‘:j;““’ Multi-class (19) 73.30%
Sanchez et al. [34] CICIoMT2024, 10T-23 XGBoost with Transformer Multiclass (7) 96%

reached up to 96% for Accuracy, Precision, Recall and
F1- Score metrics [34].

This overview highlights ongoing research into IoMT
security and the intersection of advanced Al techniques and
IDS frameworks continues to show promising advancements
in the field. By reviewing the related works on IoMT, it is
shown that the studies are continuing and this special part
of IoT still attracts researchers to solve different research
and security problems. At the same time, there is still a
need to enhance the current proposed algorithms and propose
new algorithms to handle and improve the achieved results
especially for multi-classification as seen in the Table 1.
The ongoing improvements in Al techniques also affect the
approaches to IDS systems for [oMT, and the results reached
are encouraging.

IV. CICIOMT2024 DATASET

In our study, we utilized CICIoMT2024 dataset to test the pro-
posed algorithms and models for better IDS mechanisms for
IoMT environments. This dataset was gathered and issued by
Dadkhah et al. from the Canadian Institute for Cybersecurity
at the University of New Brunswick (UNB) [33].

A. BRIEF INFORMATION ON THE DATASET
To produce this dataset for security solutions, the authors
used a testbed consisting 25 real devices and 15 simulated
devices [33]. The CICIoMT2024 dataset distinguishes itself
from other IoT and IoMT datasets by offering comprehensive
coverage of devices, attacks, and protocols tailored to
healthcare security applications. While the datasets like
BOT-IoT, ToN-IoT, UNSW-NBI15 and Edge_IIoT are for
IoT, but they do not contain significant medical devices
because of the reason they were not produced especially for
medical systems [35].

Some other IoMT datasets like WUSTL EHMS 2020 and
ECU-IoHT focus on a narrow range of devices such

VOLUME 13, 2025

— e g

. \
Sense-U J

a. Baby Monitor

-
— ¥

c. Sleep Ring

]

b. SOS Button

oy

f. Chest Heart
Rate Monitor

d. Heart Rate
Arm Band

e. 02 Ring

FIGURE 1. Some loMT devices used in CICloMT2024 Dataset.

as laptops, heart rate monitors, and temperature sen-
sors, while CICIoMT2024 includes a much broader array
of 40 IoMT devices, encompassing both real and simulated
tools such as oxygen saturation sensors, glucometers, and
heart rate monitors [36], [37]. This diversity provides a
realistic representation of healthcare environments. Figure 1
represents some of the devices used during data gathering.
Figure 1.ais a baby monitoring device that integrates health
tracking capabilities with video capabilities [38]. Figure 1.b
is a SOS Button which is a wireless emergency warning
device that is frequently used in homes, hospitals, and other
establishments for general emergency signaling, patient aid,
and elder care. When the SOS button is hit, it can transmit
signals to a receiver or a linked mobile app over a Wi-Fi
connection [39]. Figure 1.c is a sleep ring which is a small
sleep monitoring gadget that measures heart rate and blood
oxygen saturation levels [40]. Figure 1.d is an arm band to
monitor heart rate [41]. Figure 1.e is a smart ring intended to
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TABLE 2. List of devices used for the CICloMT2024 test lab.

The used equipments

Simulated devices

Sense-U Baby Monitor

Withings BPM Connect

SOS Multifunctional Pager

Withings Thermometer

SINGCALL SOS Button Lookee Ring-Pro Sleep Monitor

Ecobee Camera Qardio Base 2

blink mini Wellue EKG

MIT laxihub iHealth Smart Wireless Gluco-Monitoring System
Owltron Wellue Visual Oxy Wrist Pulse Oximeter
TP-Link_CIC (AP2) Nasal/Mouth Air Flow Sensor

Raspberry pi 4 (4) EMG (Electro-myography Sensor)

iPad GSR (Galvanic Skin Response Sensor)

