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In this study, machine learning (ML) algorithms were employed to predict analyte concentrations using sensing results and evaluate
the anticancer effects of nanostructures. Multifunctional oolong tea extract-mediated silver nanoparticles (OTE-Ag NPs) were
synthesized via a photo/ultrasound method and utilized in various applications, including a smartphone-based H2O2 sensor and
electrochemical sensors for urea and fructose. Key features were extracted from electrochemical results, and feature importance
analysis was used to select the most predictive features. The artificial neural network (ANN) model provided accurate predictions,
particularly strong for urea (R2 = 0.8575, RMSE = 0.4266, MAE = 0.3380). The study revealed the selective toxicity of OTE-Ag
NPs to MCF-7 breast cancer cells through analyses of cytotoxicity, apoptosis, cell cycle phases, and CD44 surface marker
expression using Annexin V/PI dye and flow cytometry. Experimental results demonstrated that OTE-Ag NPs suppressed MCF-7
cell proliferation while exhibiting lower cytotoxicity in normal HUVEC cells (46% cell death). OTE-Ag NPs arrested MCF-7 cells
in the G2/M phase, induced apoptosis, and reduced CD44 expression, suggesting metastasis suppression. The CD44+/CD24- ratio
decreased from 84.79% in control MCF-7 cells to 47.7% in OTE-Ag NP-treated cells. Overall, OTE-Ag NPs significantly inhibited
MCF-7 cell proliferation through the apoptotic pathway by regulating the cell cycle in the G2/M phase.
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Oolong tea (OT), derived from Camellia sinensis leaves, has
demonstrated antioxidant, anticancer, anti-inflammatory, and ac-
tivity in a variety of in vivo and in vitro studies. Despite these
promising results, there has been limited research on the health-
promoting properties of OT and its constituents. Several studies have
reported the potential efficacy of possible effectiveness of OT
bioactives, investigating their functions as potentially useful che-
motherapy agents, cardioprotective effects in hypoxic environments,
treatment of allergic diseases, possible prebiotic processes, enhance-
ment of blood lipid status in humans, and efficacy as an oral
hypoglycemic agent for type 2 diabetes. Additionally, OT has shown
potential in reducing the risk of obesity.1 OT exhibits inhibitory
effects on breast cancer cell development, proliferation, and carci-
nogenesis, presenting high potential as a chemopreventive therapy.
Notably, substantial research has been conducted on its anticancer
activities owing to the lower occurrence of breast cancer and a
higher proportion of green tea consumption in the Asian population.2

Approximately one-fifth of cancer patients worldwide suffer from
breast cancer, making it the most common and deadliest malignant
disease among women globally.3 Although anticancer medications
used to treat breast cancer are effective against malignant cells, they
can also harm normal cells at a similar rate, leading to numerous
undesirable side effects, including systemic toxicity. Conventional
formulations of therapeutic agents often have poorer penetration into
cancer cells due to reduced dispersion and faster elimination. Green
nanoparticles (NPs) play a vital role in the controlled administration
of various chemotherapeutic therapies. By employing NPs to deliver
chemotherapy treatments, it is possible to avoid side effects, such as
toxicity and dosage dumping, while achieving the desired medica-
tion concentration in a specified location.4–7 The market for more
effective, tailored cancer treatments that can improve treatment
efficacy while lowering side effects is severely lacking, and this

work fills that gap. The goal of this research is to greatly enhance
cancer treatment delivery systems by using green nano-drugs. OT
has been extensively studied for its anticancer properties; however,
there is relatively little research on the association between green
materials and breast cancer.2 With the growing need for advanced
cancer treatments in patients with chemo resistant tumor populations
and significant tumor loads, nanodrug delivery systems have become
crucial. In response to this need, numerous nanodrug delivery
systems have become essential components of anticancer treatment
strategies. Ongoing research in the fields of cancer and nanotech-
nology has yielded several solutions to major issues in new
therapeutic methods. The distinct colloidal behaviors of various
NP types, coupled with various targeting techniques, have enabled
the optimization of combination cancer treatments in ways never
before possible.8

Cancer stem cells (CSCs) were initially identified in hematolo-
gical malignancies and possess the capacity to self-renew and
specialization into multiple tumor cell lineages. Representing a
small subset of tumor cells, CSCs are distinguished by their capacity
to generate daughter tumor cells, undergo self-renewal, and maintain
key tumor characteristics. Additionally, CSCs play an essential role
in tumor metastasis and resistance to radiation and chemotherapy.9

Human breast cancer CSCs typically exhibit the CD44+/CD24
phenotype.10 Cancer researchers are actively exploring strategies to
prevent metastasis and treat cancer post-metastasis. Like normal
stem cells, CSCs can differentiate into various cancer cells,
contributing to tumor formation and growth [10]. In this study, we
observed a reduction in CD44 expression—a factor implicated in
metastasis—upon treatment with green OTE-Ag NPs.

NPs-based sensors have recently received a lot of interest due to
their great sensitivity and selectivity, making them useful in domains
like medical imaging, monitoring the environment, food safety, and
electrochemical sensors.11–13 For instance, Mishra et al. demon-
strated the green synthesis of Ocimum sanctum-mediated Ag NPs for
hydrogen peroxide detection,14 while Mujeeb Ur Rahman et al.zE-mail: selcan@iuc.edu.tr
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developed a colorimetric sensor for selective manganese detection
using green-synthesized Ag NPs derived from Withania
somnifera.15,16 Additionally, Ali et al. synthesized orange peel
extract-Au NPs and CuO-based nonenzymatic sensors for saliva
glucose monitoring.16 Chaudhary et al. introduced Nose-on-Chip
nanobiosensors for the early detection of lung cancer breath
biomarkers, highlighting the potential of nanotechnology in non-
invasive cancer diagnostics.17 These studies underscore the signifi-
cant role of green-synthesized NPs in advancing sensing technolo-
gies for biomedical applications.

