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1 Nanoscience and Nanoengineering Programme, İstanbul Technical University, Maslak Campus,
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Abstract: We propose a temperature-dependent optimization procedure for the second-
nearest neighbor (2NN) sp3s* tight-binding (TB) theory parameters to calculate the effects of
strain, structure dimensions, and alloy composition on the band structure of heterostructure
spherical core/shell quantum dots (QDs). We integrate the thermoelastic theory of solids
with the 2NN sp3s* TB theory to calculate the strain, core and shell dimensions, and compo-
sition effects on the band structure of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S
QDs at any temperature. We show that the 2NN sp3s* TB theory with optimized parameters
greatly improves the prediction of the energy dispersion curve at and in the vicinity of L and
X symmetry points. We further used the optimized 2NN sp3s* TB parameters to calculate
the strain, core and shell dimensions, and composition effects on the nanocrystal bandgaps
of binary/ternary CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S core/shell QDs. We conclude that
the 2NN sp3s* TB theory provides remarkable agreement with the measured nanocrystal
bandgaps of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs and accurately reproduces the energy
dispersion curves of the electronic band structure at any temperature. We believe that the
proposed optimization procedure makes the 2NN sp3s* TB theory reliable and accurate in
the modeling of core/shell QDs for nanoscale devices.

Keywords: 2NN sp3s* and sp3 tight-binding theories; k·p effective mass approximation;
nanocrystal band gap; CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S core/shell quantum dots

1. Introduction
Since Richard Feynman first proposed the concept of nanotechnology in 1959, scientific

research and technological development have accelerated significantly over the past several
decades. Increasing speed needs in electronic communications and computer information
technologies have significantly accelerated scientific research on the artificial structures
made of atoms, molecules, and even biological systems [1]. Semiconductor quantum dots
(QDs), being zero-dimensional structures, exhibit a more distinct density of states compared
to higher-dimensional systems (e.g., two-dimensional systems), leading to enhanced charge
transport and optical properties. Consequently, they have been extensively utilized in the
development of diode lasers and transistors.

The physical properties of QDs are strongly influenced by their size and shape. As the
size of the crystal decreases to nanometers, the nanocrystal bandgap increases. Quantum
dots with a larger size have energy levels that are more closely spaced, enabling them to
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absorb photons with lower energy, typically those towards the red color end of the UV
spectrum. Colloidal core/shell QDs (e.g., Cd(Zn)S/CdSe and Zn(Cd)S/ZnSe) are now
designed and produced to protect the active core region from environment. This approach
enhances the electrical charge transport and optical luminescence efficiency.

When a nanoscale core/shell structure is formed between two dissimilar semicon-
ductors, the band structure exhibits an abrupt change across the interface. As shown in
Figure 1, the widegap semiconductor shell overlaps that of the narrow-gap semiconductor
core, or the barrier, which can also partially overlap. The potential gradient separates the
charge carriers on opposite sides of the interface. The band offsets at the interface cause
higher carrier confinement in field-effect transistors and better light emission in optical
devices. To describe the behavior of charge carriers (electrons and holes) in QD devices
in the presence of internal forces due to strain, as well as external forces due to applied
voltages, we need to understand the modifications of the electronic and optical properties
across the core/shell interface. Therefore, reliable modeling of the interface band structure
is essential for the reliable modeling and precise numerical simulation of charge transport
and predicting the performance of QD electronic and optical devices at any temperature.
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Figure 1. Band diagrams of type I (left) and type II (right) heterostructures.

Theoretical calculations of the semiconductor band structure are often carried out by
using the well-known solid-state physics theories: (i) ab initio methods, such as density
functional theory [2], allowing one to calculate the electronic structure without using em-
pirical fitting parameters; (ii) empirical methods [3], such as the local/nonlocal empirical
pseudopotential method (EPM), orthogonalized plane wave (OPW), k.p effective approxi-
mation [4,5]; or by semi-empirical tight binding methods [6,7] with various atomic orbital
bases (e.g., sp3, sp3s*, and sp3d5). Although DFT calculations yield satisfactory results for
the lattice properties of semiconductors, they give unsatisfying results for bandgaps when
compared with experiments. However, the semi-empirical tight-binding theory has appre-
ciable advantages over the density functional theory, since it can be easily implemented in
determining electronic properties of core/shell quantum dots.

In this work, we will present a temperature-dependent optimization procedure for
determining the tight-binding parameters in the semi-empirical second-nearest neighbor
(2NN) sp3s* TB theory to investigate the effects of interface strain, core and shell dimen-
sions, and composition on the electronic properties of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S
core/shell QDs. We will compare the results with those of the conventional 2NN sp3 TB
theory and k.p effective mass approximation. In Section 3, we describe the semi-empirical
2NN sp3s* tight-binding theory, with the spin–orbit coupling of II cation (Cd, Zn) and VI
anion (S, Se) atoms. In Section 4, we discuss the thermoelastic strain modeling in spherical
core/shell QDs as a function of device dimensions and alloy composition at any temper-
ature. In Section 5, we will demonstrate that the temperature-dependent optimization
procedure makes it possible for the 2NN sp3s* TB theory to accurately predict measured
bandgaps and precisely reproduce the band dispersion curves of group II-VI compounds
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as a function of the k wave vector. We also show that the 2NN sp3s* TB theory offers better
prediction of the effects of the interface strain, core and shell dimensions, and composition
on the bandgaps of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S heterostructure core/shell QDs at
any temperature.