TP-Link_CICIoT_Doctor (AP1)

Industrial devices

Lookee Sleep ring

UASure II Meter

Powerlabs HR Monitor Arm band

Fall Detector

COOSPO 808s Chest HR Monitor

Baby Sleep Position - SenseU Baby

COOSPO HW807 Armband

Spirometer

Livlov Heart Rate Sensor

Wellue O2 Ring - 3438

Lookee O2 Ring

Checkme BP2A

SleepU Sleep Oxygen Monitor

Rhythm+ 2.0

Wellue Pulsebit EX

Kinsa Thermometer

Checkme O2 Wrist Pulse Oximeter (2)

Dell CICM99

Samsung A1l

TABLE 3. Classes and sub-classes of the used dataset.

Main Class  Sub Classes

Benign Benign

Spoofing ARP

DDoS ICMP - SYN - TCP - UDP

DoS ICMP - SYN - TCP - UDP

MQTT DDoS Connect Flood - DDoS Publish Flood - DoS Connect Flood -DoS Publish Flood - Malformed Data

Recon OS Scan - Ping Sweep - Port Scan - VulScan

track heart rate and blood oxygen levels while you sleep [42].
Figure 1.f is another heart rate monitoring gets worn around
the chest [43].

The list of used and simulated types of equipment is
provided in Table 2. Table 3 gives the sorts of attacks from
the CICIoMT2024 dataset, and in the Table 4 the counts of
the logs are listed per attack type.

B. TYPES OF ATTACKS IN CICIOMT2024

The 18 attacks in CICIoMT2024 dataset, cover a variety
of protocols commonly used in healthcare, such as Wi-Fi,
MQTT, and Bluetooth. They categorized the attacks into five
classes: DDoS, DoS, Recon, MQTT and Spoofing.

We utilized this dataset to analyze three distinct class
configurations: 2, 6, and 19 classes, respectively. The
2-class analysis solely focuses on distinguishing between
benign and malicious attacks. The 6-class classification
includes both benign instances and various types of attacks
as DDoS, DoS, MQTT, Recon, and Spoofing. Addition-
ally, the 19 subcategories within these classifications are
detailed in the Table 3. The abbreviations in the Table 3
stand for:
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DoS (Denial of Service): DoS attacks cause services
to be inaccessible by flooding a target with too many
requests for computation or traffic [44].

DDoS (Distributed Denial of Service): DDoS enhance
DoS vulnerabilities by flooding a target with many
systems, frequently botnets [45].

MQTT (Message Queuing Telemetry Transport):
MQTT is ideal for low-resource devices, especially in
IoT applications. But its lightweight nature and lack
of robust security mechanisms make it vulnerable to
attacks [46].

Recon (Reconnaissance): Systems that have unpatched
software, detailed error messages, or unprotected ports
are vulnerable to Reconnaissance attacks. Recon attacks,
which frequently serve as a prelude to more focused
operations, allow adversaries to map networks, locate
open services, and find exploitable gaps. The OS
Scan tries to identify operating system, Ping Sweep
locates active hosts, Port Scan is utilized to identify
open ports or services and VulScan detects the known
vulnerabilities [47].

ARP (Address Resolution Protocol): Because it lacks
authentication by design, ARP is prone to spoofing.

VOLUME 13, 2025
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TABLE 4. Quantity of instances in the CICloMT2024 Dataset.

