Basit öğe kaydını göster

dc.contributor.authorÖzer, Gökhan
dc.contributor.authorKısasöz, Alptekin
dc.contributor.authorKaraaslan, Ahmet
dc.date.accessioned2021-04-27T13:22:11Z
dc.date.available2021-04-27T13:22:11Z
dc.date.issued2019en_US
dc.identifier.citationÖZER, Gökhan, Alptekin KISASÖZ & Ahmet KARAASLAN. "Investigation of the Relationship Between Intergranular Corrosion and Retrogression and Reaging in the AA6063". Materials and Corrosion, 70.12 (2019): 2256-2265.en_US
dc.identifier.urihttps://hdl.handle.net/11352/3366
dc.description.abstractAA6063 was heat treated with different retrogression temperatures and durations, and the effect of heat treatment conditions on the microstructure, hardness, electrical conductivity, intergranular corrosion (IGC) and electrochemical corrosion behaviours of the AA6063 was determined compared with the T6 condition. The IGC test was applied according to the BS EN ISO 11846: 2008 standard. Moreover, potentiodynamic polarization tests were applied to determine the electrochemical corrosion behaviour of the heat‐treated samples. Electrochemical corrosion tests were carried out by using a Ivium Compactstat potentiostat in 3.5 wt.%. NaCl solution at 24°C with a scanning rate of 0.5mV/s. The corrosion test cell consisted of the reference electrode (Ag/AgCl), working electrode (test sample) and a reference electrode (platinum). The effect of IGC on the microstructure of AA6063 and corrosion depth values was investigated by using a stereo optical microscope and a light metal microscope, respectively. Corrosion depth examinations were performed on microstructures taken from the cross‐sections of the samples. The chemistry of the precipitates formed at grain boundaries and distribution of the precipitates in the microstructure were investigated by scanning electron microscope, energy dispersive X‐ray and transmission electron microscope analyses. The results showed that retrogression and reaging heat treatment improves both the corrosion resistance and the mechanical properties of AA6063. After 50°C/15 min RRA heat treatment, the highest corrosion resistance and a higher hardness value than the T6 level were obtained.en_US
dc.language.isoengen_US
dc.publisherWiley Online Libraryen_US
dc.relation.isversionof10.1002/maco.201911100en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectAA6063en_US
dc.subjectElectrochemical Corrosionen_US
dc.subjectİntergranular Corrosionen_US
dc.subjectRetrogression and Reagingen_US
dc.titleInvestigation of the Relationship Between Intergranular Corrosion and Retrogression and Reaging in the AA6063en_US
dc.typearticleen_US
dc.relation.journalMaterials and Corrosionen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Rektörlük, Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)en_US
dc.contributor.authorIDhttps://orcid.org/0000-0001-5233-8896en_US
dc.identifier.volume70en_US
dc.identifier.issue12en_US
dc.identifier.startpage2256en_US
dc.identifier.endpage2265en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorÖzer, Gökhan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster