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ABSTRACT Code embedding represents code semantics in vector form. Although code embedding-based
systems have been successfully applied to various source code analysis tasks, further research is required
to enhance code embedding for better code analysis capabilities, aiming to surpass the performance and
functionality of static code analysis tools. In addition, standard methods for improving code embedding
are essential to develop more effective embedding-based systems, similar to augmentation techniques in
the image processing domain. This study aims to create a contrastive learning-based system to explore the
potential of a generic method for enhancing code embedding for code classification tasks. A triplet loss-
based deep learning network is designed to optimize in-class similarity and increase the distance between
classes. An experimental dataset that contains code from Java, Python, and PHP programming languages and
4 different code smells is created by collecting code from open-source repositories on GitHub. We evaluate
the proposed system’s effectiveness with widely used BERT, CodeBERT, and GraphCodeBERT pretrained
models to create code embedding for the code classification task of code smell detection. Our findings
indicate that the proposed system may offer improvements in accuracy, an average of 8% and a maximum of
13% for models. These results suggest that incorporating contrastive learning techniques into the generation
process of code representation as a preprocessing step can enhance performance in code analysis.

INDEX TERMS Code embedding, contrastive learning, triplet loss, code smell detection.

I. INTRODUCTION

Code embedding transforms code into distributed vector rep-
resentations for source code analysis [1] and is employed in
a variety of software engineering tasks such as code summa-
rization and semantic labeling [1], code clone detection, the
identification of bugs, the evaluation of software quality, the
detection of code smells, the review of compiled code, and
other related tasks [2], [3].

Discovering effective embedding is an important and novel
research area. Software engineering researchers have devel-
oped several models of source code depending on various
implementations that use a syntactic tree representation such
as paths in the abstract syntax tree (AST) [4], [5], or process
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the code directly using a large language model (LLM) such
as Bidirectional Encoder Representations from Transformers
(BERT) [6], or specialized LLMs for understanding code
semantics, such as CodeBERT [7], GraphCodeBERT [8] or
low-level code structure such as compiler intermediate repre-
sentations [9].

Various optimization techniques are used to enhance
embedding performance. Fine-tuning has become the pre-
dominant optimization method in LLM studies for tai-
loring pre-trained models to specific tasks and enhanc-
ing their performance across various natural language
processing applications. Although effective, fine-tuning
the pre-trained parameters involves high resource usage
with a huge computational cost [10]. Hyperparameter
optimization represents another prominent approach to
the refinement and tuning of the hyperparameters of
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language models to optimize their performance on specific
tasks [2].

Augmentation techniques are also proposed to generate
and learn more effective representations [11]. However, they
have not been fully explored in source code modeling and
embedding optimization [12]. Preprocessing systems based
on refactoring can impact code semantics. In addition, these
methods employed to optimize code embeddings provide
only modest performance gains. Augmentation improved
accuracy in problem classification and bug detection, aver-
aging 0.9% with base refactoring and 2.07% with enhanced
augmentation, while some cases exceed these averages [13].

We aim to enhance code embedding by improving the
distribution of embedding classes with a triplet loss-based
deep neural network (DNN) to address the challenges
above. It differs from the previous works that focused on
designing a new code embedding architecture that creates
a specific representation. We mainly explore the potential
of the triplet loss (TL) technique from contrastive learn-
ing as a generic approach to enhance the performance of
source code pretrained embeddings. The effectiveness of the
proposed approach was validated using enhanced embed-
dings in the code classification task for detecting code
smells.

Code smell indicates design flaws and violations of fun-
damental design principles in the source code that make
software difficult to evolve, understand, and maintain. Detect-
ing code smells is a crucial research area aimed at enhancing
code quality. Despite the considerable advances made by
existing approaches in detecting code smells, several chal-
lenges remain [14]. Firstly, the existing detection approaches
rely heavily on fine-tuning pre-trained language models built
on large-scale datasets. Fine-tuning and data collection are
time-consuming and effort-driven processes. Secondly, they
require various code metrics, and subjective factors can
influence these metrics’ selection. Finally, the traditional
methodologies employ word vectors derived from code text
data without fully leveraging the insights gleaned from the
pretrained language models (PLMs). The optimal approach
to code smell detection presents a significant challenge due
to the inherent reproducibility issues [15].

Previous research has explored metric, machine-learning
(ML), and DNN-based techniques for identifying and clas-
sifying code smells in source code. Code metrics designers
cannot predict all code variations affecting metric definitions.
Thus, ML and DNN have emerged as a particularly effective
approach for code smell classification, identification, and
detection [16], [17]. However, ML techniques have draw-
backs such as the reliability of code features that require
parsing the entire project and the dependability of some
metrics [15]. The development of a classifier that is capa-
ble of effectively detecting different code smells has not
yet been achieved [18]. In addition, code smell detection is
typically regarded as a supervised learning problem requir-
ing the availability of huge, labeled datasets; however, such
comprehensive datasets are lacking [19], [20].

31336

Many existing studies focus on a certain context, specific
programming language, or even a particular smell of code
type [16]. In addition, some studies on code smell detec-
tion have developed specific systems or DNNs configured to
detect individual smell types, allowing the analysis of single
smell [20], [21]. Some approaches can not be applied to code
smells that do not rely on source code metrics [22]. Our
methodology employs a unified system that analyzes five
code classes from three programming languages, including
four distinct code smell types and one without any smell.

The inputs to our model are a method-level code snippet
sourced and collected from GitHub using the SonarCloud
tool. The corresponding smell tags are also retrieved from
SonarCloud. The output of the proposed classification system
is the smell type of the method. We preferred multiclass
classification that provides to detect a wide range of code
smell [17]. We applied our preprocessing technique to exist-
ing PLMs to generate code embeddings. Based on our aim,
the definitions of research questions are:

A. RQI

How much triplet-based contrastive learning can improve the
classification performance of code-embedding vectors com-
pared to other optimization methods? We compared hyper-
parameter optimization with contrastive learning regarding
their ability to enhance code embeddings. A comprehensive
analysis of triplet generation methods, DNN structures, and
parameters was conducted.

B. RQ2
Is it possible to generalize the triplet-based embedding
enhancement method to improve the performance of different
embeddings? Our objective is to examine the generaliza-
tion capabilities of triplet loss-based optimization, hereafter
referred to as triplet optimization (TO). We conducted a com-
parative analysis of the performance of the proposed model
with base versions of BERT, CodeBERT, and GraphCode-
BERT in Java, Python, and PHP programming languages
to evaluate improvements and answer research questions.
In addition, we analyzed the system performance when all
languages were combined into a single dataset.