2. Semiconductor Band Structure Modeling at Nanoscale
Classical UV–Vis optical absorption spectra indicate a blue shift with the decreas-

ing diameter of a nanocrystal as the first absorption peak energy, which is commonly
expressed as

Enc
g (d) = hc/λmax, (1)

where c is the light speed, h is the Planck’s constant, and λmax is the maximum absorption
wavelength. Brus [8] explained the spectral shift and calculated the nanocrystal bandgap.
In k.p effective mass approximation, the Hamiltonian for charged particles is written as [8,9]

H =
ℏ2

2m∗
e
∇2 +

ℏ2

2m∗
h
∇2 + Ve(

→
r e) + Vh(

→
r h)−

e2

ε
∣∣∣→r e −

→
r h

∣∣∣ , (2)

where the first and second terms are kinetic energies of electrons and holes, and the third and
fourth terms are the confinement potential energies. The last term is the Coulomb potential.

In the framework of Kane’s k.p approximation, the energy states are expanded in a finite
set of Bloch states close to an extremum k0 of band structure inside the Brillouin zone,
where the spin–orbit interaction effect is considered [10]. Assuming strong confinement, the
solution of the Schrödinger equation for a particle in a spherical box yields the following
expression for the nanocrystal bandgap (first exciton energy level) of a type I core/shell
quantum dot [11]

Enc
g (εi) = Ebi

g (εi) +
2π2ℏ2

m∗
cvd2 δsp

(
1 − 2π2ℏ2

m∗
cvd2 δsp

)
− 3.572e2

ε∞d
− 0.124e4

ℏ2m∗
cvε2

∞
, (3)

where Ebi
g (εi) and δsp =

(
Ebi

g (εi) + ∆i

)
/
(

Ebi
g (εi) + 2∆i/3

)
are, respectively, the strain-

dependent core bulk bandgap and correction factor. The third term is the Coulomb attrac-
tion potential energy, and the fourth term is the Rydberg correlation energy [9]; ε∞ is the
optical dielectric constant of bulk core region. m∗

cv = (m∗
e m∗

h)/(m
∗
e + m∗

h) is the reduced
effective mass of the electron–hole pair. m∗

e and m∗
h are the effective masses of free electrons

and holes, respectively. In type II core/shell QDs, the nanoparticle bandgap is written
as [11]

Enc
g (εi) = Ebi

g (εi)− ∆Ev(εi) +
2ℏ2π2

m∗
cvd2 δsp

(
1 − 2π2ℏ2

m∗
cvd2 δsp

)
− 3.572e2

ε∞d
− 0.124e4

ℏ2m∗
cvε2

∞
, (4)

where Ebi
g (εi) and ∆Ev(εi) are the strain-dependent core bandgap and the valence-band

offset, respectively. In the following section, we will introduce a temperature-dependent
optimization procedure for determining the tight-binding parameters in the 2NN sp3s* TB
theory to study the effects of strain, core and shell dimensions, and composition on the
electronic properties of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs.

3. Semi-Empirical Second-Nearest Neighbor 2NN sp3s* TB
Theory Modeling

The semi-empirical second-nearest neighbor 2NN sp3 tight-binding theory yields a
good description of the valence-band dispersion curves, but not the conduction-band
dispersion curves at the X symmetry point [2]. Vogl et al. [7] added a fictitious excited
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orbital to mimic the effects of a higher lying d-state to the 2NN sp3 orbitals set to overcome
the inaccuracy of the 2NN sp3 TB theory. The Schrödinger equation is written in matrix
form as

∑
β

[
Hαβ(k)− Sαβ(k)E

]
= 0, (5)

where the 2NN sp3s* Hamiltonian matrix is expressed as

Hαβ(k) = ⟨φα(k)|H
∣∣φβ(k)

〉
= εαβ + ∑

i ̸=0
Iαβ(0, i)eik.ri + Hso, (6)

where εαβ is the on-site energy for the β orbital (s, p, s*) at the atomic site α (cation and
anion) and represents the intra-atomic integrals, which couple atomic orbitals located in the
same cell. Iαβ(0, i) are the first-nearest neighbor interaction integrals. Sαβ = ⟨φα(k)| φβ(k)

〉
is the orthogonal overlap integral between the atomic-like orbitals (S2

aa + S2
cc = 1). Here,∣∣φβ(k)