Class Category Attack Count
SPOOFING | ARP Spoofing 17791
Port Scan 106603
OS Scan 20666
RECON Recon VulScan 3207
Ping Sweep 926
DDoS Connect Flood | 214952
DoS Publish Flood 52881
MQTT DDoS Publish Flood 36039
DoS Connect Flood 15904
ATTACK Malformed Data o877
DoS UDP 704503
DoS DoS SYN 540498
DoS ICMP 514724
DoS TCP 462480
DDoS UDP 1998026
DDoS DDoS ICMP 1887175
DDoS TCP 987063
DDoS SYN 974359
BENIGN | - - 230339

By sending fake ARP messages, attackers take advan-
tage of this and can reroute traffic or carry out man-in-
the-middle attacks on local area networks [48].

o ICMP (Internet Control Message Protocol): Ping floods
and other flooding attacks, which overload a target by
taking use of its response to ICMP requests, frequently
take advantage of ICMP’s availability to network
diagnostics [49].

e SYN (Synchronize): The SYN flag is used to start a
connection between two devices in the TCP handshake
process. By sending a large number of connection
requests without fulfilling them, attackers take advan-
tage of this process in attacks like SYN floods, which
exhaust the target server’s resources [50].

e TCP (Transmission Control Protocol): Attackers can
take over sessions or interfere with communication by
taking use of TCP connection-oriented flaws [51].

o« UDP (User Datagram Protocol): By sending small
requests to servers that are incorrectly configured, UDP
amplification attacks take advantage of connectionless
communication. Systems lacking source validation or
rate-limiting are therefore especially susceptible [52].

In terms of attack coverage, other datasets typically
address limited scenarios, such as spoofing or DoS attacks.
CICIoMT2024 goes further by simulating 18 attack types,
including DDoS, MQTT-specific attacks, reconnaissance,
and spoofing. These scenarios are designed to evaluate vul-
nerabilities across multiple dimensions, making the dataset
more robust for research on IoMT cybersecurity.

CICIoMT2024 also stands out in its specific focus on
healthcare, incorporating medical-grade devices and realistic
attack simulations. Other datasets, though focused on IoT,
lack the targeted application for critical healthcare settings.
By addressing this gap, CICIoMT2024 provides a valuable
resource for improving cybersecurity in IoMT, especially in
environments where confidentiality, integrity, and availability
are paramount..
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CICIoMT2024 addresses the limitations of other datasets
by providing a diverse testbed of devices and an extensive
range of attacks. These features make it a robust resource for
researchers aiming to develop advanced Al-based solutions
to secure JoMT.

C. PREPROCESSING

To prepare the CICIoMT2024 dataset for classification,
a comprehensive preprocessing pipeline was applied to
ensure data quality and model compatibility. The dataset
contains 45 features and includes some incomplete and
missing data [33]. Firstly, missing values were handled,
through imputation methods using mean imputation for
numerical data, or mode imputation for categorical features,
in some cases by removing rows with excessive missing
information. Data normalization or standardization was also
applied to bring all feature values into comparable scales,
enhancing the performance of distance-based and gradient-
based classification algorithms. Additionally, to facilitate
supervised learning, target class labels were appended to
each row across all files in the dataset, ensuring that
the model could correctly associate each data instance
with its class during the training and testing phases. This
organization enables the classifier to map features to their
respective classes, streamlining the model’s learning and
evaluation process.

The features in the CICIoMT2024 dataset were selected
based on their significance in identifying and addressing
security threats specific to IoMT environments. These
features include network traffic characteristics, device behav-
iors, and protocol-specific parameters, which are crucial for
detecting anomalies, potential vulnerabilities, and malicious
activities. For example, features such as packet size, flow
duration, protocol type, and specific header fields were
chosen because they provide insights into the nature of
communication among [oMT devices. These parameters are
essential for identifying unauthorized access attempts, data
breaches, or abnormal communication patterns that could
signal potential threats. Moreover, advanced techniques such
as correlation analysis and feature importance ranking were
employed to ensure that the selected features contribute
effectively to enhancing the detection capabilities of machine
learning models used in IoMT security applications. In our
training and testing tasks, we left the feature selection to
the LSTM deep learning algorithms like many other deep
learning models.