Sensors based on carbon, metal oxide, and metal NPs, especially,
have led to revolutionary advances in advanced sensor technology
due to their distinct features that improve detecting methods.
Furthermore, integrating machine learning (ML) algorithms with
sensor technology has improved data processing, pattern identifica-
tion, and decision-making processes, allowing for the creation of
intelligent and more efficient sensing platforms. Automated methods
for data analysis such as artificial intelligent (AI) support decision-
making without the need for explicit guidance.18–21 One of the most
popular ML techniques for identifying intricate correlations is the
usage of artificial neural networks (ANN). As a unique strategy for
electrochemical detection platforms spanning many applications, the
use of ANN-based ML algorithms is currently being studied in
biomedical applications.22,23 A novel approach to the intelligent
analysis of nanostructures-based sensors and novel strategies for
incorporating electrochemical nanostructures-based sensors into
smart devices are offered by ML techniques.

The novelty of this study lies in its innovative approach, which
includes the synthesis of multifunctional OTE-Ag NPs through a
novel dual photo/ultrasound method, their comprehensive character-
ization, and their application in ML-based sensing. Several techni-
ques—transmission electron microscopy (TEM), Fourier-transform
infrared spectroscopy (FTIR), X-ray diffraction (XRD), and scan-
ning electron microscopy with energy-dispersive X-ray spectroscopy
(SEM-EDX)—were used to analyze the surface morphology and
identify the functional groups of the synthesized OTE-Ag NPs. We
investigated their H2O2 biosensing and anticancer activities for the
first time, revealing exceptional effectiveness against breast cancer
cells MCF-7. The prepared OTE-Ag NPs exhibited excellent
sensitivity and selectivity for H2O2 detection, achieving a low limit
of detection (LOD) of 0.102 μM in one minute. Additionally, ML-
based electrochemical LODs for the OTE-Ag NPs were determined
to be 3.02 μM for urea and 4.86 μM for fructose. Furthermore, the
specific toxicity of OTE-Ag NPs towards MCF-7 breast cancer cells
was demonstrated by cytotoxicity, apoptosis, cell cycle arrest, and
expression of the CD44 surface marker.

Material and Method

Chemicals.—OT (Camellia sinensis, Huang Guanyin) was col-
lected in April 2022 from Wuyishan, China, (at 27 °C and the
humidity was 53 ± 1%). Freshly selected leaves underwent a three-
hour withering phase in accordance with OT’s processing procedure.
Subsequently, the temperature was maintained at 25 °C, and the
grinding motion was performed at a constant rate of 25 cycles per
minute. Whatman® qualitative filter paper 1, NaOH, silver nitrate
(AgNO3, purity⩾99.0%), MTT test kit for cell proliferation, DMSO,
FBS, DMEM, streptomycin, penicillin, Annexin-V/PI, glucose,
lactose, maltose, testosterone, dopamine, and progesterone were
purchased from Sigma Aldrich Company. Sterile syringe filter
(0.45 μm), ethanol and hydrogen peroxide (H2O2) were purchased
from Merck Company.

The American Type Culture Collection, known as ATCC is the
source of the MCF-7 and HUVEC cells. Moreover, no further
purification was required because all compounds were of analytical
grade.

The process of cytotoxicity.—In this study, we used human
umbilical vein endothelial cells (HUVECs) and the human breast

cancer cell line MCF-7. These cells were cultured at 37 °C in an
environment that was humidified with 95% O2 and 5% CO2 utilizing
DMEM treated with 10% FBS and penicillin-streptomycin. A total
of 104 cells were planted into each well of a 96-well plate. Then, the
synthesised OTE and OTE-Ag NPs were directly added to the wells
at 1:1, 1:2, 1:4 and 1:8 dilutions and left to incubate for 48 h. After a
48 h period, each well contained 10 μl of MTT (5 mg ml−1), and the
cells were incubated for an additional 4 h. At 570 nm, the density of
light was measured with an ELISA reader instrument. The absor-
bance of the test and control wells was compared to assess the cell
viability, which was expressed as a percentage.

The process of apoptosis.—To assess apoptosis using the
Annexin V/PI method, 5 μl of Annexin V-FITC, 2.5 μl of PI were
introduced to prepared cells, after which there was a 10 min dark
incubation period. A flow cytometer (Navios 3L10, Beckman
Coulter) was subsequently utilized to assess the cells, and 400 μl
of annexin binding buffer were applied.

MCF-7 cells treated with OTE-Ag NPs were stained with
annexin V/PI. This made it possible for a four-quadrant histogram
to show the differentiation of necrotic cells, live, early apoptotic, and
late apoptotic cells. Comparing the OTE-Ag NP-treated MCF-7 cell
line with the control group (MCF-7 cell line), the experimental
results revealed an acceleration in the proportion of living cells and
an accelerated proportion of early and late apoptotic cells. A
Beckman Coulter Navios flow cytometry device was used for this
analysis, with parameters adjusted to create a template suitable for
apoptosis. Data were recorded using Kaluza software. Necrotic cells
exhibit compromised membranes, facilitating the penetration of
Annexin V throughout the entire plasma membrane, and enabling
their staining. Furthermore, co-treatment with propidium iodide (PI)
aids in distinguishing apoptotic cells from necrotic cells.20

Cell cycle analysis.—The cells were first collected and centri-
fuged at 300 × g for five minutes, after which the supernatant was
removed. Subsequently, 0.5 ml of PBS was added to resuspend the
cells. The suspended cells were then transferred to a tube containing
1.2 ml of pure ethanol, maintained at −20 °C, vigorously agitated,
and left to incubate for thirty minutes or overnight for preservation.
After centrifugation of the cells for five minutes at 1800 rpm, the
supernatant was discarded. One milliliter of PBS is added to the
suspended cells. For fifteen minutes, it is incubated at room
temperature. At 1800 pm, it is centrifuged for five minutes, and
the supernatant is discarded once again. For half an hour, the cells
were incubated in a water bath at 37 °C with 100 μl RNase A
reagent. A volume of 0.4 ml of FxCycleTM PI Staining solution dye
was added to each prepared tube. The samples were then incubated
in the dark for 30 min at 2 °C-8 °C. A flow cytometer (Beckman
Coulter Navios) was used to instantly analyze the samples. The
Kaluza Analysis tool was employed to investigate this, and the
findings were recorded.

