• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
  •   FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

The Novel Hybrid Lattice Structure Approach Fabricated by Laser Powder Bed Fusion and Mechanical Properties Comparison

Thumbnail

View/Open

Ana Makale (769.0Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2022

Author

Khan, Hamaid Mahmood
Çalışkan, Cemal İrfan
Bulduk, Mustafa Enes

Metadata

Show full item record

Citation

KHAN, Hamaid Mahmood, Cemal İrfan ÇALIŞKAN & Mustafa Enes BULDUK. "The Novel Hybrid Lattice Structure Approach Fabricated by Laser Powder Bed Fusion and Mechanical Properties Comparison." 3d Printing and Additıve Manufacturing, (2022).

Abstract

Aluminum-based cellular structures are gaining a huge traction in several applications, including lightweight aircraft, military equipment, and heat exchangers. With additive manufacturing, the fabrication of complex periodic cellular structures with any unit cell form, size, and volume fraction has become a lot easier, allowing for more investment, research, and attention from both academia and industry. The aim of the research was to assess the manufacturability and performance of AlSi10Mg periodic cellular structures generated using the laser powder bed fusion process. Re-entrant and triply periodic and minimum surface (TPMS) gyroid cells were hybridized into a single cellular structure having identical volume fraction. Because of distinct mechanical properties of TPMS and re-entrant types, these cells were selected and assembled in various patterns to study their manufacturability, deformation behavior, energy absorption, and compressive strength. This work demonstrates good geometric agreement between the manufactured hybrid lattice structures and computer-aided design models. Hybridized structures with several repeated layers of TPMS gyroid and re-entrant cells can result in superior compressive strength and energy absorption than those with only few large layers.

Source

3d Printing and Additıve Manufacturing

URI

https://hdl.handle.net/11352/4197

Collections

  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM) [88]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [380]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.