V. PROPOSED LSTM MODEL

LSTM models are widely recognized for their ability to
capture and retain information over extended sequences,
making them particularly effective in analyzing time-series
data and patterns in sequential events. Due to their unique
memory cell structure, LSTMs can selectively remember or
forget information across longer time intervals, addressing
the limitations of traditional RNNs that struggle with long-
term dependencies [53]. This characteristic is precious in
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intrusion detection, where the model must identify anomalous
behavior over a series of network events to distinguish
between benign and malicious activities accurately. In this
research, LSTM models have been employed to tackle the
attack detection problem for IoMT environments, leveraging
their capacity to learn complex temporal patterns in network
traffic data, thus enhancing the detection of subtle and
sophisticated attacks within an IoMT environment.

The proposed model in this research uses Two-LSTM and
Two-Dense Layers and optimizes with AdamW optimizer.
According to the results of Section VI, this model achieves
the best results compared to many other LSTM and
machine learning models. Figure 2 describes the structure
of the proposed LSTM model in detail to handle the
binary and especially multi-class classification problem in
IoMT systems. Specifically, the proposed model applied
to the instances of the CICIoMT2024 dataset in the case
of 2, 6, and 19 classes respectively.

In the proposed model, the architecture with stacked
LSTM layers, followed by dense (fully connected) layers, can
effectively be used for tasks that require capturing sequential
dependencies in time series or sequential data. The model
comprising two LSTM layers followed by two dense layers,
each with unique configurations and purposes, is described in
detail as follows:

o Input Layer: The input layer is designed to handle
sequential data of a fixed length and feature dimension.
Typically, for LSTM models, the input is structured
as a three-dimensional tensor with the shape (batch
size, timesteps, features). Each element in the sequence
represents a one-time step of data, and each time step
includes a set of features.

o LSTM Layers: The core of the model consists of two
stacked LSTM layers with 64 units each. LSTM layers
are composed of memory cells that allow the network
to retain information over long sequences, making them
ideal for capturing temporal dependencies.

— First LSTM Layer: It includes 64 hidden units
that provide the memory cell with the capacity to
capture complex sequential patterns in the input
data. A ReLU (Rectified Linear Unit) activation
function is applied that introduces non-linearity to
the network, which allows the model to learn more
complex patterns. Although the default activation
in LSTMs is the sigmoid function, ReLU is used
for more flexibility. The return sequences layer for
LSTM is configured to return the full sequence
output for each step, thus outputting a sequence
of the same length as the input. This configuration
is beneficial when stacking multiple LSTM layers,
as it allows the subsequent LSTM layer to process
the complete sequence of outputs.

— Second LSTM Layer: Similar to the first
LSTM Iayer, this layer has 64 units, maintaining
the model’s capacity to learn from temporal
dependencies. The ReLU activation function is
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again applied to introduce non-linearity. For the
layer of return sequences, we typically set the
return_sequence parameter to False, which
means it outputs only the final state of the LSTM
after processing the entire input sequence. This is
particularly useful when the subsequent layers in
the network do not require sequential input.

o Dense (Fully Connected) Layers: Following the LSTM
layers, two fully connected (dense) layers are included.
Dense layers are commonly used after LSTMs to
consolidate the learned features into a fixed output space
and are useful for classification or regression tasks.

— First Dense Layer: This layer has 64 neurons, pro-
viding substantial capacity to process and interpret
the abstract representations learned by the LSTM
layers. The ReLU activation function is employed
again, enabling the layer to capture non-linear
patterns and relationships in the data.

— Second Dense Layer (Output Layer): The final
dense layer is typically configured to match the
required output format. For instance, in binary
classification, it would have a single unit with a sig-
moid activation, while in multi-class classification,
it would have as many units as the number of classes
with a softmax activation.

VI. EXPERIMENTS AND RESULTS

This section describes the two main experiments conducted to
evaluate the performance of the proposed model, provides a
detailed evaluation of the results, and discusses the limitations
and constraints.

A. PERFORMANCE COMPARISON OF THE LSTM MODEL
WITH OTHER MACHINE LEARNING MODELS

To test the effectiveness of the LSTM model for solving
the classification problem of the CICIoMT2024 dataset,
we compared it with a set of well-known machine learning
algorithms such as Logistic Regression and ANN for 2, 6,
and 19 classes as shown in Tables 5, 6 and 7 respectively.

By analyzing the results of the 2-class classification prob-
lem, we found that the Logistic Regression achieved a strong
performance with the metrics of accuracy, precision, recall,
and F1-Score all equal to 98%. Deep Learning (DL) Artificial
Neural Network (ANN) obtained the best classification
performance with all metrics scoring 100%. Similarly, Deep
Learning LSTM achieved perfect classification with 100%
across all metrics. For the 2-class problem, both the DL. ANN
and LSTM significantly outperformed logistic regression,
achieving perfect classification.

At the next step our aim was to assess the capabilities of
the algorithms with 6-class classification. It has been obvious
that Logistic Regression struggles with multi-classification
with the values of 57% for accuracy and recall, precision with
37% and 43% for F1-Score. While ANN with Adam Opti-
mization gives better results than LR(Logistic Regression)
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FIGURE 2. The proposed model with 2 LSTM and 2 dense layers.
TABLE 5. Classification results for 2-classes problem.
Algorithm Accuracy Precision Recall F1-Score
Logistic Regression 0.98 0.98 0.98 0.98
DL ANN + Adam (50 epochs) 1 1 1
DL LSTM (50 epochs) 1 1 1
TABLE 6. Classification results for 6-classes problem.
Algorithm Accuracy Precision Recall F1-Score
Logistic Regression 0.57 0.37 0.57 0.43
DL ANN + Adam (50 epochs) 0.73 0.73 0.73 0.70
DL LSTM (50 epochs) 0.98 0.98 0.98 0.98
TABLE 7. Classification results for 19-classes problem.
Algorithms Accuracy Precision Recall F1-Score
Logistic Regression 0.30 0.12 0.30 0.17
DL ANN + Adam (50 epochs) 0.71 0.65 0.71 0.65
DL LSTM (50 epochs) 0.95 0.96 0.95 0.95
Deep and Wide Learning (50 epochs) 0.72 0.70 0.72 0.67
Gradient Boosting Classifier 0.88 0.93 0.88 0.85

around 70%, is still less than LSTM for IoMT. With
LSTM algoritm the results are 98% for all performance
evaluation metrics.

While the CICIoMT2024 Dataset contains 19-classes, the
last experiment was to see the results with 19-classes multi-
classification. As expected the Logistic Regression showed
a very poor performance from 12% up to 30% for the
metrics, and the ANN with Adam was around 70%. Then we
added more players to the experiments as Deep and Wide
Learning (DWL) and Gradient Boosting Classifier (GBC)
to experience some other DL algortihms capabilities. At the
conclusion we experienced that DWL gives the results like
the ANN around 70% but GBC has good performance as
88% accuracy, 93% for precision, 88% for recall, and 85% for
F1-Score. Finally we tried LSTM and its metrics were around
95% which shows us that LSTM outperforms than the others.

The conclusion of these experiments shows that the
LSTM algorithm consistently achieves high performance
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across all classification tasks, especially distinguishing in
multi-class problems. Despite Dadkhah et al. who are the
producers of the CICIoMT2024 dataset got accuracy as
73.3% for 19 classes; our experiment with a model consisting
of 1 LSTM and 1 Dense layer attained an 95% accuracy.

B. OPTIMIZING THE ARCHITECTURE OF THE PROPOSED
LSTM MODEL

The results of the first experiment show that many machine
learning algorithms can achieve excellent results for the
2-classes. But when it comes to multi-classification, their
success substantially decreases. When the number of classes
becomes 6 or 19, the performance of many algorithms and
models degrades or fails to achieve acceptable results (see
Table 6 and Table 7). Although the success rate of LSTM for
19 classes is around 95% and it is the highest obtained result,
in this subsection, we tried to make this model more reliable
and better for [oMT environments.
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TABLE 8. Quantity of LSTM and dense layers and the results per model.

Algorithms NuII_Illrll)iz of Lg;ﬁbf;;is Dl:::ell;:yg-s Accuracy Precision Recall F1-Score
LSTM 1 (50 epochs) 64 1 4 0.95 0.96 0.95 0.95
LSTM 2 (50 epochs) 64 2 3 0.71 0.69 0.71 0.67
LSTM 3 (50 epochs) 64 3 2 0.96 0.96 0.96 0.95
LSTM 4 (50 epochs) 64 4 1 0.71 0.69 0.71 0.66
LSTM 5 (50 epochs) 64 1 3 0.70 0.70 0.70 0.69
LSTM 6 (50 epochs) 64 3 1 0.98 0.98 0.98 0.97
LSTM 7 (50 epochs) 64 2 2 0.98 0.98 0.98 0.98
LSTM 8 (50 epochs) 64 1 2 0.70 0.73 0.70 0.67
LSTM 9 (50 epochs) 64 2 1 0.97 0.98 0.97 0.97
LSTM 10 (50 epochs) 128 1 4 0.75 0.74 0.81 0.69

In the first part of this experiment, we investigated the
structure of the LSTM model by implementing and testing
10 different LSTM models with different numbers and
types of layers. Table 8 represents the performance of the
considered different LSTM architectures, each with varying
numbers of LSTM units, layers, and dense layers. The
evaluation metrics include accuracy, precision, recall, and
F1-Score. LSTM models were set up with sequential,
50 epochs and 64 Units.

As seen in the Table 8, a total of 3 to 5 layers are employed
with varying quantities of LSTM and Dense layers. Best
results gained from LSTM 7 which comprises 2 LSTM
and 2 Dense layers. LSTM 6, which consists of 3 LSTM
layers and 1 Dense layer, is also a successful model. However,
it performs slightly worse than LSTM 7, making LSTM 7
the preferred choice for further work. But before trying
optimizers, we wanted to be sure about the number of units
to be employed. So we utilized 128 units for LSTM 1 model,
which had 95% rate of accuracy with 64 units. After the
experiment, it was demonstrated that; increasing the unit
number does not affect positively, on the contrary, the
accuracy rate decreased down to 75%. Consequently the
experiment continued with 64 units scenario.

The results of Table 8 show that the LSTM 7 model
obtained the best performance in the experiment with 98%
of accuracy, precision, recall, and F1-score. The results show
that the proposed LSTM model with 2 LSTM layers followed
by 2 Dense layers not only obtains the best results but also
maintains a balanced performance for all metrics.

By achieving the best results from LSTM 7, the number
of LSTM and Dense layers was set in the model. However,
to confirm the optimal optimizer choice, alternatives were
tested. For example, AdamW which improves [54] upon the
Adam optimizer by decoupling weight decay [55] from the
gradient updates, leads to better generalization performance.
Nadam Optimizer is a variant of the Adam optimizer that
incorporates Nesterov momentum, accelerating convergence
during optimization [56]. To keep the learning rate from
getting too low and to support the maintenance of an efficient
rate of convergence, RMSprop Optimizer modifies the
learning rate for each parameter using a moving average of
the squared gradients. [57]. By Stochastic Gradient Descent
(SGD) Optimizer, the model parameters are updated by using
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randomly selected batches, helping with faster convergence,
but it does require careful learning rate tuning [58]. Adagrad
Optimizer adapts the learning rate individually for each
parameter, making it suitable for sparse data [59]. Adadelta
Optimizer is an extension of Adagrad that dynamically
adjusts learning rates without needing a fixed global learning
rate that is overcoming Adagrad’s diminishing learning
rates [60].

To address class imbalance, weight balancing was tested,
assigning greater importance to minority class samples
during training to reduce imbalance effects. Another method
used in this experiment to balance classes was SMOTE (Syn-
thetic Minority Over-sampling Technique), which generates
synthetic samples for the minority class by interpolating
between existing samples [61]. Focal Loss, a modified cross-
entropy loss that focuses learning on hard-to-classify exam-
ples by down-weighting well-classified especially useful for
imbalanced datasets was also tested [62]. Additionally, Bidi-
rectional LSTM, effective for sequential data, was tried [63].
Finally, Dropout, a regularization technique that randomly
“drops” neurons during training to prevent overfitting and
promote generalization, applied to the experiment [64].

Table 9 describes the performance of different variations of
the LSTM algorithm tested under various hyperparameters,
optimizers, and conditions such as learning rate and number
of epochs. The evaluation metrics provided are again accu-
racy, precision, recall, and F1-score. As shown in Figure 3,
the importance of the number of epochs is evident from the
results of the experiments. Around 100 epochs, model gets
stable and increasing number of epochs does not effect the
output of the experiment.

All these Weight-balancing, Focal Loss, SMOTE,
bi-directional LSTM, Stochastic Gradient Descent (SGD),
Adagrad, AdamW, Nadam, RMSprop were applied to the
LSTM 7 model. The very best result gained from the LSTM 7
with AdamW Optimizer model. Since the proposed model
has 2 LSTM and 2 Dense layers, we named it as “L2D2”.

C. LIMITATIONS AND CONSTRAINTS

Our method demonstrates superiority over traditional
machine learning (ML) approaches but still faces limitations
for the reason of resource constraints of IoT devices.
In our initial experiment, ML methods were shown to
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TABLE 9. The LSTM 7 model with different optimizers.

Algorithms Learning Rate  Accuracy Precision Recall F1-Score
Weight-balanced LSTM 7 (50 epochs) 0.001 0.82 0.89 0.82 0.81
Weight-balanced LSTM 7 (100 epochs) 0.001 0.96 0.98 0.96 0.96
LSTM 7 (100 epochs) 0.001 0.89 0.86 0.89 0.86
LSTM 7 with Focal Loss (50 epochs) 0.001 0.91 0.87 0.91 0.88
LSTM 7 with SMOTE (50 epochs) 0.001 0.70 0.79 0.70 0.68
LSTM 7 with bidirectional LSTM (50 epochs) 0.001 0.78 0.79 0.78 0.74
LSTM 7 with SGD optimizer (50 epochs) 0.01 0.16 0.03 0.16 0.05
LSTM 7 with Adagrad optimizer (50 epochs) 0.01 0.71 0.69 0.71 0.66
LSTM 7(50 epochs) 0.0001 0.87 0.89 0.87 0.85
LSTM 7 with AdamW optimizer (50 epochs) 0.001 0.96 0.96 0.96 0.95
LSTM 7 with Nadam optimizer (50 epochs) 0.001 0.97 0.97 0.97 0.97
LSTM 7 with RMSprop optimizer (50 epochs) 0.001 0.55 0.52 0.55 0.49
LSTM 7+ weight balancing +SMOTE + bidirectional LSTM+ drop out layers 0.0001 0.65 0.72 0.65 0.61
LSTM 7 + weight balancing (50 epochs) 0.0001 0.68 0.73 0.68 0.66
LSTM 7 with AdamW optimizer (50 epochs) 0.0001 0.93 0.94 0.93 0.93
LSTM 7 with Nadam optimizer (50 epochs) 0.0001 0.95 0.95 0.95 0.94
LSTM 7 with AdamW optimizer (100 epochs) 0.0001 0.98 0.98 0.98 0.98
TABLE 10. Comparison of studies that utilized CICloMT2024 dataset for multi-classification of attacks against loMT.
Related Works with CICIoMT2024 Dataset ML/DL Technique = Number of Classes  Accuracy
Towards Enhanced IoT Security: Advanced Anomaly Detection CICIoMT2024 XGBoost with 19-7 0.95
using Transformer Models (Sanchez et al.) [34] and [0T-23 Transformer :
CICIoMT2024: A benchmark dataset for multi-protocol securit
assessment in ToMT (Dadkhah ot a1y [33] P Y CICIoMT2024  Random Forest 19 0.73
L2D2 (Proposed Model) CICIoMT2024 LSTM 19 0.98