CD44 and CD24.—The prepared cells were washed with cold
phosphate-buffered saline (PBS). After staining with PB-conjugated
CD44 antibody (5 μl) (ref: B37789: Immunotech Sas a Beckman
Coulter Company 13276) and ECD-conjugated CD24 antibody
(5 μl) (ref: B12699: Immunotech Sas a Beckman Coulter
Company 13276), they were incubated for 30 min in the dark.
Following incubation, the cells were identified immediately on the
Beckman Coulter Navios flow cytometry instrument using 0.5 ml of
PBS. The CD44 high, CD44 negative, and CD44 low populations in
the control group (MCF7 cell line) and the OTE-Ag NPs treated
MCF7 cell group were separated using the Beckman Coulter Navios
system and recorded using Kaluza software.

The photo/ultrasound-mediated synthesis of OTE-Ag NPs.—
The photo/ultrasound-based synthesis of OTE-Ag NPs involves
several steps. In our previous research, we thoroughly investigated
the extraction process of tea (OTE).21 To remove dust and
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contaminants, OT was first purified by rinsing it with ultrapure water
and then drying it in vacuum for five hours at 50 °C. Subsequently,
250 ml of ultra-pure water was added to 5 g of dried OT, and the
mixture was incubated for 5 days at 25 °C in the dark. The resultant
OE was kept in sterile containers at 25 °C after filtration using a
sterile syringe filter (0.45 μm). The fabrication of the OTE-Ag NPs
was achieved through a dual photo/ultrasound process. In particular,
0.1 g of NaOH was dissolved in 125 ml of ultrapure water, and
0.42 g of AgNO3 was dissolved in 250 ml of distilled water. After
dropping the NaOH solution into a 50 ml silver solution, the
resultant mixture was sonicated for 30 min at room temperature.
UV radiation from an LED lamp (UV 395–400 nm) was employed
during the sonication process, with the lamp positioned 20 cm away
from the sample. Effective reaction conditions were provided by the
lamp intensity, which was determined at 3 W with an optical power
meter (Newport 1916-C) when combined with a thermopile detector.
Finally, a sterile syringe filter (0.45 μm) was employed to carefully
filter the resultant OTE-Ag NPs.

Characterization.—Using the Perkin Elmer FTIR spectrophot-
ometer model, Fourier-transformed infrared (FTIR) spectra covering
the wavelength range of 4000 to 400 cm−1, the chemical functional
groups of the photo/ultrasound produced OTE-Ag NPs were
determined. The chemical structure of the produced OTE-Ag NPs
was investigated within the range of 2θ from 5° to 90° using X-ray
diffraction (XRD, D8 advanced Bruker model) analyses.
Transmission electron microscopy (TEM, JEOL JEM-2100 Plus

model) was employed at 200 kV to investigate the surface features
and particle sizes of the NPs in more detail. With a gold-coating
technique at an accelerating voltage of 20 kV, energy-dispersive X-
ray spectroscopy (SEM/EDX, Oxford XACT) and scanning electron
microscopy (SEM, JEOL JMS-7001F) were employed to evaluate
the surface and chemical characteristics of the photo/ultrasound
developed OTE-Ag NPs.

Digital colorimetric sensing of H2O2 utilizing photo/ultrasound
synthesized Ag NPs.—Digital sensor tests were carried out by
equally dispersing 50 μl of dual photo/ultrasound synthesized OTE-
Ag NPs onto a 10 cm2 area of a pristine Whatman Filter paper 1.
Using an air cannon with a 1.5 mm nozzle diameter, the spray
coating technique was used to complete this application. The coated
paper was then left to dry at 40 °C. Each applied analyte was
dropped onto the nanostructure-coated surface (0.2 ml) and allowed
to dry at 40 °C. To detect H2O2, all images of surfaces covered in
filter paper, whether coated, uncoated, or treated with analyte, were
captured using a smartphone device camera (Casper via F20 model;
rear camera: 48MP-5MP-2MP-2MP).The sensor parameters (LOD
and LOQ) were determined over a wide range from 0.5–100 μM.
Different analytes such as urea, glucose, and lactose were used in the
selectivity experiments of the digital sensor. The color signals (red-
green-blue RGB) were evaluated to test the sensitivity of the sensor.
The colors RGB (0, 0, 0) stand for black, RGB (255, 0, 0) for red,
RGB (0, 255, 0) for green, and RGB (0, 0, 255) for blue in the digital
RGB image color model.

Machine learning-assisted analyte concentration prediction.—
In this section, ML techniques are utilized to predict the concentra-
tions of specific analytes using CV data. The initial step in this
analytical approach involves a feature engineering process, which is
crucial for transforming raw electrochemical signals into a structured
dataset amenable to ML analysis.

The feature engineering process was initially commenced to
extract relevant features from the raw CV data. This process was
aimed at converting the electrochemical data into a set of measurable
attributes that reflected the underlying dynamics of the chemical
reactions. Various aspects of the CV signal, such as charge, peak
potentials, current statistics (mean, median, and standard deviation),
and higher-order derivatives were systematically computed.

Following feature extraction, the relationship between each
feature and the analyte concentration was quantitatively assessed
by calculating their correlation coefficients. This step was crucial to
identify features that displayed a significant linear relationship with
the concentration, either positive or negative. To further refine the
feature set, a feature importance analysis was conducted using a
preliminary ML model. This analysis was instrumental in identifying
the most predictive features, with those exhibiting an importance
factor above 0.8 being selected for subsequent modeling. This
threshold was established to ensure that only the most relevant
features that contributed significantly to prediction accuracy were
retained.

With these selected features, the development of predictive
models was then carried out using two algorithms: Linear
Regression, and ANN. The selection of these algorithms was
motivated by their diverse learning mechanisms, ranging from
simple linear approaches to more complex neural network methods
capable of capturing the nonlinear relationships and interactions
between features.

A leave-one-out cross-validation strategy was employed to
evaluate and compare the performance of these models robustly, a
leave-one-out cross-validation (LOOCV) strategy was employed.
This approach involves using a single observation from the original
sample as validation data, while the remaining observations serve as
training data. This process is repeated such that each observation in
the sample is used once as the validation data. LOOCV is
particularly advantageous for small datasets as it maximizes the

Figure 1. FTIR spectra of (a) OTE and (b) OTE-Ag NPs, and (c) XRD
graph of the OTE-Ag NPs.
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training data used while still allowing for an unbiased evaluation of
the model performance.

The performance of each model was assessed based on several
statistical metrics including Root Mean Squared Error (RMSE)
(Eq. 1), Mean Absolute Error (MAE) (Eq. 2), and the coefficient of
determination (R2) (Eq. 3).
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These metrics provide insights into the accuracy and predictive
power of the models, facilitating an objective comparison across the
different algorithms.

Results and Discussion

Characterization of photo/ultrasound synthesized OTE-Ag
NPs.—The chemical functional groups, crystalline characteristics
and phase composition of the photo/ultrasound synthesized OTE-Ag
NPs were determined through the identification of changes in the
chemical and crystal structures of OTE-Ag NPs using FTIR and
XRD techniques. The detection and confirmation of the distinct
structural phases inside the Ag NPs under study is important for an
in-depth comprehension of their characteristics and potential appli-
cations. In this study, the FTIR technique was utilized to acces
chemical functional groups of the OTE-Ag NPs. The FTIR graphs of
the OE and OTE-Ag NPs were shown in Figs. 1a and 1b and Table I.
Figure 1a displays the distinctive FTIR peaks of the OTE.

Furthermore, the FTIR results of the OE reported in the literature
reveal the same functional groups and demonstrate comparable
stretching and bending vibrations.22,25 In addition, the FTIR peaks of
the OTE-Ag NPs were given in Fig. 1b. When compared to the FTIR
spectrum of the OE, the FTIR results clearly indicate the presence of
stabilizing and reducing groups on the surface of the OTE-Ag NPs.
According to the proposed mechanism for comparable structures
reported in the literature, the hydroxyl groups of flavonoids bonded
to the Ag+ ions that existed in the aqueous extract first, after which
the Ag ions were reduced to Ag°, developing OTE-Ag NPs.23,24

The XRD peak of the OTE-Ag NPs revealed distinct peaks at 2θ
values of 38.02° (111), 44.21° (200), 64.40° (220), and 77.27° (311),
indicating the presence of the face-centered cubic (fcc) structure
characteristic of Ag° (ICDD PDF-2 Card no:00–004–783).26,27 By
applying Scherrer equation (Eq. 4) of measurements to the reflec-
tions found in the XRD result, the particle size of the OTE-Ag NPs

was calculated.

D
 Cos

0.9
4

λ
β θ

= [ ]

where D is the dimension, β is the peak breadth, θ is the diffraction
angle, and λ is the wavelength of the X-ray. By applying Eq. 1, the
average particle size of the OTE-Ag NPs was calculated to be
∼18 nm.

In Fig. 2, a comprehensive morphological analysis of the photo/
ultrasound synthesized OTE-Ag NPs was presented, showcasing a
TEM image, SEM micrograph, and SEM with EDX spectrum.
Additionally, the experimental results included a total elemental
mapping of the OTE-Ag NPs, illustrating the distribution of all
elements present. Specific elemental mapping of oxygen (O),
potassium (K), sodium (Na), silver (Ag), aluminum (Al), and sulfur
(S) within the OTE-Ag NPs was highlighted, providing detailed
insight into the elemental composition and spatial arrangement of the
OTE-Ag NPs.

The HR-TEM image of the OTE-Ag NPs is shown in Fig. 2a.
The photo/ultrasound synthesized OTE-Ag NPs exhibited a smooth
and spherical shape, with a particle diameter ranging from 10 to
20 nm. The TEM results unveiled the existence of well-dispersed,
spherical-shaped particles without agglomeration, signifying the
formation of green OTE-Ag NPs through the interaction of Ag+

ions with the extract. These observations were consistent with those
in the literature.28 The surface properties of the OTE-Ag NPs were
examined through SEM micrographs (Fig. 2b). The presence of
scattered spherical-shaped and clustered structures of the formed
OTE-Ag NPs was confirmed, aligning with information available in
the literature. This aggregated structure was likely a result of
dehydration during sample preparation for SEM analysis.29 The
significant absorption peak of Ag at 3 keV, detected in the elemental
analysis by EDS data of the OTE-Ag NPs, was attributed to the
predominant presence of Ag in the nanostructure (Fig. 2c). The
phytochemical agents from the OE that adhered to the surface of the
OTE-Ag NPs were identified as the source of the lower values
denoted by C and O in the corresponding results. In Figs. 2d and 2e,
the total elemental mapping and color mapping for the elements O,
K, Na, Ag, Al, and S present in the prepared OTE-Ag NPs were
depicted. The elemental mappings of OTE-Ag NPs were presented
in Figs. 2d and 2e. All images were detected to contain O, K, Na,
Ag, Al, and S elements for the prepared OTE-Ag NPs. From these
results, it was evident that the Ag NPs were distributed homo-
geneously.

Cytotoxicity of the photo/ultrasound synthesized OTE-Ag
NPs.—Despite great progress in cancer therapy, cancer remains
one of the world’s leading causes of death. Natural substances,
especially flavones included in human diets, have been shown to
have anti-proliferative and apoptosis-promoting effects on cancer
cells.30,31 There has been a lot of research on the use of nanocarriers

Table I. FTIR results of the OTE and OTE-Ag NPs.

FTIR results of the OTE FTIR results of the OTE-Ag NPs
References OTE-Ag NPs References

−OH stretching/3290 cm−1 21–23 −OH stretching/3246 cm−1 21
symmetric –CH2 vibration/2900 cm

−1 21–23 symmetric –CH2 vibration/2903 cm−1 21
asymmetric –CH2 vibration/2974 cm

−1 21–23 asymmetric –CH2 vibration/2972 cm
−1 21

N–H vibration or C=O asymmetric vibration of carboxyl
group/1600 cm−1

21–23 N–H vibration or C=O asymmetric vibration of carboxyl
group/1603 cm−1

21

carbonyl groups in uronic acids/1377 cm−1 21–23 carbonyl groups in uronic acids /1351 cm−1 21
C–O stretching in carboxylic acids /1045 cm−1 21–23 C–O stretching in carboxylic acids /1042 cm−1 21

metal–oxygen bonds/824 cm−1 23, 24
Ag–Ag metal bond/487 cm−1 23, 24
Ag–Ag metal bond/420 cm−1 23, 24
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containing medications or bioactive substances that exist naturally
that inhibit the growth of cancer cells. It has been reported that plant-
mediated metallic nanoparticles increase cytotoxicity and apoptotic

activity.32,33 In another study, it was determined that silver nano-
particles loaded with paclitaxel increased cytotoxicity in different
cancer cells.34 In a recent study, Huang et al. demonstrated that the

Figure 2. (a) TEM image, (b) SEM micrograph, (c) SEM-EDX spectrum, (d) Total elemental mapping of the photo/ultrasound synthesized OTE-Ag NPs
(e) elemental mapping of the O, K, Na, Ag, Al, and S in the OTE-Ag NPs.
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colon cancer cell HT-29 may be passively targeted by the enhanced
permeability and retention (EPR) effect of a lycopene nanogold
nanoemulsion with an average particle size of 21.3 nm. They
clarified that the reason for the anticancer effect of the generated
nanostructures was their capacity to pass through the extracellular
matrix and into the cytoplasm and nucleus.35,36

In the present study, OE and OTE-Ag NPs at a specific
concentration were treated with MCF-7 cells for 48 h to evaluate
their cytotoxic effect. MTT assay was used to measure the cytotoxic
effects. A dose-dependent cell death response was observed for the
OE and OTE-Ag NPs (Fig. 3). OE exhibited a considerable degree
of cytotoxicity on MCF-7 breast cancer cells. In addition, the OTE-
Ag NPs significantly increased the cytotoxicity of OE. Furthermore,
it was found that MCF-7 breast cancer cells responded far better to
OE and OTE-Ag NPs than normal HUVEC. In MCF-7 cells,
undiluted OE (at a 1:1 ratio) killed approximately half of these cells
(Fig. 3a), whereas OTE-Ag NPs at a dilution of 1:8 killed 61% of the
cells (Fig. 3b). Compared to OTE-Ag NPs, which had an IC 50 of
less than 1:8, OE had an IC 50 of 1:1 in MCF-7 cells. Thus,
compared to OE, OTE-Ag NPs exhibited at least an eight-fold
increase in cytotoxicity towards MCF-7 cells. HUVEC cells showed
less cytotoxicity from OE, but at a 1:8 dilution, OTE-Ag NPs
resulted in approximately 46% cell death (Figs. 3c and 3d). It is
evident from the comparison of HUVEC and MCF-7 cells that OTE-
Ag NPs have a more cytotoxic effect on MCF-7 cancer cells (Fig. 3).

Accordingly, the photo/ultrasound developed OTE-Ag NPs in
this study improved OE’s cytotoxicity and shown selectivity for
MCF-7. Moreover, we found that the OTE-Ag NPs we synthesized

exhibited proapototic, chemoprotective, cytotoxic and cell cycle
inhibitory properties on cancer cells, considering the anticancer
effects of oolong extract.

Apoptotic activity of the photo/ultrasound synthesized OTE-Ag
NPs.—This study clearly shows that OTE-Ag NPs have better
efficacy against MCF-7 cells than OE. Therefore, the apoptotic
effect of OTE-Ag NPs on MCF-7 cells and their effect on the cell
cycle were investigated in our study. The apoptotic effect of the
OTE-Ag Nps was investigated using annexin/PI flow cytometry in
MCF-7 cells. After 48 h of application, OTE-Ag Nps was shown to
cause cell death by apoptosis in MCF-7 cells at an IC50 value of
approximately. Untreated MCF-7 cells were 89.58% alive, 3.80%
were observed as early apoptosis and 4.34% as late apoptosis. MCF-
7 cells treated with OTE-Ag-Nps had a survival rate of 48.47%;
however, 46.48% and 4.81% of the cells underwent early and late
apoptosis, respectively (Fig. 4). Furthermore, necrotic cell death was
not induced by the OTE-Ag NPs. In summary, our study demon-
strated that OTE-Ag NPs induced apoptosis and inhibited the
proliferation of breast cancer cells.

Cell cycle arrest of the photo/ultrasound synthesized OTE-Ag
NPs.—Although chemotherapeutics induces cell damage and death,
the regulation of apoptosis and the cell cycle truly govern cell death.
Cell cycle checkpoints are biochemical mechanisms that block cell
cycle transition or cause cell death in response to stress.37 Cell cycle
progression is continually tracked to ensure that events in the process
of cell division occur correctly and to avoid the proliferation of

Figure 3. OE and photo/ultrasound synthesized OTE-Ag NPs’ cytotoxic effects on MCF-7 and HUVEC cells. The cytotoxicity of OE (a) and OTE-Ag NPs (b)
on MCF-7 cells and the effect of OE (c), and OTE-Ag NPs (d) on HUVEC cells are demonstrated. Note: OE (a) and OTE-Ag NPs (b) concentrations were
administered by dilution at 1/8, 1/4, 1/2, and 1 times. P values of 0.01:** denotes statistical significance when compared to the control group. The Student’s t-test
was used to analyze the samples. GraphPad Prism 8.0 (GraphPad Software, San Diego, CA, USA) was used for statistical analysis. At least three attempts were
made in each test.
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DNA-damaged cells. Checkpoints for replication and DNA damage
block or slow down the cell cycle transition, re-establishing the
proper cell cycle sequence once the damage has been repaired. The
cell was determined to die if repair was not possible. For every phase
of the cell cycle, one or more checkpoints have been established.38,39

This study showed that OTE-Ag NPs are more effective than OE
in MCF-7 cells. To this end, our study investigated the effect of OTE-
Ag NPs on the cell cycle of MCF-7 cells. As shown in Fig. 4, 42.37%
of MCF-7 cells in the untreated control group were in the G1/G0
phase, whereas 38.85% of MCF-7 cells treated with OTE-Ag NPs
were in this phase. The S phase showed a modest increase to 18.34%
in MCF-7 cells treated with OTE-Ag NPs compared to 17.73% in the
control group. In the G2/M phase, the population of MCF-7 cells
increased from 39.87% to 42.82% in the group treated with OTE-Ag
NPs compared to that in the control group (Fig. 5). Our results showed
that OTE-Ag NPs induced apoptosis in MCF-7 cells by arresting the
cell cycle at the G2/M phase. According to our results, OTE-Ag NPs
promote G2/M cell cycle arrest and apoptosis in MCF-7 cells.