The following is a summary of our contributions: (1) We
constructed a code smell dataset by collecting methods with
code smells from Java, Python, and PHP languages using
the SonarCloud tool (2) Hyperparameter optimization for
pretrained embedding models is implemented for code smell
detection, fine-tuned with our source-target pair dataset, (3)
Optimizing embedding using triplet loss to increase the accu-
racy of code smell detection. In addition, we analyze the
source of advantages offered by the proposed triplet loss
methods. This study stands out from many others by utiliz-
ing a general embedding optimization system that supports
multiple programming languages, PLMs, and various code
classes (smell types).
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The remainder of this paper is structured as follows:
Section II presents an overview of related work, including an
examination of pretrained code embedding generation tech-
niques, embedding optimization, contrastive learning, and
their application in code smell detection. Section III outlines
the methodology employed for classifying code smell with
triplet loss-based network and DNN. Section IV presents
the result of the proposed model on the dataset. Section V
discusses the efficacy of the proposed triplet approach and
explains its underlying rationale. Section VI interprets the
result with an assessment of its future application.

Il. BACKGROUND AND RELATED WORKS

This section provides an overview of the background and
applications of code embedding optimization, with a compar-
ison of several existing approaches. In addition, we explore
deep learning (DL) applications to understand how they are
utilized for addressing issues related to code quality, code
embedding optimization, and code smell detection.

A. CODE EMBEDDING TECHNIQUES

The application of ML and DL to code analysis is a rel-
atively new research domain, requiring the transformation
of code into a numerical representation. Code embeddings
represent code snippets as numerical vectors in a continuous
space while preserving semantic meaning. In early appli-
cations, code embedding techniques or models based on
Word2Vec [23] treated source code as a series of textual
tokens [1]. Word2Vec organizes the vocabulary as a Huff-
man binary tree with shorter binary codes assigned to more
frequent words, and this approach reduces the number of
evaluated output units and complexity [23]. Word2Vec can
create high-quality word vectors; however, there are differ-
ences between software source code and natural language [1].
The code must adhere to the formal syntax and semantics to
be executed [24].

Some code embedding techniques utilize graph embed-
ding, which involves transforming a graph into a low-
dimensional space while ensuring the preservation of the
graph data [25]. These methods used the AST, data, or control
flow graph of code. AST represents the complex struc-
ture of the source code using different semantic units [26].
Alon et al. [4] proposed Code2Vec that decomposed the
tokens of code components into AST path collections, a DNN
assigned weights to each path and aggregated the paths to
create embeddings. PathPair2Vec [27] used AST with a short
path concept. Code2Seq [28]employed the decoder architec-
ture of transformers [29] to select the relevant paths.

Pre-training is another technique that facilitates the train-
ing of larger and more effective models [30]. In early
natural-language-based pre-trained models, code-specific
characteristics may not be properly considered, such as the
syntactic and semantic structures and their inadequate per-
formances [31]. Recently, with the emergence of large-scale
PLMs, the various models for source code analysis and devel-
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opment have been proposed and significantly outperformed
previous models [11]. RNN [32] and transformers-based [29]
systems are employed for code embedding-based DL solu-
tions. The advantages of the transformer structure have
increased research efforts in this area. Many pretrained
code representation models are successfully utilized in code
analysis such as CodeBERT [7], and GraphCodeBERT [8].
In addition, recently developed text-based methods such as
BERT [6] based on transformers have been shown to pro-
vide successful results in code representation. Eventually,
researchers developed several pre-trained source code mod-
els using transformers. The semantic structure of software
code and applications comprises structured combinations of
reserved words and identifiers [1].

B. EMBEDDING OPTIMIZATION TECHNIQUES

The fine-tuning process adapts pretrained models to specific
tasks to improve code embedding performance by arranging
the network weights. Pretraining creates representations to
extract universal code properties, and then fine-tuning adapts
embeddings to various downstream applications [33]. The
transfer learning and multi-task learning with fine-tuning
strategies outperform the single-task-based models across all
tasks. Different methods based on feature extraction are also
used for embedding optimization. Preprocessing eigenvectors
with the k lowest eigenvalues before using them as positional
encodings is another method to obtain a structure-aware
transformer [34]. Some works proposed information revealed
from supplementary resources such as program test cases to
explore the dynamic of programs and integrate it into the fea-
ture representations of code as supplementary elements [35]
or code history. In addition, contrastive learning has been
employed for code analysis tasks such as code retrieval and
summarization [36].

C. CONTRASTIVE LEARNING
Contrastive learning extracts meaningful representations by
contrasting positive and negative instance pairs. Its main
principle is to position similar instances closer together in
a learned embedding space, and dissimilar instances further
apart. The method maximizes agreement between differently
augmented views of the same sample using a contrastive loss
in the latent space [37]. Contrastive learning is widely applied
in various domains, such as visual representations of face
detection [38] and the improvement of sentence embeddings
by combining unsupervised contrastive learning and super-
vised learning [39]. FaceNet was an early implementation of
contrastive learning, utilizing a novel online triplet mining
method to optimize embeddings by generating triplets of
approximately aligned, similar, and non-similar face matches,
thereby enhancing face recognition performance [40].
Triplet loss, a contrastive learning technique originating
from image processing, is widely applied in code analysis
tasks such as code clone detection and augmentation. Vari-
ous studies have used contrastive learning in code analysis
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using supervised and unsupervised methods. Supervised
contrastive learning utilizes labeled data to train models
explicitly to increase the distance between similar and dis-
similar instances using a trained model on pairs of data points
with their labels. For unsupervised training, Bui et al. [36]
proposed a self-supervised contrastive learning framework
that generates multiple versions of a code without changing
its semantics to learn without using labeled data. To generate
the enhanced representation of code embeddings, the method
applied two randomly selected transformation operators to
produce distinct transformed code snippets, which are then
processed by the same encoder.

Contrastive learning is well-suited to code search because
its learning objective is simultaneously separating negative
query-code pairs and pulling together positive pairs [11].
Using a mixture sampling strategy during the training phase
to obtain hard negative samples supports the selection of data
that is challenging for existing models [41]. Another use of
contrastive learning is the augmentation task to learn better
representations [11]. Zhang et al. [37] used hierarchical fea-
tures from code to enhance code search performance, instead
of increasing the amount of training data. This approach
involved the direct input of a positive or negative sam-
ple pair into the model by exploiting hierarchical features
and reorganizing original training data during training into
hierarchical-uncorrelated feature pairs based on hierarchical
features. Li et al. [11] proposed to create representation-level
augmentation by employing InfoNCE loss to maximize the
mutual information between positive pairs. Fan et al. [41]
used a mixture sampling strategy to obtain hard negative sam-
ples for training to avoid the influence of noisy synthetic data.
The code snippets and their generated queries were closely
and diversely matched with hard negative samples. Together,
these steps ensured that the model reached a reasonable level
of convergence, even in the presence of noise.

Triplets were used in code searches to augment the
code samples without changing the original semantics. The
in-batch augmentation method used in-batch data, where a
query and a randomly sampled code were accepted as dis-
similar and forced away. It only created dissimilar pairs in
a mini-batch, which ignores augmenting similar pairs for
learning positive relations. Positive examples were added
by rewriting queries [42]. Another augmentation approach
was to generate more positive pairs instead of searching for
equivalences. The compiler transformations were applied to
unlabeled code to create different variants with equivalent
functionality [43]. Data augmentation methods often suffer
from inefficiency since they require substantial resources
to generate data and process it through the large language
model [44] and models must embed the data again for
the augmented data [11]. To address this, representation-
level augmentation created negative samples by choosing
interpolation and stochastic perturbation and augmenting the
original queries [11].
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D. CODE SMELL DETECTION APPROACHES

Conventional techniques for detecting and classifying code
smells utilize software metrics, manually defined code met-
rics based on static rules and thresholds, ML, and DL.
Recently, structural code metrics have become a common
input for learning models. However, code metrics represent
only structural features, and information about the deeper
semantic features is often insufficient [17].

Recently, several studies used DL to detect code smells.
A CNN-based system achieved 95-97% accuracy for the
detection of brain class and brain method smells on thirty
open-source Java projects [45]. Barbez et al. [46] employed
historical values of source code metrics to increase the
precision for detecting Super Class anti-smell, and the
performance was evaluated on three software systems. It out-
performs existing static machine-learning classifiers by ana-
lyzing evolving metrics over time when changes are applied
to the system. Another study utilized diverse measurement
criteria. and DNN systems for various types of smell in
Java [20]. In this study, distance metrics with word2Vector
embeddings were used for feature envy detection, achieving
an average F1 score of 51.91%, and lines of code, lack of
cohesion of methods cohesion, and class cohesionmetrics
with DNN network for long method smell detection, with an
average accuracy 76.35%

The utilization of PLM for the analysis of code smells
is becoming increasingly popular. The embedding generated
by pre-trained models can be used alone or combined with
other code metrics. An ML model was used to detect smells
employing static analysis tools to extract structural features
and a BERT model to extract textual features [47]. Modular
approaches integrated pretrained models in a smell detec-
tion pipeline and each of these representations were trained
with ML classifiers [48] or DNNs [17]. For example, the
DistilBERT embeddings representing classes and methods,
combined with numerical metrics, were used to feed into a
convolutional neural network (CNN) to identify long param-
eter lists and switch statement smells [49]. Transformers
also combined unsupervised semantic feature learning to
detect several code smells [50]. Pretrained embedding models
CodeT5 and CuBERT were used to detect feature envy and
data class code smells by encompassing the metrics extracted
using static analysis tools [15].

Some of the code smell detection work has also
attempted to increase the performance of embedding, such
as prompt learning with CodeBERT [51] and fine-tuning
of RoBERTA [52]. Prompt Smell constructed the input of
LLMs to detect long parameter listsand long method smells
by combining code snippets with natural language prompts
and mask tokens [14]. However, this approach necessitates
incorporating supplementary textual data into the code as
inputs of a dual-stream model. Another approach used graph
data with graph network and code metrics as sequence data
employing the transformers to learn interrelationships from
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code metrics [22]; however, this method was only effective
for smells based on code metrics.

Complex methods have high cyclomatic complexities
complex conditional, feature envy, and multifaceted abstrac-
tion smells. Sharma et al. [21] implemented a transfer
learning system for detecting each complex method smell
type separately, with an accuracy rate of approximately
60%, using a network architecture comprising CNN, long
short-term memory networks (LSTM), and a densely con-
nected classifier network.

Our literature review revealed that a significant number of
existing methods only detect one or a few code smell types.
In addition, some methods require the output from static
analysis tools or supplementary prompt information. Thus,
enhancing PLMs is crucial for better code analysis and smell
detection. This study aims to develop a high-performance
model that relies entirely on information extracted from the
code and can detect multiple code smells simultaneously.

lll. METHODOLOGY

This section presents an overview of the research methods,
including a description of the data-gathering process, the
code vectorization method, and the DNN architecture. Fig. 1
describes the architecture of the proposed system. Firstly,
we generate a vector-based numerical representation of the
code using code embedding techniques to prepare code for
the DNN classifier. Subsequently, we developed a triplet
loss-based DNN system to optimize embeddings by bringing
instances of the same class closer together while pushing
instances of different classes farther apart. We then used
a dense neural network to classify both the original and
enhanced embeddings and compared their respective perfor-
mances.

To establish a baseline for comparison, we initially deter-
mined the hyperparameters of the classifier using the embed-
dings without TO. After that, the most suitable triplet selec-
tion method was identified using the classifier. We evaluated
the system’s performance and the resulting improvement for
each smell type and language.

A. DATA COLLECTION

We collected a source code dataset from open-source projects
including the source code and smell information to train and
evaluate our model using the SonarCloud tool from GitHub.
The steps of data collection:

o The SonarCloud REST API was employed to generate
the datasets necessary for examining the problematic
code. This API enabled the identification of problematic
code instances across various code repositories, their
analysis according to specified parameters and filters,
and their transfer to the examination environment in
JSON format.

o The selected REST API parameters are component
key (repository name), ps (number of smells for each
request), p (number of requests), language (program-
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ming language), resolution type, rules (smell type), and
additional fields (the details about return values).

To assess the quality of the collected data, we investigated
random samples. GitHub fork and branch operations create
multiple instances of the same code snippet. We eliminated
the duplications and used a single representative example
in the training process. After the elimination, the remain-
ing number of method-level smell examples was relatively
reduced.

B. PRETRAINED CODE EMBEDDING MODELS

PLMs have been preferred as the code representation method
because they work without requiring comprehensive pars-
ing operations and code compilation. We examined the
transformers-based BERT model to enable an analysis of
code text with pretraining approaches. CodeBERT extends
the BERT structure by separating code and comments. Graph-
CodeBERT, advancing the CodeBERT technique, enables
the investigation of the inherent structure of code by using
control flow information. We assessed the effectiveness of the
proposed embedding improvement method by applying it to
text-based, text-and-code-based, and code-specific optimiza-
tion techniques and comparing the results.

1) BERT

BERT pre-trains deep bidirectional representations from an
unlabeled text by joint considering on both left and right
context in all layers to improve unidirectional standard lan-
guage models [6]. Pre-trained representations reduce the need
for task-specific architectures that are heavily engineered.
BERT convert input vectors [CicLs), C1, C1, ..., Cisgpj] to
[TicLsy, T1, T, - . ., Tisgp] outputs after passing through a
number of transformer encoder layers [53]. Input vectors
are formed through the element-wise summation of token,
segment, and position embeddings. BERT attention layer
enriches each token embedding vector. It handles complex
and higher-order relationships with relevant relational and
contextual information by comparing each token in the
sequence with all the others. BERT masks a token from the
input sequence and asks the model to guess. The model can
simultaneously use a masked token’s left and right contexts
to make predictions.

The unlabeled data over different pre-training tasks deter-
mines the model’s parameters during pre-training. In the
self-supervised learning phase, the word is substituted with
the [MASK] token in 80% of cases, replaced by a ran-
domly selected word 10% of the time, and left unaltered in
the remaining 10%. The BERT model is initially set with
pre-trained parameters for fine-tuning, and all parameters are
subsequently refined using labeled data from downstream
tasks, such as sentence pairs in a token sequence. A sentence
can be any contiguous text, rather than an actual linguis-
tic phrase. In many embedding techniques, only sentence
embeddings are conveyed to downstream tasks. In con-
trast, The BERT model transfers all parameters to initialize
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FIGURE 1. The representation of the proposed system model.

domain-specific task model parameters. BERT uses special
tokens to provide additional information about the input
sequence.

o Word Token: These are the actual words or sub-words in
the input text. They are tokenized using the WordPiece
tokenizer, which breaks down words into smaller units
and represents them as a vocabulary of sub-word tokens.

e Special classification token [CLS]: This token is added
to the beginning of each input sequence to obtain
a fixed-size representation of the entire sequence for
downstream tasks such as classification or regression.

o Special Separator Token [SEP]: This token separates and
distinguishes two sequences when multiple sequences
are provided as input. It indicates the end of one
sequence and the beginning of another.

For tasks involving multiple sequences, such as question
answering or natural language inference, each sequence is
assigned a unique segment ID usually O or 1.

The model applies N transformer layers over the
input vectors to produce code embedding H"
transformers, (H ”_1) ,n € [1,N] where H" ! refers to nth
layers input and (n— 1)th layers input. The BERT architecture
is formulated standard transformers [29]. Equations are as
follows:

G" = LN(MultiAttn(H"™ ") + H"™ 1)
H" = LN(FFN (G") + G")

ey
@

where G" is the multi-headed self-attention layer’s output
where MultiAttn is the multi-headed self-attention mecha-
nism, FFN is a two layers feed forward network, and LN is
the layer normalization operation.

2) CodeBERT

CodeBERT uses a hybrid objective function that incorpo-
rates the pre-training task of replaced token detection to
capture the semantic connection between natural language
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DNN

(2) Optimizing vector
representation

(3) Prediction of smell type

and programming language [7]. It implements the masked
language modeling and replaces token detection functions
with a substantial amount of unimodal data [7]. CodeBERT
takes the comment, source code, and the set of variables as
the sequence of the input X and then converts the sequence
into input vectors HO. Source code C {c1,c2...cn},
comments W {wi1,wz...w,}, and variable sequence
matrix V = {vy, v»...v,} are concatenated to input as X =
{[CLS], W, [SEP], C, [CLS], V}.

3) GraphCodeBERT

GraphCodeBERT is a pre-trained model that considers both
the inherent structure of code and its textual content. Instead
of taking the syntactic-level structure of code like AST,
it leverages semantic-level data flow information for pre-
training [8]. Data flow is a graph including nodes for variables
and edges for the flow of data between variables using data
assignment [8]. GraphCodeBERT was implemented using
BERT and the multi-layer bidirectional Transformer [29].
GraphCodeBERT takes and converts comments, source code,
and the set of variables to the input vector. In addition, multi-
headed self-attention is computed using V and a special
position embedding for all variables to indicate that they are
data flow nodes.

The last layer of the GraphCodeBERT network performs
additional pooling and normalization (LN). Our experiments
show that using the last hidden layer output gives better
results for some smell types. Thus, H", was also used in
the classification process. The typical output of GraphCode-
BERT is expressed as the GraphCodeBERT pooler.

C. ENHANCING EMBEDDINGS USING TRIPLET LOSS

Triplet Loss uses a DNN trained to learn how to optimize
the embedding itself. Since triplet loss is used mostly for
image similarity, usually CNN networks are preferred [40].
However, we used a multi-layer dense network since code

VOLUME 13, 2025



A. Nizam et al.: Optimizing Pre-Trained Code Embeddings With Triplet Loss for Code Smell Detection

IEEE Access

similarity would be analyzed as shown in Fig. 2. Our exper-
iments show that three layers were sufficient for adequate
performance. The first layer is designed to adapt different
embedding output sizes to the classifier network. An input
with N features is represented in Fig. 2. Gemm stands for
General Matrix Multiplication which is represented as a Lin-
ear layer in PyTorch. The model consists of 3 layers with
Leaky ReLU activation, containing 1000, 500, N respectively.
We preserved the embedding structure by making the size of
the last layer the same as the embedding.
Triplet-loss uses a special loss function as follows:

Loss = max(d(Eanchor» Epositive)
—d(Eanchor> Enegative) +m, 0) 3)

E represents embedding and d is the distance function.
We employed Euclid distance in experiments. m is a margin
value to keep negative samples apart.

Generating all possible triplets leads to quadratic or cubic
growth in the number of examples, making it infeasible to
process them all. To ensure fast convergence, quality, and
diversity, creating triplets and selecting the most distinctive
triplet pairs is crucial. Different methods were used to develop
triplets in augmentation without changing the original seman-
tics.

The main triplet sampling strategies are nucleus, negative,
and random. Nucleus sampling, or top-p sampling, uses a
threshold to restrict the sampling to the most probable tokens
with a cumulative probability less than the specified thresh-
old. Negative sampling filters negative samples while filtering
samples that are identical to the positive samples [41]. Ran-
dom sampling samples negative codes with equal chance
as a uniform distribution. Despite its simplicity, the uni-
form negative has proven effective in enhancing retrieval
performance, especially when combined with other negative
sampling strategies [54]. However, its effectiveness may be
limited if the negative codes are too dissimilar to the query.
Incorporating cloned code snippets into the negative samples
can reduce model accuracy. To overcome this, similarity
metrics were employed to detect and remove cloned code
snippets from the negative samples [41].

We selected code embeddings of the same smell type as
anchor-positive and embeddings of different smell types as
negative in a triplet sample. The triplet creation process is
examined under two main categories: online and offline.
In the offline approach, anchor, positive, and negative exam-
ples are fed into the system using three identical networks
with shared weight as shown in Fig. 2. In online mining, the
loss function of a single network calculates the loss using
similar and dissimilar examples in the same batch.

All triplets are generated before training begins in the
offline random sampling strategy. In experiments involving
a limited sample size, we observed a marginal decline in
performance, suggesting that the insufficient sample number
hindered the achievement of optimal results. Consequently,
the sample size was expanded by generating an n-ary Carte-
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sian product across smell types using the following equation:

CExCE; ... xCE,
= {(cej,cer...ce,) : ce; € CE; foreveryi € {1,2,...n}}

“

samples using index sets as (CE;xCE,...xCE,);,i €
random (1, 2..n) where n is the total size of cartesian set.
We generate pairs by selecting indexes instead of directly cre-
ating pairs, allowing the Cartesian multiplication to produce a
significantly large number of samples without compromising
performance.

In online triplet selection, a network is fed using standard
mini batches [40]. The loss function is responsible for the
hard triplets’ selection within the mini-batch. Negative sam-
ples close to the anchor and positive samples far away are
called “‘hard” because they are difficult to distinguish. When
the positive samples are selected close (inside a margin) and
the negative samples are selected at a distance, a zero-value
triplet loss is obtained, resulting in small gradient values and
slow convergence. Conversely, the opposite way of selection
(distant positive and close negative) creates a high triplet loss
value leading to large gradient values and an update of model
parameters [55]. The selection strategies:

o Batch hard triplet mining: Calculates the triplet loss
for each anchor-positive pair in a batch using only the
nearest negative.

« Batch random hard negative: Involves randomly creating
triplets from anchor, positive, and negative examples
within a batch, calculating the triplet loss for all com-
binations, and discarding triplets with zero loss.

o Batch semi-hard triplet mining: Involves randomly
selecting triplets where the negative example is closer to
the anchor than the positive example but is still within
the margin. The margin parameter defines the mini-
mum acceptable distance between anchor-positive and
anchor-negative pairs. This approach permits the model
to use examples that are difficult to learn, yet not the
most difficult during training.

An inappropriate triplet selection strategy may result in inef-
ficient training or, more seriously, model collapse in which
all embeddings converge the same value [55].

D. CLASSIFIER ARCHITECTURE

Fig. 3. represents our DNN architecture for classifying
the generated embeddings from various models. B(...) and
C(...) represent the input and output dimensions of the rel-
evant level. The first layer adapts embedding output sizes to
the classifier network. An example input with 128 samples
and 768 features for CodeBERT is represented in Fig. 2.
The model consists of 4 layers with Leaky ReLU activa-
tion, containing 256, 128, 128, and 5 neurons, respectively.
We added a dropout function before the final layer to reduce
overfitting and improve the model’s generalization ability.
The number of layers and neurons was chosen empirically
until a satisfactory performance was achieved.
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FIGURE 3. DNN architecture for classification.

Using the same classifier model for different embeddings
enables a fair comparison of their performance, as fine-
tuning the classifier for each embedding may introduce bias
toward a specific embedding. In the output layer, the PyTorch
CrossEntropyLoss function which combines SoftMax, and
the cross-entropy loss was used to produce output proba-
bilities for the multi-class classification. Subsequently, the
accumulated positive and negative samples are employed as
training data for each batch.

To compare cases where TO is used and not used,
we implement two distinct data preparation strategies for
training and testing. When TO is used, the dataset is randomly
divided into 80% for training and 20% for testing. The triplet
network model is trained using the training data with a triplet
selection method, and the resulting model is used to optimize
the embeddings of the test dataset. Optimized test data is used
as input to the classifier network. Thus, a clear partitioning
between the training and test data is maintained, preventing
any potential bias resulting from prior learning on the test
data. When TO is not used, TO operations are omitted, and
the entire dataset is used as input for the classifier network.

The classifier network is trained using the k-fold cross-
validation method, with a k value of 5, on the classifier input
data. During each fold, 20% of the training data is selected
as a validation set. The training process is conducted over
2000 epochs.

E. HYPERPARAMETER OPTIMIZATION
The model architecture, tokenization, and training proce-
dure involve many hyperparameters that must be tuned
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to maximize predictive performance [56]. The optimiza-
tion of transformer neural networks and the selection of
effective hyperparameters are a computationally intensive
problem requiring the exploration of a high-dimensional
space. It involves conducting complete model training and
inference [57]. Initially, we experimented with various con-
figurations to determine the optimal DNN, including adjust-
ments to the number of network layers, nodes, and dropout
functions. The evaluation metrics are accuracy, precision,
recall, F1-score, and loss.

We conducted a grid search using the following parameters
and ranges to determine optimal hyperparameters:

o An optimizer is an algorithm that adjusts the neural
network attributes, such as weights and learning rates
update rules, and learning rates in the direction of the
steepest descent of the loss function. The Stochastic
Gradient Descent (SGD) and Adam optimizers were
tested respectively for hyperparameter optimization.

o The learning rate (LR) determines the size of weight
updates during gradient optimization. We varied the LR
values as 10™4, 107>, and 107°.

« Batch size (BS) refers to the number of training sam-
ples used to update the model’s parameters in one
iteration. It affects the speed and stability of training
and impacts memory usage. Smaller batch sizes offer
more frequent updates but can result in noisy gradi-
ents and slower convergence. Larger batch sizes provide
smoother gradients but may require more memory and
slower computation. Choosing an optimal batch size
involves trade-offs between these factors and depends on
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TABLE 1. Code smell definitions and statistic.

Smell Type Description Severity Java LOC PHP LOC Python LOC Total LOC

0 (Without smell) Does not contain any smell - 1143 1723 2086 4952
S107 Methods should not have too many parameters Major 3013 6927 10450 20390
S112 General or reserved exceptions should never be thrown Major 2573 5187 4779 12539
S1172 Unused method parameters should be removed to prevent confusion Major 1483 1980 2445 5908
S3776 Code cognitive complexity of a function is above a certain threshold Critical 6205 12471 9801 28477
Total 14417 28288 29561 72266

the specific dataset and model architecture [58]. We var-
ied the BS values as 16, 32, 64, 128, 256, and 512.

IV. RESULTS

This section presents the properties of the prepared dataset
and provides a quantitative analysis of the results of the
proposed approach applied to embeddings generated using
BERT, CodeBERT, and GraphCodeBERT models. We ana-
lyzed the results of different embeddings for cases with
and without triplet usage with accuracy, precision, recall,
and Fl-score metrics. We also investigate the class dis-
tributions of pre-triplet and post-triplet loss networks to
explain the reason behind the performance increase. All code
can be found at https://github.com/FSMVU-Tubitak-1001-
Kod-Analiz/Triplet_Based_Embedding_Optimization link.
We used NVIDIA GPU RTX 6000, equipped with 10,752
CUDA cores, 336 Tensor cores, and 48GB GDDR6 memory
to evaluate the models and conduct all experiments.

We used pre-trained models provided by the Hugging
Face service. We performed the necessary pre-processing,
such as removing comments for each language model
to work. The tokenizer significantly affects the perfor-
mance of the PLM. We selected the recommended tok-
enizer for the best performance for each language model
as bert-base-nli-mean-tokensfor BERT, codebert-basefor
CodeBERT, and graphcodebert-basefor GraphCodeBERT.

The dimensions of the code-embedding vectors produced
by PLMs vary. BERT, CodeBERT, and GraphCodeBERT
each produced 768-dimensional outputs. The size of the last
hidden layer of GraphCodeBERT was 320 x 768. The DNN
structure was adjusted to work for embeddings with different
sizes by adding a flattened layer at the beginning of the model
and then flexibly assigning the number of input nodes to the
first layer.

A. DATASET

We examined 1,813 GitHub code repositories with
open-source licenses such as Apache v2 and MIT during
the data collection. We needed to find the same bad smells
in different programming languages. For some languages,
the default tokenizers of the selected PLMs were not imple-
mented. Thus, we selected Java, PHP, and Python languages
that have common 4 smells and tokenizers. Following these
criteria, we collected data from Java, PHP, and Python repos-
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itories. Then, we combined the data sets from the different
programming languages into a large training dataset.

Analysis and testing performed on the unbalanced data
set gave low performance as the literature suggests similar
results [16]. Therefore, we randomly selected 4 smell classes
and 600 samples from each smell class for each language
to ensure a balanced dataset distribution as summarized in
Table 1. 600 code samples without code smell were also
randomly collected to perform a baseline comparison. Thus,
a total of 3,000 samples were collected from each language,
resulting in a dataset containing 9,000 samples. We shared
the dataset publicly at IEEE DataPort with doi: 10.21227/j0rn-
ht76 to allow further research.

Table 1 lists all the SonarQube code smell rules used in
experiments. The selected code smells were examined in the
relevant literature and classified as either critical or major.
S3776 is a critical code smell that was studied in many
studies with many neural network systems such as DNN, BiL-
STM [22], and CNN and Recurrent Neural Networks [21].
The base metric of this smell (cyclomatic complexity) is
also important for assessing other code smells [17]. S112
was observed in a high number of cases where catching
the generic exception and empty catch block co-occurred
with the maintainability smells forming the patterns [59].
This anti-pattern corresponds to more than 70% of all found
smells [60]. In addition, S3776, S1172, and S112 are among
the top fixed 20 code smell rules [61]. Another study identi-
fied S3776 and S112 rules as among the ten most frequently
violated SonarQube rules [62]. Nearly 10% of rule violations
were caused by 19 smells due to exceeding complexity mea-
sures including cognitive complexity and S107 smell in Java.
[63]. Furthermore, S107 and S1172 are among the 40 most
introduced fechnical debt items referred to as code smell in
SonarCloud [64].

B. THE EVALUATION OF HYPERPARAMETERS EFFECT

To identify the optimal hyperparameters for various embed-
ding models, we monitored the accuracy and loss of BERT,
CodeBERT, and GraphCodeBERT embeddings across iter-
ations for the code classification task until a common
convergence point was reached with different hyperparame-
ters. After determining the convergence point, we reexamined
the accuracy of networks to select the best combination of
hyperparameters before triplet tests, as illustrated in Fig. 4.
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FIGURE 4. Accuracy values for different hyperparameters.

Thus, the Adam optimizer gave more consistent results than
the SGD and achieved the highest accuracy. As a result, the
parameter set Adam optimizer, 10~* LR, and 256 BS were
identified as the optimal choice.

Higher learning rates are required to effectively update the
model for larger batch sizes, while small batch sizes may
benefit from lower learning rates to prevent overfitting or
instability [58]. Small batch sizes are computationally expen-
sive and large-batch training is an efficient approach for DNN
performance.

C. THE CLUSTERING PERFORMANCE OF TRIPLET LOSS
EMBEDDINGS

After determining the optimal hyperparameter set, we con-
ducted experiments with online and offline triplet generation
models to identify the most suitable triplet selection method.
We also compared the results with those obtained without
using the TO, as shown in Table 2. Since the effect of BS
on performance in the online triplet generation process is
significant, the classification performance was tested across a
range of BSs. The performance of the offline triplet selection
method was higher than online methods. Therefore, detailed
evaluations in the classification phase were conducted with
the offline method.
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TABLE 2. The accuracy values for triplet selection methods.

Triplet Selection Pre-trained Model BS Accuracy
Method

BERT * 0.6361

Without TO CodeBERT * 0.7561

GraphCodeBERT Pooler ~ * 0.7072

) BERT 50 0.6127

Online Random CodeBERT 300 06828
Negative

GraphCodeBERT Pooler 150 0.7472

Onli . BERT 450  0.4161

nline Semi-hard ¢ 4 ERT 300 05256
Negative

GraphCodeBERT Pooler 450 0.6317

BERT * 0.7211

Offline CodeBERT * 0.8444

GraphCodeBERT Pooler ~ * 0.7678

We used the silhouette coefficient (SC) to evaluate quan-
titatively the correlation between the clustering outcomes of
the training phase and the model’s performance in the test
phase when TO was employed. The formula for SC of each
sample is (b — a)/max(a, b) where a refers to the mean
intra-cluster distance and b refers to the mean nearest-cluster
distance. The mean SC across all samples ranges from -
1 to 1, where 1 indicates the optimal and -1 indicates the
poorest clustering performances. Values close to 0 indicate
overlapping clusters and negative values indicate wrong clus-
ter assignment.

As shown in Table 3, CodeBERT for Java achieves an SC of
—0.013 and 0.7783 accuracy without the triplet and improves
to 0.47 and 0.8850 with the TO, the highest SC observed.
This highest SC also corresponds to the highest classifica-
tion accuracy. Applying TO on the combined dataset, which
includes all languages, exhibits similar SC results across the
different models. CodeBERT achieves an SC of 0.37 and
0.8444 accuracy with TO, increased from —0.037 and 0.7561,
corresponding to the highest accuracy, while BERT yields an
SC of 0.21 and 0.7211 with TO, from —0.049 and 0.6361,
representing the lowest accuracy. The results indicate that the
increase in SC directly reflects the increase in classification
performance.

In addition to SC, we employed the t-SNE technique [65]
to evaluate visually the effectiveness of triplet loss-based
clustering on classification performance. t-SNE visualizes
high-dimensional code vectors by mapping them onto a two-
dimensional space, each class represented by a distinct color.
Fig. 5a-h illustrates the methods’ performance in separat-
ing class embeddings using triplet loss across four different
embedding models for the combined dataset, which includes
samples from all languages.

The results indicate that the data have a complex distri-
bution in each direction, with lower inter-statement relations
for direct use of language models. TO separates the different
classes from each other, significantly improving classifica-
tion performance. It also increases the quality of the clusters
and provides high cohesion for each smell type.
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FIGURE 5. The impact of triplet loss on the distribution of embeddings
for the combined dataset.

CodeBERT, with triplet loss on the Java language, has
demonstrated the best performance among the other lan-
guages and PLMs. The t-SNE graphs of the CodeBERT in
Figure 6 a-f reveal the rationale behind this enhancement and
facilitate an examination of the impact of the data clustering
quality of the triplet network on the classification perfor-
mance. The clear separation between the classes allows for
enhanced classification performance. The t-SNE graphs and
confusion matrices of the models for other software lan-
guages are provided in Supplementary Material A, to avoid
undue lengthening of the article.

Fig. 7 a-d shows accuracy and loss with the number of
iterations in the training phase for the CodeBERT model
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FIGURE 6. The impact of triplet loss on the distribution of CodeBERT
embeddings.

exhibiting optimal performance with and without triplet loss-
based enhancements. The other models also show similar
accuracy and loss characteristics.

The triplet loss-based model demonstrates a high conver-
gence rate and low loss values, with similar improvements
observed across different embedding models. Direct usage
of embeddings achieved optimal results around the 2000th
iteration during validation and continued improving over an
extended training process.

Table 3 summarizes the performance metrics for all mod-
els. The proposed triplet loss approach significantly improves
accuracy, precision, recall, and F1 score for nearly all models.
CodeBERT gives the best performance when using or not
using TO.

The GraphCodeBERT Hidden State has demonstrated the
second-best performance in numerous instances. Neverthe-
less, the complex structure of this model, due to its huge
embedding dimension, limits the ability to achieve a notable
performance enhancement through TO. The BERT model,
which has been designed for text analysis, also exhibits
enhanced performance with TO.

In the offline triplet selection training phase, the loss func-
tion convergences in 16 iterations on average for (pooler)
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FIGURE 7. Accuracy and loss change with original embeddings and embeddings obtained from Triplet loss.

embeddings, resulting in a relatively short duration of
approximately 1 hour and 20 minutes. The hidden state
of GraphCodeBERT required 6 hours to complete 4 iter-
ations due to its substantial embedding size. Conversely,
in online triplet selection, the convergence was reached over
a longer duration depending on the batch size. A batch size
of 75 required approximately 1 hour 20 minutes, while a
batch size of 450 required approximately 10 hours. The time
required for the TO system to create an embedding is less than
one second. Thus, the classification performance remained
consistent throughout the test process with or without using
TO.

Table 4 shows the accuracies for different embeddings by
class for the combined dataset. These results help to identify
code smell types that are the most challenging to classify.

V. DISCUSSION
In this section, we evaluated the results and answered the
research questions.

A. ANSWERS TO THE RESEARCH QUESTIONS

1) RQ1: How much triplet-based contrastive learning can
improve the classification performance of code-embedding
vectors compared to other optimization methods?
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2) ANSWER 1: The comparative analysis results indicate
that using triplet loss-based enhancement provides 1%-13%
better performance for different embedding models in addi-
tion to hyperparameter optimization. When SC scores and
t-SNE graphs are examined in Fig. 5, the main source of the
performance increase is the smoother distribution between
classes when TO is applied. We employed ¢-fest to analyze the
statistical differences introduced by TO. The results revealed
a significant and substantial difference between the before (M
= 0.70, SD = 0.05) and after TO (M = 0.80, SD = 0.04), t
(15) =10, p <.001.

Our study outperformed previous literature in several
key aspects. A study employed a masked reserved words
approach to the code smell detection task and achieved
the detection performance of a score of F1 between 92.4-
88.87 for single-type method level (feature envy and long
method) smell detection on average [50]. Another study used
the pretrained model’s CodeBERT, CodeGPT, and CodeT5
to extract semantic relationships between code snippets to
detect feature envy in Java language and achieved 64.94%,
65.91 and 81.89 F1 scores respectively [66].

The results of our study compared with those reported in
the literature reveal that our approach can lead to a notable
enhancement in performance even in multi-class and multi-
language environments.
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TABLE 3. Summary of the performance metrics for all models.

Language TO Embedding Accuracy  Precision Recall F1-Score
BERT NIli Mean 0.6361 0.6362 0.6361  0.6354
Without CodeBERT 0.7561 0.7551 0.7561  0.7536
GraphCodeBERT Hidden State  0.7706 0.7721 0.7706  0.7686
GraphCodeBERT Pooler 0.7072 0.7056 0.7072  0.7057
All BERT Nli Mean 0.7211 0.7229 0.7211  0.7213
With CodeBERT 0.8444 0.8451 0.8444  0.8442
GraphCodeBERT Hidden State  0.7811 0.7845 0.7811 0.7801
GraphCodeBERT Pooler 0.7678 0.7661 0.7678  0.7667
BERT Nli Mean 0.6383 0.6409 0.6383  0.6376
Without CodeBERT 0.7783 0.7749 0.7783  0.7758
GraphCodeBERT Hidden State  0.7417 0.7483 0.7417 0.7385
GraphCodeBERT Pooler 0.6583 0.6586 0.6583  0.6581
fava BERT Nli Mean 07683 07687 07683 0.7672
With CodeBERT 0.8850 0.8851 0.8850  0.8843
GraphCodeBERT Hidden State  0.8050 0.8105 0.8050  0.8040
GraphCodeBERT Pooler 0.7283 0.7296 0.7283  0.7279
BERT Nli Mean 0.6350 0.6344 0.6350  0.6325
Without CodeBERT 0.7400 0.7497 0.7400  0.7407
GraphCodeBERT Hidden State  0.7717 0.7858 0.7717  0.7712
PHP GraphCodeBERT Pooler 0.6800 0.6807 0.6800  0.6799
BERT NIi Mean 0.7517 0.7552 0.7517  0.7513
With CodeBERT 0.8017 0.8035 0.8017 0.8010
GraphCodeBERT Hidden State  0.8050 0.8162 0.8050 0.8087
GraphCodeBERT Pooler 0.7750 0.7758 0.7750  0.7738
BERT Base Nli Mean 0.6483 0.6510 0.6483  0.6495
Without CodeBERT 0.7067 0.7050 0.7067 0.7048
GraphCodeBERT Hidden State  0.7483 0.7493 0.7483  0.7407
Python GraphCodeBERT Pooler 0.7200 0.7189 0.7200  0.7179
BERT Base Nli Mean 0.7467 0.7461 0.7467  0.7455
With CodeBERT 0.8317 0.8361 0.8317 0.8316
GraphCodeBERT Hidden State  0.8117 0.8117 0.8117 0.8102
GraphCodeBERT Pooler 0.8067 0.8099 0.8067  0.8067

TABLE 4. Class accuracies for the combined dataset.

TO Embedding 0 S107 S112  S1172 S3776
GraphCodeBERT Hidden State 0.8111 0.9028 0.6472 0.6500 0.8417
CodeBERT 0.8056 0.8917 0.6361 0.6472 0.8000

Without GraphCodeBERT Pooler 0.7306 0.8333 0.6250 0.6000 0.7472
Bert Nli Mean 0.6333 0.6833 0.6972 0.5250 0.6417
Average 0.7451 0.8278 0.6514 0.6056 0.7576
GraphCodeBERT Hidden State 0.6806 0.9500 0.6972 0.7389 0.8389
CodeBERT 0.9083 0.9111 0.7833 0.7639 0.8556

With GraphCodeBERT Pooler 0.8194 0.8917 0.6528 0.7028 0.7722
Bert Nli Mean 0.7472 0.8056 0.7111 0.6278 0.7139
Average 0.7889 0.8896 0.7111 0.7083 0.7951

3) RQ2: Is it possible to generalize the triplet-based embed-
ding enhancement method to improve the performance of
different embeddings?

4) Answer 2: The enhanced metric scores of all models have
proved that triplet loss-based contrastive learning can be gen-
eralized on the enhancement of pretrained code embedding
in the code classification tasks. The results also demonstrate
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the adaptability of the proposed models in various pre-trained
embedding techniques.

We also observed that as the embedding complexity
increases, the effectiveness of triplet loss decreases. Utilizing
triplet loss has enhanced even the performance of the BERT
model to a level comparable to that of complex code analysis
models without TO.

Our analysis of smell detection performance, categorized
by class, indicates that S107 achieves the highest detection
performance across all embedding models for the combined
dataset as shown in Table 4. This performance may depend
on the fact that all the problems causing the smell occur at the
same point within the method. On the other hand, establishing
a clear reason for the detection performance of S1172 and
S112 can be challenging. They exhibit the weakest detection
capabilities for the combined dataset while lacking any clear
distinguishing features. The most likely explanation is that
they impact fewer lines of code. In addition, S112 is defined
by specific code terms. The detection performance for other
smell classes remains relatively consistent. TO improved per-
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formance across all classes, even though the improvement
rates varied.

Our approach involves training the triplet network by
generating numerous random matches between classes, for
positive pairs consisting of samples from the same smell
class and negative pairs from different classes. This process
requires the utilization of significant system resources during
the training phase. However, using an additional network in
the test process did not significantly decrease performance.
Thus, for code smell classes, an additional performance
increase can be achieved with a small performance loss by
re-using PLMs with the transfer learning method.

B. THREATS TO VALIDITY

To increase the generalizability of our models, we conducted
a test using data collected from GitHub repositories writ-
ten in multiple languages such as Java, PHP, and Python.
The pre-trained models with TO operate effectively across
various programming languages. However, the data set size
remained relatively small. Thus, enlarging the dataset and
experimenting with different software languages may help
increase external validity and generalize the system.

We have only evaluated pre-trained embedding models for
code classification or smell detection. To increase the gener-
alizability of our models, contrastive learning-based embed-
ding enhancement should be assessed on other code analysis
tasks, such as clone detection, code generation, software qual-
ity evaluation, and code review. The methodology selected
during the triplet-selection process significantly impacts per-
formance. Therefore, the selection methods employed in
different software engineering tasks should be chosen care-
fully.

In addition, hyperparameters significantly affect pre-
trained models’ performance and internal validity. The selec-
tion of appropriate hyperparameters is crucial for achieving
optimal results. The necessity of fine-tuning by identifying
the optimal combination of hyperparameters and triplet selec-
tion methods across various software engineering tasks may
create limitations in real-world scenarios, hindering achiev-
ing optimal performance.

VI. CONCLUSION

In this research, we proposed a two-stage DL system lever-
aging contrastive learning to enhance embeddings generated
using PLM for the code classification task, specifically tar-
geting code smells. First, the embeddings were enhanced
using a triplet-based network, and then the impact of this
enhancement was evaluated by detecting code smells with
a classifier DNN. Our experimental results indicate that this
approach provides better results in performance metrics for
various PLMs.

The recommended system can be applied as a prepro-
cessing step for ML or DL-based code classification tasks
by increasing inter-class distances while reducing intra-class
distances. Therefore, it could improve the performance of
other code-related classification tasks such as code language
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detection, bug detection, code comment classification, and
technical debt classification. The high degree of accuracy
demonstrated by the results, particularly in the context of
the Java language, suggests the potential for the development
of DL-based or integrated code analysis tools. In addi-
tion, the strong performance demonstrated on the integrated
dataset containing various programming languages can help
the development of unified code smell detection tools for
programming languages. Code analysis with DL can be per-
formed directly on code text, offering a significant advantage
over some static code analysis tools that require compilation
and can only function on fully compiled projects.

Although the results of the developed system are promis-
ing, there are potential areas for future improvement in
applying contrastive learning systems to code analysis tasks.
A potential research topic is to restructure and optimize
contrastive learning by the specific requirements of the code
analysis domain, such as developing specialized loss func-
tions and enhanced triplet network models. An additional
research area could be the incorporation of contrastive learn-
ing into the internal structure of the pre-trained model,
thereby facilitating the development of novel pre-trained
models.
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