Training and Validation Accuracy Over Epochs

—— Training Accuracy N
Validation Accuracy

0.90

0.75

0 20 40 60 80 100
Epochs

FIGURE 3. The performance of the best model during training and
validation.

effectively detect the presence of intrusions. For simpler
tasks like detecting only whether an attack is occurring
in an IoMT environment, lightweight techniques such as
Logistic Regression suffice due to their minimal resource
requirements and efficiency.

However, when the objective shifts to accurately classify-
ing the specific type of attack, our L2D2 model (which was
derived from LSTM and additionally optimized by AdamW),
exhibits superior performance compared to other techniques
that are already mentioned in the Related Works Section.
This performance comes at the cost of increased resource
consumption. For resource-constrained IoMT devices, the
L2D2 model is not recommended for simple binary detection
of attacks, as it is unnecessarily computationally intensive.
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Hybrid network architectures have promising successes
for future works. Moreover, recent neural networks such as
Graph Neural Networks (GNNs), also show significant accu-
racy rates at IoT systems, particularly those with complex
dependencies and hierarchical structures, if the high resource
usage is not an issue [65]. However, high memory usage
and computational intensity remain significant challenges
for deploying these models in resource-constrained IoMT
environments. The new methods like Graph Neural Networks
could get more accurate results than LSTMs, but we chose
LSTM because of the trade-off between accuracy and
resource consumption. Also deploying new neural networks
on edge devices requires specialized hardware accelerators
or optimized frameworks. While LSTMs are more readily
deployable on edge devices using lightweight frameworks
like TensorFlow Lite or PyTorch Mobile. Because of the
constraints of [oMT, LSTM with the proposed model seems
to be at the optimized level for multi-classification of
cyberattacks.

As Table 10 demonstrates, the proposed model achieves
the highest performance compared to other methods which
were applied on CICIoMT2024 dataset. In 19-class multi-
classification, our proposed model achieved the highest
accuracy, recall, precision, and F1 scores, surpassing the
performances reported by most research up to the preparation
of this paper, based on our thorough search.

Consequently, in scenarios requiring multi-class classi-
fication for IoMT, the experiments clearly highlight the
suitability of the L2D2 method, providing a balanced
trade-off between accuracy and computational demand.

7011



IEEE Access

G. Akar et al.: L2D2: A Novel LSTM Model for Multi-Class Intrusion Detection Systems

VIi. CONCLUSION

For IoMT environments, improving the security of the IDS
sensors/systems is essential. The capabilities of these systems
are increased by introducing new facilitation techniques
and by employing artificial intelligence techniques. In this
paper, we proposed a novel LSTM model optimized by
AdamW and called it L2D2, to be used to enhance the
security of intrusion detection systems when working in
IoMT environments. To investigate the performance of the
proposed model and reach the most efficient and accurate
results, we tested many well-known machine learning and
deep learning algorithms as well as optimizers. Due to
the encouraging results obtained by the LSTM algorithm,
a model that includes two LSTM and two Dense Layers with
AdamW Optimizer was proposed and investigated to solve
the intrusion detection problem using CICIoMT2024 dataset.
Three different numbers of classifications were tested as
2-classes, 6-classes, and 19-classes. The proposed model has
only four layers in total, yet is not a complex model, but
achieved a result of 98% for 19-classes for accuracy, recall,
F-1 Score, and precision which is the best result obtained
for multi-classification in our experimental study and the
literature. So this model can be used as a successful —but
still not complex— model, for multi-classification of intrusion
detections aiming cyberattacks, in [oMT environments.
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