The most common biomarker for CSCs in various cancer types is
the multifunctional glycoprotein cluster of differentiation CD44, which
functions as a type of receptor for hyaluronic acid (HA) along with
other extracellular matrix (ECM) molecules.40 Cancer cell migration,
invasion, and motility are all related to CD44’s binding to cytoskeletal
proteins, which in turn promotes actin cytoskeletal remodeling.41

The MCF-7 cell line was treated with photo/ultrasound-produced
OTE-Ag NPs at an IC 50 value in this investigation. The percentage of
cells expressing the surface indication CD44+/CD24-, which is linked
to highly tumorigenic breast cancer, was compared with that of the
MCF-7 cell line that had not received any treatment. The association
between poor prognosis and the presence of CD44+/CD24- was
statistically significant according to numerous studies.40,41 In the
present study, the CD44+/CD24- ratio in the MCF-7 control cell line
was 84.79%, which decreased to 47.7% in the MCF-7 cell line treated
with OTE-Ag-NPs (Figs. 6c and 6d). A direct correlation between the
decrease in the CD44+ ratio in these cells and the induction of
apoptosis by MCF-7 cells treated with the photo/ultrasound synthesized
OTE-Ag NPs was also observed.

Cluster of differentiation CD44 is the most widely used marker of
CSCs, and expression of CD44 has been associated with resistance
to anticancer medications, metastasis, and tumor recurrence.40

Numerous studies have suggested that oolong tea has anticancer
effects; however, in this study, we demonstrated that silver-bound
green photo/ultrasound-developed OTE-Ag NPs enhanced the anti-
proliferative effect in cancer cells. In addition, as markers of

anticancer action, the OTE-Ag-NPs demonstrated substantial activa-
tion of apoptosis and cell cycle arrest in the G2/M phase.
Additionally, it was shown that NPs have high selectivity and
sensitivity for H2O2 detection.

Digital H2O2 biosensor utilizing the OTE-Ag NPs.—It is critical
to develop novel techniques with high selectivity and sensitivity for
measuring H2O2 in vivo or in vitro. Tumor cells generate more H2O2

than normal cells because of their rapid proliferation; this may be
exploited as an effective target to identify normal tissues and build
distinct diagnostic and therapeutic strategies.42–44

The photo/ultrasound synthesized OTE-Ag NPs-based biosensor
was used in this study, opting for a digital colorimetric approach for
the detection of H2O2. The obtained results were evaluated using
color channels, and subsequently, the value of each sample image
was determined using the red-green-blue (RGB) color strategy. In
this digital colorimetric approach, each color is represented by a
number ranging from zero to 255. To demonstrate the interaction of
the OTE-Ag NPs-based biosensor and the target analyte (H2O2), we
performed a detailed investigation using a non-enzymatic digital
sensor strategy. Using ImageJ software, we analyzed the color
change during the digital colorimetric oxidation/reduction process of
electroactive compounds using photographic pixels of samples
dropped on filter paper and dried.

In this study, samples with a circular diameter of 1.5 cm× 1.5 cm
were detected on Whatman® qualitative filter paper. The target
analytes (200 μl) were dropped onto filter paper and dried in a
vacuum oven at 37 °C. Photographs of the prepared sensors were
taken at a distance of 20 cm using a smartphone.

The digital photographs of the OTE-Ag NPs-based biosensor
were given in Fig. 6. These included: (a) paper-biosensor in 100 μM
of various analytes (glucose, lactose, maltose, testosterone, dopa-
mine, and progesterone) (b) paper-biosensor in a concentration range
of 0.5–100 μM of H2O2; (c) plot of Log C–S (%); (d) plot of Log
C–ΔE, and (e) biosensor’s selectivity analysis. The prepared OTE-
Ag NPs-based biosensor’s response (S), Euclidean distance (ΔE),
LOD, and LOQ values were calculated for the H2O2 digital sensing
platform, which is sensitive and selective, using Eqs. 2–4.45,46
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Figure 4. Apoptotic effects of OTE-Ag NPs on MCF-7 cells determined by flow cytometry Apoptosis rates in control (untreated MCF-7) (a) and OTE-Ag NPs
treated MCF-7 cells (b). MCF-7 cells were incubated at approximately the IC50 of OTE-Ag NPs for 48 h.
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S mLog C n% 4a( ) = ( ) + [ ]

LOD m3.3 5σ= / [ ]

LOQ m10 6σ= / [ ]

Gi and Go: Green value of the sample and the blank paper, Ri and
Ro:Red value of the sample and blank paper, Bi and Bo:Blue value
of the sample and blank paper, xc: Blue value of the sample, xo:
Blue value of the sensor, xref: Blue value of the blank, S: Response,
and σ: The standard deviation.

Specifically, the impact of various substances (including glucose,
lactose, maltose, testosterone, dopamine, and progesterone) on the
detection of H2O2 was investigated as well. The sensitive and
selective properties of the photo/ultrasound synthesized OTE-Ag
NPs-based biosensor were employed with the simple Image J
software. When other analytes, such as glucose, lactose, maltose,
testosterone, dopamine, and progesterone, were present, we did not
see no color change was observed (Fig. 6a), but the detection
showed that H2O2 underwent an obvious color shift. The color of the
sample changed from brown to ivory color after one minute,
utilizing an H2O2 range of 0.5–100 μM (Fig. 6b). The prepared
biosensor demonstrated highly selective efficiency with a LOD of
0.102 μM and LOQ of 0.310 μM in a range of 0.5–100 μM, referring
to the digital colorimetric results of OTE-Ag NPs-based biosensor
(Fig. 6c). Additionally, a broad range of 0.5–100 μM was found

when the ΔE values of the OTE-Ag NPs-based biosensor were
colorimetrically altered, increasing from 12.23 to 309.33 (Fig. 6d).
The RGB results showed that the OTE-Ag NPs-based biosensor’s
ΔE values for (glucose, lactose, maltose, testosterone, dopamine,
progesterone, and H2O2 were 1.65, 7.43, 9.73, 12.21, 30.15, 64.32,
and 309.33, respectively (Fig. 6e). Table II presents a comparative
analysis of the sensing performance of previously developed sensors
for measuring H2O2.

Table II presents a comprehensive comparison of the sensors
developed for H2O2 measurements. Notably, the novel photo/
ultrasound synthesized OTE-Ag NPs-biosensor in this study stands
out for its exceptional features, including a low LOD of 0.102 μM
and a spherical morphology with a particle diameter ranging from 10
to 20 nm.

Electrochemical and machine learning based analysis.—In this
section, electrochemical and ML-based analyses are presented,
where the LOD for urea and fructose was computed using CV
data. This analysis was aimed at enhancing the precision and
dependability of the biosensor, with LOD values determined to be
3.02 μM for urea and 4.86 μM for fructose. CV responses of each
analyte are shown in Fig. 7.