〉
is the basis function formed by a linear combination of s and p orbitals of cation

and anion atoms with the wave function coefficient uβ. The Hamiltonian Hαβ matrix
consists of thirteen independent matrix elements; six of them are diagonal elements (on-
site atomic energies: εsa, εsc, εpa, εpc, εs∗a, εs∗c) and seven of them are off-diagonal elements
(interacting integrals, known as hopping terms: εss, εxx, εsa pc , εsc pa , εxy, εs∗p, εps∗ ). The ad-
dition of spin–orbit coupling to the 2NN sp3s* basis set, in which the spin–orbit interac-
tions for cation and anion atoms are described by two terms: λa =< xa ↑|Hso|za ↓> and
λc =< xc ↑|Hso|zc ↓> , respectively, which add two more tight-binding parameters. λa

reproduces the bulk zone center, splitting between the split-off band and the light and
heavy hole bands. The addition of the 2NN interactions (εsx and εxy) in the sp3s* basis set
adds two extra interaction parameters and increase the size of the (10 × 10) Hamiltonian
to (20 × 20) one that is diagonalized for each k vector to obtain a band structure [12]. The
diagonal and off-diagonal sub-matrices are written as

Hcc =



εsc 0 −εsxB6 0 −εsxB5 0 −εsxB4 0 0 0
0 εsc 0 −εsxB6 0 −εsxB5 0 −εsxB4 0 0

−εsxB6 0 εpc 0 −εxyB4 + iλc 0 εxyB5 λc 0 0
0 −εsxB6 εxyB4 + iλc εpc 0 εxyB4 + iλc −iλc εxyB5 0 0

−εsxB5 0 0 0 εpc 0 εxyB6 −iλc 0 0
0 −εsxB5 εxyB5 εxyB4 − iλc 0 εpc 0 εxyB6 0 0

−εsxB4 0 0 −λc εxyB6 iSc εpc 0 0 0
0 −εsxB4 λc εxyB5 iλc εxyB5 0 εpc 0 0
0 0 0 0 0 0 0 0 εcs∗ 0
0 0 0 0 0 0 0 0 0 εcs∗



, (7a)

Hca =



εssB0 0 εspB1 0 εspB2 0 εspB3 0 0 0
0 −εssB0 0 −εspB1 0 −εspB2 0 −εspB3 0 0

−εpsB1 0 εxxB0 0 εxyB3 0 εxyB2 0 −εps∗B1 0
0 εpsB1 0 −εxxB0 0 −εxyB3 0 εxyB2 0 εps∗B1

−εpsB2 0 εxyB3 0 εxxB0 0 εxyB1 0 εps∗B2 0
0 εpsB2 0 −εxyB3 0 −εxxB0 0 −εxyB1 0 εps∗B2

−εpsB3 0 −εxyB2 0 εxyB1 0 εxxB0 0 −εps∗B3 0
0 εpsB3 0 −εxyB2 0 −εxyB1 0 −εxxB0 0 εps∗B3

0 0 εs∗pB1 0 εs∗pB2 0 εs∗pB3 0 0 0
0 0 0 −εs∗pB1 0 −εs∗pB2 0 −εs∗pB3 0 0



, (7b)
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with similar diagonal and off-diagonal sub-matrices Haa and Hac = H∗
ca. B∗

i is the complex
conjugate of Bi representing k wave vector dependence, written as

B0(k) = 4Cos
(

kxa
2

)
Cos

(
kya
2

)
Cos

(
kza
2

)
− 4iSin

(
kxa
2

)
Sin
(

kya
2

)
Sin
(

kza
2

)
, (8a)

B1(k) = 4Cos
(

kxa
2

)
Sin
(

kya
2

)
Sin
(

kza
2

)
+ 4iSin

(
kxa
2

)
Cos

(
kya
2

)
Cos

(
kza
2

)
, (8b)

B2(k) = −4Sin
(

kxa
2

)
Cos

(
kya
2

)
Sin
(

kza
2

)
+ 4iSin

(
kxa
2

)
Sin
(

kya
2

)
Cos

(
kza
2

)
, (8c)

B3(k) = −4Sin
(

kxa
2

)
Sin
(

kya
2

)
Cos

(
kza
2

)
− 4iCos

(
kxa
2

)
Cos

(
kya
2

)
Sin
(

kza
2

)
, (8d)

B4(k) = 4Sin(kxa)Sin
(
kya
)
, (8e)

B5(k) = 4Sin(kxa)Sin(kza), (8f)

B6(k) = 4Sin
(
kya
)
Sin(kza), (8g)

where i =
√
−1 and r1 = (a/2)(1, 1, 1), r2 = (a/2)(1,−1,−1), r3 = (a/2)(−1, 1,−1), and

r4 = (a/2)(−1,−1, 1) are the displacement vectors of the nearest neighbor atoms.
The zero-temperature values of diagonal and off-diagonal sub-matrix elements of Hαβ

in Equations (6) and (7a,b) are determined by fitting the band gaps to those obtained by the
nonlocal pseudopotential theory for bulk semiconductors [3], compared with measured
values based on experiments carried out near T = 0 K [13,14]. First, the values of on-
site and off-site matrix elements in Hαβ are estimated, followed by a least-squares error
minimization procedure at symmetrical points in the energy band dispersion curves to
match the band gaps predicted by the nonlocal pseudopotential theory. Lattice misfit-
induced strain effects on the off-diagonal elements of the Hamiltonian matrix elements are
commonly obtained by using Harrison Scaling rule [15]:

Vll′m(ε) = Vll′m(a/ao)
−ηllm , (9)

where Vll′m(ε) and Vll′m are the strained and bulk values, respectively. For the hopping
interactions between α and β orbitals, the ηllm exponent is adjusted to reproduce the band
structure of semiconductors under hydrostatic pressure, namely the volume deformation
potential ∂EgΓ/∂P, ∂EgL/∂P, and the ∂EgX/∂P of the measured and/or local/nonlocal
empirical pseudopotential method (EPM) produced the band gaps EgΓ, EgL, and EgX at
high symmetry points, but it is often taken as ηllm = 2. In Section 4, we will discuss the
effects of the interface strain and composition on the band structure of core/shell QDs.

4. Strain and Composition Effect in Core/Shell Quantum Dots
To model the interface strain in colloidal spherical core/shell QDs, we consider a hollow

sphere with inner radius a and outer radius b, shown in Figure 2. The outer part (a < r <
b) is defined as the shell and the inner part (0 < r < a) is defined as the core, both of which
experience inner and outer pressures. Stress–strain relations are written as [16]

εij =
1
E
(
(1 + v)σij − vσkkδij

)
+ α∆Tδij, (10)

where strain and stress components are εij and σij. v and E are Poisson ratio and Young
modulus. α∆T is the thermal strain developed during crystal growth. σt = σθθ = σφφ are
stresses and εrr = εr and εθθ = εφφ = εt are the corresponding radial and tangential strains.
Because of the spherical symmetry, the shear stresses and strains across the core/shell
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interface are zero (σrθ = σrφ = σφθ = 0 and εrθ = εrφ = εφθ = 0). The equilibrium equation
for the core/shell structure is written as [16]

dσr

dr
+

2
r
(σr − σt) = 0, (11)

which is solved by using boundary conditions, namely (i) σir(a) = σmr(a) = −Pi,
(ii) σmr(b) = Po = 0, and (iii) the shrink fit condition, which is written as

|r(εmθ − εiθ)|r=a = aεim = a(ai − am)/am, (12)
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In core region, the solution of Equation (10) yields the expression for the interface
pressure σir = σiθ = σiφ = σi = −Pi. Equation (10) then gives the expression for strain on
the core side

εi =
(1 − 2νi)σi

Ei
+ αiT = − (1 − 2νi)Pi

Ei
+ αiT, (13)

where (εi = εir = εiθ = εiφ). Solving Equation (11) in the shell region, one finds

σmr =
a3b3(Po − Pi)

(b3 − a3)r3 +
a3Pi − b3Po

(b3 − a3)
, σmt = − a3b3(Po − Pi)

2(b3 − a3)r3 +
a3Pi − b3Po

(b3 − a3)
, (14)

Substituting σmr and σmt in Equation (11) at r = a with Po = 0, the following equations are
written for the radial and tangential strains on the shell side of the interface

εmr =
Pi

Em(b3 − a3)
[(1 − 2vm)a3 − (1 + vm)b3] + αmT (15a)

εmt = εmθ = εmφ =
Pim

Em(b3 − a3)
[(1 − 2vm)a3 − (1 + vm)b3] + αmT, (15b)

Combining Equation (15a,b) with Equation (13), one finds the interface contact pressure

Pi =
2EiEm[1 − (a/b)3][εim + (αi − αm)T]

[(1 + vm)Ei + 2(1 − 2vi)Em] + 2[(1 − 2vm)Ei − (1 − 2vi)Em](a/b)3 , (16)

Upon the substitution of Equation (16) into Equation (13), one finds strain acting on the
core side. Likewise, upon the substitution of Equation (16) into Equation (15a,b), one finds
strains on the shell side.

As one component of the heterostructure QD is a ternary semiconductor, interface
strain will be composition dependent. The effect of composition on the lattice structure
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for ABC ternary in an ABC/AC QD is defined as the combination of the undistorted part
(dVCA = (1 − x)d0

AC + xd0
BC) and the distorted part (drelax = x(1 − x)δc(dBC(x)− dAC(x)))

due to cation–anion relaxation [2], and the composition-dependent ternary bond length is

dm(x) = (1− x)dAC(x) + (x)dBC(x) = (1− x)d0
AC + xd0

BC − x(1− x)δc

(
d0

AC − d0
BC

)
, (17)

where dAC(x) and dBC(x) are the bond lengths of the AC and BC binaries of the ABC ternary

dAC(x) = d0
AC + xξBC:A

(
d0

AC − d0
BC

)
; dBC(x) = d0

BC + (1 − x)ξAC:B
(
d0

BC − d0
AC
)
, (18)

where d0
AC and d0

BC are the undistorted lattice constants of the AC and BC binaries. ξAC:B

and ξBC:A are dimensionless coefficients, with the difference δc = ξAC:B − ξBC:A given
as [17]

δc = [1 + (αAC + 10βAC)/6αBC]
−1 − [1 + (αBC + 10βBC)/6αAC]

−1, (19)

where α and β are force constants associated with the elastic stiffness constants, and

C11 + 2C12 = (3α + β)/a − 0.355s, C11 − C12 = 4β/a + 0.053s, (20)

where s = e2Z∗2/d4ε. As one component of the heterostructure QD is a ternary semicon-
ductor, interface strain will be composition dependent. The composition-dependent lattice
mismatch at the interface is εim(x) = (ai − am(x))/am(x) in ABC/AC ternary/binary
core/shell QD. The effects of host and distorted lattice constants by substitutional impurity
on the TB parameters of diagonal and off-diagonal submatrices in Equation (7a,b) are [2]

Eα,β(x) = (1 − x)Eα,β(AC) + xEα,β(BC) + x(1 − x)δc
(
Eα,β(AC)− Eα,β(BC)

)
, (21a)

d2(x)Eα,β(x) = (1 − x)Eα,β(AC)d2
AC + xEα,β(BC)d2

BCx(1 − x)(d2
AC − d2

BC)∆E, (21b)

where ∆E = Eα,β(AC) − Eα,β(BC). Eα,β(AC) and Eα,β(BC) are the s, p, and s* atomic
energies of AC and BC binary compounds which form the ABC ternary semiconductor.

The strain variation with core and shell dimensions in CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S
QDs is calculated by using the parameters in Table 1. Figure 3 shows the core diameter effects on
the interface strain on the core and shell side for the CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S QDs.

Table 1. Material parameters used in 2NN sp3s* TB theory and k.p approximation [11,13].

Parameter CdSe ZnSe CdS ZnS

a (nm) 0.607 0.5668 0.581 0.541

C11 (1011 dyn/cm2) 6.67 8.57 7.70 10.11

C12 (1011 dyn/cm2) 4.63 5.07 5.39 6.46

C44 (1011 dyn/cm2) 2.23 4.05 2.36 4.46

αth(10−6 K−1) 7.30 7.60 4.05 6.9

Figure 4 compares the variation in radial and tangential strain components depending
on the shell diameter of QDs.

The total interface strain is dominated by the tangential component depending on
shell diameter in QDs. Figure 5 shows the strain and lattice constant of the core region with
composition for various QDs at 300 K. There is a parabolic nonlinear composition effect on
the lattice constants of the ternary constituents.
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at 300 K.

5. Results and Discussion
In this section, we will present the results of the band structure calculations carried out by

using the optimized 2NN sp3s* TB parametrization, which are compared with those of the 2NN
sp3 TB theory and k.p effective mass approximation for CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S
QDs at varying temperatures. We used the material parameters in Table 2 to determine the
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temperature-dependent optimized parameters in Table 3 for the 2NN sp3s* tight-binding
theory parameters for the bulk CdSe, ZnSe, CdS, and ZnS group II-VI compounds.

Table 2. Bandgaps of some compounds at high symmetry points at 0 K [13,18].

Parameters (eV) CdSe ZnSe CdS ZnS

EgΓ 1.899 2.824 2.503 3.702

EgL 3.097 3.999 3.983 4.810

EgX 3.784 4.54 4.341 5.103

agΓ −2.89 −5.1 −2.9 −5.2

agL −1.17 −1.74 −1.38 −1.97

agX 1.81 2.16 1.62 2.1

Table 3. Optimized 2NN sp3s* parameters (in eV) for CdSe, CdS, ZnSe, the ZnS at T = 0 K.

Parameters (eV) CdSe ZnSe CdS ZnS

εsa −9.6269 −11.6988 −11.5323 −11.6051

εpa 1.4732 1.6485 0.5276 1.4850

εsc 0.0308 0.0174 1.8316 1.1078

εpc 4.7309 5.9944 5.8716 6.5178

εs∗a 7.5313 7.7404 7.1313 8.0799

εs∗c 5.7214 9.1361 6.8713 8.0199

4Vs,s −4.6402 −6.3791 −3.07 −6.3016

4Vx,x 2.6399 3.1425 1.7602 3.1111

4Vx,y 5.3597 6.0971 4.2308 5.0002

4Vs,p 4.5705 3.8406 2.1695 5.1633

4Vp,s 5.5392 6.3983 5.4814 5.1685

4Vs*,p 3.05 2.5995 1.99 2.8902

4Vp,s* 2.4897 3.9394 3.0605 1.7495

εsx 0.0 −0.15 0.10 0.20

εxy 0.0 0.60 −0.01 −0.15

λa 0.14 0.16 0.03 0.03

λc 0.06 0.03 0.01 0.03

Using the optimized tight-binding parameters in Table 3, the 2NN sp3s* TB theory is
used and compared with the 2NN sp3 TB theory to calculate the band structure of CdSe
and ZnSe compounds at T = 0 K. Figure 6 shows the results of the calculations, which
reproduce the conduction- and valence-band structures, including the heavy-hole and
light-hole bands and spin–orbit splitting bands.

Although both tight-binding theories accurately reproduce the band structures of
these compounds at the Γ high symmetry point, there is noticeable difference between
their prediction at and around the L and X symmetry points. As shown in Figure 6,
adding a fictitious excited s* state, which mimics the effects of a higher lying d-state, to the
sp3 orbitals set on the cation and anion atoms with 2NN interactions and the spin–orbit
coupling of p-states makes the 2NN sp3s* TB theory greatly improve the simulation of the
conduction-band structure of CdSe and ZnSe. This prediction is especially accurate at the
X symmetry point. Furthermore, the predictions of 2NN sp3s* TB theory with optimized
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parameters in Table 3 are also compared with those of the four-level k.p effective mass
approximation with material parameters in Table 4. As shown in Figure 7, the predictions
of the 2NN sp3s* TB theory with optimized parameters are in good agreement with those
of the four-level k.p effective mass approximation at the Γ high symmetry point of the first
Brillouin zone of the CdSe and ZnSe compounds at T = 0 K.
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Figure 6. A comparison of the band structure of bulk CdSe and ZnSe compounds at T = 0 K, calculated
by using the 2NN sp3s* TBM and 2NN sp3 tight-binding theories.

