• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Biyomedikal Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Bioadhesion, Antimicrobial Activity, and Biocompatibility Evaluation Bacterial Cellulose Based Silver Nanoparticle Bioactive Composite Films

Thumbnail

View/Open

Ana makale (7.138Mb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2024

Author

Çiftçi, Fatih

Metadata

Show full item record

Citation

ÇİFTÇİ, Fatih. "Bioadhesion, Antimicrobial Activity, and Biocompatibility Evaluation Bacterial Cellulose Based Silver Nanoparticle Bioactive Composite Films." Process Biochemistry, 137 (2024): 99-110.

Abstract

Bioactive and biocompatible BC/AgNP composite films were synthesized by loading silver nanoparticle (AgNP) into bacterial cellulose (BC) fibrils. Physicochemical analyses (FTIR, TGA-DSC, SEM-EDS, TEM, XRD) and mechanical tests were performed on the synthesized BC fibril and BC/AgNP composite films. Young’s Modulus, Tensile strength, Elongation at break, Compressive strength and Stiffness of (45% moisture) BC/AgNP composite films were found to be 253.2 ± 2.01 MPa, 13.7 ± 1.40 MPa, 21.4 ± 1.67%, 47.17 ± 8.98 MPa, 1.05 ± 2.32 GPa and 519.88 ± 81.51 (Units), respectively. Moreover, the high-water retention capacity of BC fibril structures was supported by the contact angles and swelling profiles observed in BC/AgNP composite structures. Further, the bioadhesion performance of BC/AgNP composite films was evaluated ex vivo on chicken skin and it was observed that the presence of AgNP played an active role in the adhesion behavior of the composite films. It was also observed that the synthesized BC/AgNP composite films exhibited bactericidal behavior against pathogens (Staphylococcus aureus and Pseudomonas aeruginosa) and had a high bactericidal effect. Biocompatibility tests of the composite films were evaluated by using L929 mouse fibroblast cells. The cell nucleus wall staining (Mitored and Dio6) and fluorescence visualization studies were performed to investigate the biocompatibility behavior of BC/AgNP composite films. The results showed that BC/AgNP composite films did not any cytotoxic effect and allowed epidermal cells to adhere and grow. Overall, obtained results showed that the synthesized biocompatible BC/AgNP composite films are suitable to be used as wound dressings in tissue engineering applications and may be used as a bioactive material that can reduce inflammation in skin barriers and promote wound healing.

Source

Process Biochemistry

Issue

137

URI

https://hdl.handle.net/11352/4715

Collections

  • Biyomedikal Mühendisliği Bölümü [109]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [633]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [572]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.