Next, the application of ML techniques to enhance the analysis of
CV data was explored. A detailed feature-engineering process was
initially performed. Key features were extracted from the CV data to
capture the critical aspects of the electrochemical behavior. These
included:

Figure 5. Flow cytometric analysis of cell cycle arrest in MCF-7 cells. MCF-7 cells were incubated at the approximate IC 50 of OTE-Ag NPs for 48 h. Using a
flow cytometer, (a) Cell cycle diagram in untreated MCF-7 cells (b) Cell cycle diagram in MCF-7 cell line treated with OTE-Ag NPs was shown. CD44+/CD24
ratios in (c) untreated MCF-7 cells and (d) MCF-7 cell line treated with OTE-Ag NPs, also by flow cytometry.
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Figure 6. Digital photographs of the photo/ultrasound synthesized OTE-Ag NPs-based biosensor, showcasing: (a) the paper-biosensor in 100 μM of various
analytes (glucose, lactose, maltose, testosterone, dopamine, and progesterone); (b) the paper-biosensor in a concentration range of 0.5–100 μM of H2O2; (c) the
plot of Log C–S (%); (d) the plot of Log C–ΔE; and (e) the biosensor’s selectivity measurements.
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• Charge (Q): Total electric charge passed during the electro-
chemical reaction.

• Half-Peak Potential: The potential at which the current is half
its peak value.

• Peak Width at Half Height: Measures the width of the peak at
half its maximum height, indicating sharpness.

• Current Statistics: Including mean current, median current,
and standard deviation, which describe the central tendency and
variability of the current.

• Higher-Order Current Derivatives: Both Peak Derivative
and Peak Second Derivative were calculated to identify rapid
changes in the reaction kinetics.

• Kurtosis and Skewness: These statistical measures describe
the shape and asymmetry of the current distribution.

• Peak Currents and Potentials: Positive and Negative Peak
Currents and their corresponding Potentials were noted, highlighting
maximum and minimum response points.

Correlation analysis was conducted to assess the relationships
between each feature and the analyte concentration. This analysis
was crucial for identifying features with significant correlations,
either positive or negative, with the target variable. The results of
this analysis are detailed in Table III.

Features demonstrating strong correlations, as shown in Table III,
were subjected to further analysis using feature importance evalua-
tion. Feature importance analysis was conducted using a Random
Forest algorithm to further refine the selection of features based on
their predictive power for estimating urea and fructose concentra-
tions. This method assesses how effectively each feature contributes

to the accuracy of the model and quantifies the significance of each
feature in enhancing the predictive performance.

A threshold of 0.8 was set for selecting significant features,
ensuring that only those with the most substantial impact on the
model were retained. This threshold was strategically chosen to
balance the complexity and accuracy of the model effectively.
Features that surpassed this threshold were considered critical for
accurate predictions because of their substantial influence on model
outcomes.

From the analysis, the following features were identified as most
important: Peak Derivative, Peak Second Derivative, Skewness,
Negative Peak Current, Negative Peak Potential.

These features were selected for their significant contribution to
the model’s ability to accurately predict analyte concentrations based
on CV data. This selection aids in constructing a more efficient and
interpretable model, ensuring optimal performance while avoiding
overfitting with redundant or less informative variables.

Following feature importance analysis, two distinct models - a
linear regression baseline and an artificial neural network (ANN) -
were developed and evaluated to predict the concentrations of urea
and fructose. The ANN was implemented as a sequential feedfor-
ward network using TensorFlow/Keras. The hyperparameters of the
artificial neural network were systematically optimized using Keras
Tuner’s RandomSearch algorithm. The hyperparameter space was
extensively explored through a randomized search strategy with 10
independent trials, where each trial was executed 3 times to ensure
the stability and reproducibility of results. The network architecture
hyperparameters were explored within chosen ranges. For the input
layer, the number of units was varied between 32 and 512, with a

Figure 7. The CV responses comparing the anodic/cathodic peak current and potential for OTE-Ag NPs concerning (a) urea and (b) fructose.

Table II. Comparison of the sensing capacities of previously developed sensors for measuring H2O2.

Nanomaterials Characterization Results References

Ag NPs immobilized on FeS2
nanoprisms

Hexagonal rod crystals: 2 μm length,
500 nm gyration diameter.

LOD (colorimetric): 3.0 μM. LOD (electrochemical):
0.6 μM.

47

Apple juice extract-based Ag
NPs

Spherical shape, 60 nm diameter, particle
size ranges from 6 to 100 nm.

LOD: 0.2656 ppm 48

Ag–Ti3C2 nanohybrids 10–140 nm in diameter LOD: 0.31 μM 49
Ag NPs/halloysite nanotubes tubular morphology LOD: 0.7 μM 50
Mangifera indica leaves extract-
based Ag NPs

particle size of 22 nm LOD: <60 μg l−1 51

Cinnamon extract-based Ag
NPs

particle sizes ranging from 10 to 70 nm LOD: 0.48 μM 52

OTE-Ag NPs particle diameter ranging from 10 to
20 nm

Digital LOD: 0.102 μM (H2O2) and ML-based electro-
chemical LOD: 3.02 μM (urea) and 4.86 μM (fructose)

In this study
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step size of 32. The number of hidden layers was treated as a
hyperparameter and was varied between 1 and 5 layers. For each
hidden layer, the number of units was also optimized within the
same range as the input layer (32 to 512 units, with a step size of 32).
The learning process was controlled by several key hyperparameters.
The learning rate was sampled from a log-uniform distribution
ranging from 10^-4 to 10^-2. This logarithmic sampling ensures
thorough exploration of both fine-grained learning rates for precise
optimization and larger learning rates for faster convergence. Each
model configuration was trained for 200 epochs, providing sufficient
time for convergence while managing computational resources. The
optimization process used validation loss (mean squared error) as the
objective function. After completing all trials, the best hyperpara-
meter set was identified based on the lowest validation loss achieved
across all configurations and repetitions. Following the hyperpara-
meter optimization, the final model was constructed using the best-
performing configuration:

• Input layer: 32 neurons with ReLU activation were utilized
• First hidden layer: 128 neurons with ReLU activation were

implemented
• Second hidden layer: 32 neurons with ReLU activation were

employed
• Output layer: 1 neuron (linear activation) for regression output

was incorporated

The model was compiled using the Adam optimizer with a
learning rate of 0.002, and mean squared error loss function was
selected. Training was conducted for 500 epochs with a batch size of
32. Due to the limited dataset size, Leave-One-Out Cross-Validation
(LOOCV) was employed to maximize the use of available data, and
robust performance estimation was ensured. Features were normal-
ized using MinMaxScaler before model training was initiated. For
comparison, a linear regression model was implemented using
scikit-learn’s LinearRegression class, and evaluation was also
performed using LOOCV. The prediction accuracy of each model
was quantitatively assessed using multiple complementary metrics:

• Root Mean Square Error (RMSE): by which the standard
deviation of prediction errors was measured

• Mean Absolute Error (MAE): through which the average
magnitude of errors was quantified

• Coefficient of Determination (R2): whereby the proportion of
variance explained by the model was indicated

The performance metrics for each algorithm differentiated by the
analyte are summarized in Table IV.

All experiments are run on a 24-core, 4.2 GHz desktop computer
with 64 GB of RAM. As shown in Table IV, the ANN showed

strong prediction results for urea. Although the performance for
fructose was robust, it was slightly lower than that of urea, indicating
differences in the signal characteristics between the two analytes.
The ANN model provided accurate and reliable predictions for both
urea and fructose concentrations with notably better results for urea.
This superior performance could be attributed to the ANN’s
capability to effectively learn nonlinear and complex dependencies
between variables, which are prevalent in electrochemical data
analyzed by CV.

These results underline the potential of using advanced ML
techniques to enhance the predictive accuracy of models in
chemical analysis, especially in electrochemical sensing. Given
its robust performance across both analytes, the ANN model is
recommended as the preferred method for similar predictive tasks
within this field.

This comparative analysis highlights the importance of selecting
an appropriate MLmodel based on specific dataset characteristics
and analysis objectives, demonstrating the varying capabilities of
different approaches when applied to complex chemical data.

Conclusions

In conclusion, this study investigated the frontiers of cancer
treatment, with a particular emphasis on the development of multi-
functional nanoplatforms with anticancer capacities and the rapid
and precise detection of putative cancer biomarkers for early
diagnosis. The production of the photo/ultrasound synthesized
OTE-Ag NPs has made it possible to assess anticancer activity
against MCF-7 cells and evaluate H2O2 via a smartphone image
strategy. Our digital sensor studies underscored the remarkable
sensitivity and selectivity of OTE-Ag NPs in detecting H2O2,
achieving exceptional colorimetric sensor values within a mere
minute. The H2O2 sensor consistently demonstrated a low LOD of
0.102 μM across the range of 0.5–100 μM, as evidenced by the
digital colorimetric results. Moreover, the application of ML
techniques significantly enhanced the predictive accuracy of analyte
concentrations using CV data. The feature engineering process,
coupled with feature importance analysis, enabled the selection of
the most predictive features, resulting in robust models. The ANN
model demonstrated strong predictive performance, especially for

Table III. Correlation coefficients between CV features and concentrations of urea and fructose.

Feature Correlation with concentration (Urea) Correlation with concentration (fructose)

Charge (Q) 0.635 0.993
Half-Peak Potential −0.296 —

Peak Width at Half Height −0.900 —

Mean Current −0.716 −0.744
Median Current 0.539 −0.904
Standard Deviation 0.699 0.987
Kurtosis 0.898 −0.979
Skewness −0.617 0.634
Peak Derivative 0.935 0.041
Peak Second Derivative 0.941 −0.581
Positive Peak Current 0.937 0.973
Positive Peak Potential −0.433 0.945
Negative Peak Current −0.908 −0.998
Negative Peak Potential −0.452 −0.945

Table IV. Prediction performance of ML algorithms.

Model Analyte RMSE MAE R2

Linear Regression Urea 2.9221 1.8568 0.5820
Fructose 1.3246 1.2606 0.8195

ANN Urea 0.4266 0.3380 0.8575
Fructose 0.4832 0.3806 0.8252

Journal of The Electrochemical Society, 2025 172 037503



urea concentrations. The integration of ML in this study highlights
the potential of these advanced techniques to improve the precision
and reliability of chemical analysis in electrochemical sensing. This
study has limitations, including the single-use nature of the ML
based sensors, which may hinder long-term monitoring. Potential
green matrix effects in complex bio-based samples and the need for
further validation in real-world conditions should also be considered.
While the biosensors showed good selectivity against common
interferents, additional studies are needed to assess their robustness
in diverse biological contexts. Future work could focus on devel-
oping reusable sensor designs, using more stable nanostructures, or
integrating hybrid electrochemical and optical platforms to improve
performance and broaden the range of detectable analytes. Overall,
this work provides a promising biosensing strategy, but further
research is needed to optimize sensor capacity, performance and
explore broader biomedical applications.

Our investigations into cytotoxicity, apoptosis, cell cycle arrest,
and the expression of the CD44 surface marker unveiled the
selective harm inflicted by OTE-Ag NPs on MCF-7 cells. The
MTT assay was used to carefully evaluate the cytotoxic effects, and
the results showed that OTE-Ag NPs could inhibit MCF-7 cell
proliferation while showing less cytotoxicity in normal HUVEC
cells. Moreover, the apoptotic impact demonstrated the capacity of
OTE-Ag NPs to induce apoptosis and was ascertained by flow
cytometry analysis with Annexin V/PI dye. Notably, MCF-7 cells
were arrested by OTE-Ag NPs in the G2/M phase, providing
information regarding their regulatory effects on the cell cycle.
When OTE-Ag NPs were applied to MCF-7 cells, the expression of
CD44, a marker for CSCs, was significantly lower than in untreated
cells. This finding suggests that OTE-Ag NPs may play a role in
inhibiting metastasis. To summarize, our research highlights the
noteworthy restraint of OTE-Ag NPs on MCF-7 cell growth, mainly
via the apoptotic route by controlling the cell cycle at the G2/M
stage. Furthermore, the reduction in CD44 expression that has been
seen increases the possibility that the photo/ultrasound synthesized
OTE-Ag NPs can inhibit metastasis, making them attractive candi-
dates for additional research into cancer therapies.
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