Table 4. Parameters used for k.p effective mass approximation calculations.

Parameters CdSe ZnSe CdS ZnS

a (nm) 0.607 a 0.5668 a 0.581 a 0.541 a

EgΓ (eV) 1.823 2.823 2.552 3.820

−Ev (eV) 11.49 12.65 12.61 14.66

∆ (eV) 0.410 a 0.424 a 0.070 a 0.092 a

ag (eV) −2.9 b −5.82 c −2.94 b −6.4 c

av (eV) 0.9 b 1.65 c 0.40 b 2.31 c

γ1 3.33 d 3.77 e 4.11 f 2.54 e

γ2 1.11 d 1.24 e 0.77 f 0.75 e

γ3 1.11 d 1.67 e 1.53 f 1.09 e

a Ref. [13]; b Ref. [19]; c Ref. [20]; d Ref. [21]; e Ref. [22]; f Ref. [14].

Our aim in this work is to use the temperature-dependent optimized tight-binding
parameters in the 2NN sp3s* TB theory to simulate the band structure of constituents of
heterostructure core/shell QDs. This study requires the high symmetry point bandgap
energies EgΓ(T), EgL(T) and EgX(T) at high temperatures as input parameters in finding
the tight-binding parameters of the 2NN sp3s* TB theory. We achieve this by using the so-
called statistical thermodynamic theory of semiconductors [11], in which bandgap energies
at symmetry points of the semiconductors used as core and shell regions are written as

Ei
gl(T) = Ebi

gl + ∆C0
ilPT(1 − ln T)−

agli

Bi

(
Pi −

P2
i

2Bi
−

(1 + B′
i)

3B2
i

P3
i

)
, (22)

Em
gl(T) = Ebm

gl + ∆C0
mlPT(1 − ln T)−

aglm

Bm

(
Pm,−,

P2
m

2Bm
,−,

(1 + B′
m)

3B2
m

, P3
m

)
, (23)
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where Pi(T) = −3Biεi(T) = −3Biα∆T and Pm(T) = −3Bεm(T) = −3Bmα∆T are the
hydrostatic pressures on the core and shell constituents. Here, agli (aglm) is the bandgap
deformation potential at Γ, L and X symmetry points and Bi (Bm) is the bulk modulus
with B′

i = ∂Bi/∂P and B′
m = ∂B/∂P. The second term represents the electron–phonon

interactions’ contribution to the bandgap shift. The third term represents the shift in
the bandgaps. C0

cP = C0
nP − C0

0P = C0
pP + ∆C0

P and C0
vP = C0

pP are the electron and
hole heat capacities; C0

nP = C0
pP = (5/2)k. Here, k represents Boltzmann’s constant.

∆C0
P = C0

nP + C0
pP − C0

0P is the heat capacity of the reaction for electron–hole generation:

∆C0
ilP =

1
T(1 − ln T)

(
Eib

gl(T)− Ebi
gl(0) +

agli

Bi

(
Pi −

P2
i

2Bi
−

(1 + B′
i)

3B2
i

P3
i

))
, (24)

∆C0
mlP =

1
T(1 − ln T)

(
Em

gl(T)− Ebm
gl (0) +

aglm

Bm

(
Pm − P2

m
2Bm

− (1 + B′
m)

3B2
m

P3
m

))
, (25)

where Egl
bi (T) and Egl

bm(T) are measured bandgaps, which are fitted to [23] as follows:

Eg(T) = Eg(0)−
AT2

(T + B)
, (26)

where A and B are the fitting constants for bulk semiconductors. In the simulation of ∆C0
ilP

and ∆C0
mlP from Equations (24) and (25), one needs to know the temperature-dependent

bandgap energies at the Γ, L, and X symmetry points.
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Figure 7. A comparison of the band structure of the bulk CdSe and ZnSe compounds at T = 0 K, calcu-
lated by using 2NN sp3s* TB theory with optimized parameters and k.p effective mass approximation.

Since most of the bandgap measurements are carried out for the technologically im-
portant direct bandgap energy EgΓ, we need to make a first-order approximation in finding
∆C0

ilP and ∆C0
mlP for indirect bandgap transitions. At this point, we found it useful to take

∆C0
L ≈ ∆C0

X ≈ ∆C0
Γ. Using this approximation and the bandgap deformation potentials

agL and agX in Table 2, we can find the contribution of electron–phonon interaction to the
shift in bandgaps as a function of temperature. Figures 8 and 9 compare the band structure
of CdSe and ZnSe compounds at T = 0 K, 300 K, and 600 K. They are calculated by using
the 2NN sp3s* TB theory, with optimized parameters.
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Figure 8. The band structure of bulk CdSe at T = 0 K, 300 K, 600 K, calculated by using the optimized 

tight-binding parameters in the 2NN sp3s* TB theory (a). A magnified view of the lowest conduction-

band structure in (b) indicates a larger shift in the bandgap at high symmetry points. 

Figure 8. The band structure of bulk CdSe at T = 0 K, 300 K, 600 K, calculated by using the optimized
tight-binding parameters in the 2NN sp3s* TB theory (a). A magnified view of the lowest conduction-
band structure in (b) indicates a larger shift in the bandgap at high symmetry points.
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Figure 9. The band structure of bulk ZnSe at T = 0 K, 300 K, 600 K, calculated by using the optimized
tight-binding parameters in the frame of 2NN sp3s* TB theory (a). A magnified view of the lowest
conduction-band structure in (b) indicates a larger shift in the bandgap at high symmetry points.

Since the deformation potential of the average valence-band edge is small (Table 2), there
is not much temperature shift in the valence-band dispersion curve for both compounds.
However, the bandgap deformation potentials of group II-VI compounds are large, and a shift
in the conduction-band dispersion curve occurs with temperatures at high symmetry points.
This is clearly seen in the magnified views of the conduction-band dispersion curves for CdSe
and ZnSe compounds. As shown in the magnified views of CdSe and ZnSe band structures,
the rise in temperature causes a decrease in the bandgap energies at high symmetry points, as
well as in the entire band structure below their 0 K values.

The electron–phonon interaction and thermal strain effects have a greater impact on
the temperature variation in the conduction-band structure than the valence-band structure,
since the deformation potentials of conduction-band edges are larger than those of average
valence-band edge. Table 5 compares the high-symmetry-point bandgap predictions of 2NN
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sp3s* TB and 2NN sp3 TB theory against the available experimental data. The 2NN sp3s* TB
performs better than the 2NN sp3 TB theory, proving the need for adding the fictitious
excited s* state to the sp3 orbitals set on the cation and anion atoms with 2NN interactions
and the spin–orbit coupling of p-states to improve the simulation of the conduction-band
structure of II-VI compounds, especially at the X symmetry point at any temperature.

Table 5. Comparison of high-symmetry-point bandgaps of CdSe and ZnSe compounds at 300 K
calculated by 2NN sp3s* and 2NN sp3 TB theories with experimental (Exp) data or estimated (Est).

Bandgap (eV)
CdSe ZnSe

sp3s* sp3 Exp. sp3s* sp3 Exp.

EgΓ 1.791 1.851 1.732 [13] 2.721 2.787 2.72 [14]

EgL 2.989 3.664 3.887 4.391 3.8 [14]

EgX 3.676 5.586 4.37 (Est [14]) 4.437 6.315 3.4 [14]

As an extension of the 2NN sp3s* TB theory and k.p effective mass approximation
(EMA), Figure 10 illustrates the effects of core- and shell diameter-dependent strain, quan-
tum confinement, and electron–hole Coulomb interactions on the nanocrystal bandgap in
four binary/binary heterostructure QDs at 300 K. In these calculations, the optimized tight-
binding parameters in Table 3 are used to determine the 0 K band structure of core/shell
constituents in the frame of the 2NN sp3s* TB theory, and the effect of interface strain,
core and shell dimensions, quantum confinement, and electron–hole Coulomb interactions,
and correlation energy are added through Equations (3) and (4) for type I and type II
heterointerface band alignments, respectively.

Table 6 compares the predicted and UV–Vis spectrometer-measured nanocrystal
bandgaps of CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, and ZnSe/CdS QDs at 300 K for core
diameter di = 3 nm and varying shell diameter dm = 1.5di. The 0K band structure of
core/shell constituents are calculated by using the 2NN sp3s* and 2NN sp3 TB theories,
and the effect of interface strain, core and shell dimensions, quantum confinement, and
electron–hole Coulomb interaction energies are added through Equations (3) and (4) for
type I and type II heterointerfaces.

It is a well-known fact that semiconductor alloys (ternary or quaternary) improve
the performance of small and nanoscale heterostructure devices, because they allow the
device designer to locally modify the band structure of the semiconductor (e.g., increasing
direct bandgap) and in turn control the motion of the charge carriers. As one of the con-
stituents of the spherical core/shell QD is a ternary semiconductor alloy (e.g., CdSe/CdZnS,
ZnSe/ZnCdS), the alloy composition of the ternary constituent can influence interface strain
and in turn the nanocrystal bandgap of the spherical binary/ternary core/shell QDs. To
understand how such local modification of band structure can affect the motion of charge
carriers, one needs to understand the composition variation in the valence- and conduction-
band structure of alloy constituent semiconductors as a function of wave vector.

We used the 2NN sp3 and 2NN sp3s* TB theories to investigate the effect of strain, core
and shell dimensions, and ternary alloy composition on the electronic band structures of the
CdZnS and CdZnSe constituents of CdSe/CdZnS, ZnSe/CdZnSe core/shell QDs in k-space.
The effect of ternary composition on the optimized tight-binding parameters is calculated
by implementing the modified virtual crystal approximation in the 2NN sp3 and 2NN sp3s*
TB theories. Figure 11a,b show the composition variation in the bandgaps at the Γ, L, and X
high symmetry points of the first Brillouin zone of the energy dispersion curves of CdZnS
and CdZnSe ternaries in the CdSe/CdZnS, ZnSe/CdZnSe heterostructures. Figure 11a,b
also compare the predictions of the 2NN sp3 and 2NN sp3s* TB theories with the first
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principle’s density functional theory (DFT), demonstrating the variation in the direct and
indirect bandgaps’ shell bandgap energy of (a) CdSe/Cd1-xZnxS and (b) ZnSe/Cd1-xZnxSe
core/shell QDs. The calculations are also compared with the density functional theory of
Mimouni et al. [24] and the measured bandgaps of A. John Peter and C.W. Lee [25] and
N. Samarth et al. [26]. The accuracy of the conduction-band energy levels at the X and L
symmetry points indicates that the 2NN sp3s* TB theory is a good technique for the band
structure modeling of semiconductors at high temperatures.
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Figure 10. The core (a) and shell (b) diameter variations in the nanocrystal bandgap energies of
four QDs, determined from Equations (3) and (4) at 300 K.

Table 6. Comparison of calculated nanocrystal bandgaps of CdSe/ZnS, CdSe/CdS, ZnSe/ZnS, and
ZnSe/CdS QDs with experimental data [11] at 300 K. First and second rows indicate the 2NN sp3s*
and 2NN sp3 TB theories, respectively, for core diameter di = 3 nm and shell diameter dm = 1.5di.

Core/Shell QD Calculated Bandgap (eV) Measured Band Gap (eV)

ZnSe/ZnS
3.070

3.080
3.136

ZnSe/CdS
2.873

2.850
2.939

CdSe/ZnS
2.289

2.255
2.349

CdSe/CdS
2.122

2.309
2.182

The overall results suggest that the optimized 2NN sp3s* TB parametrization enhances
the accurate prediction of the high-symmetry-point bandgap energies and reproduces the
energy band dispersion curves of the binary and ternary constituents of heterostructure
spherical core/shell quantum dots at any temperature. The electron–phonon interaction
and thermal strain effects are shown to have appreciable effects on the temperature varia-
tion in the conduction-band structure than valence-band structure, since the deformation
potentials of conduction-band edges are larger than those of the average valence-band
edge. There is good agreement between the predictions of the 2NN sp3s* TB theory and the
density functional GGA-TB-mBJ theory. However, DFT calculations are computationally
intensive and cannot be easily implemented for nanoscale devices. We should also add that,
just as with any other theories, the accuracy of the 2NN sp3s* TB theory relies on the input
parameters being based on a precise description of the band structures of II-VI compound
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semiconductors by the conventional non-local pseudopotential theory and experimental
data. The semi-empirical 2NN sp3s* TB theory has appreciable advantages over the density
functional GGA-TB-mBJ theory, since it can be easily implemented in determining the
electronic band structures of the core/shell quantum dots. We aim to explore the proposed
optimization procedure for the predictions of the tight-binding parameters applied to
new material structures, such as AgBiS2 quantum dot solar cells [27]. We believe that
the proposed optimization procedure allows the 2NN sp3s* TB theory to be easily and
effectively implemented in the modeling and simulation of QDs for designing nanoscale
devices operating at high temperatures.
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Figure 11. The composition effect on the bandgap energies at the Γ, L, and X symmetry points for
(a) CdSe/CdZnS and (b) ZnSe/CdZnSe, QDs with di = 3.0 nm at T = 300 K.

6. Conclusions
We presented a temperature-dependent optimization procedure for semi-empirical

second-nearest neighbor (2NN) sp3s* tight-binding (TB) theory parameters to calculate the
effects of strain, structure dimensions, and alloy composition on the band structure of spher-
ical heterostructure core/shell quantum dots (QDs). We integrated the thermoelastic theory
of solids with the 2NN sp3s* TB theory to calculate the strain, core and shell dimensions,
and ternary composition effects on the band structure of binary/ternary CdSe/Cd(Zn)S
and ZnSe/Zn(Cd)S heterostructure spherical core/shell QDs at any temperature. There
is excellent agreement between the three models at and in the vicinity of the Γ symmetry
point of the first Brillouin zone of these compounds. We found that, with the temperature-
dependent optimization of tight-binding parameters, the 2NN sp3s* TB theory greatly
improves the prediction of the energy dispersion curve at and in the vicinity of the L and
X symmetry points. We conclude that the predictions of the 2NN sp3s* TB theory, with
optimized parameters, provides remarkable agreement with the measured nanocrystal
bandgaps of CdSe/Cd(Zn)S and ZnSe/Zn(Cd)S core/shell QDs and accurately reproduces
the energy dispersion curves of the electronic band structure at any temperature. We
believe that the proposed temperature-dependent optimization procedure makes the semi-
empirical 2NN sp3s* TB theory qualitatively reliable and quantitatively accurate in the
modeling of the electronic properties of core/shell QDs for the simulation of nanoscale
devices at any temperature.
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