Basit öğe kaydını göster

dc.contributor.authorErgür, Burcu Özge Özevin
dc.contributor.authorOktay, Büşra
dc.contributor.authorÇiftçi, Fatih
dc.contributor.authorÖzerol, Esma Ahlatcıoğlu
dc.date.accessioned2025-06-30T13:11:39Z
dc.date.available2025-06-30T13:11:39Z
dc.date.issued2025en_US
dc.identifier.citationERGÜR, Burcu Özge Özevin, Büşra OKTAY, Fatih ÇİFTÇİ & Esma Ahlatçıoğlu ÖZEROL. "Production andCharacterization of Conductive Scaffolds for Conducting Tissue Engineering". ChemistrySelect, 10.24 (2025): 1-10.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5343
dc.description.abstractThis study focuses on the development of conductive scaffolds incorporating polypyrrole (PPy), chitosan (Chi), and curcumin (Cur) for applications in tissue engineering, particularly targeting electrically active tissues. Conductive scaffolds were synthesized via a solvent-casting method with varying curcumin concentrations. The materials were characterized for electrical conductivity, mechanical performance, thermal properties, and biocompatibility. Electrical conductivity values ranged from 1.69 × 10−5 to 2.16 × 10−4 S/m, with decreased conductivity observed at higher curcumin concentrations. Mechanical analyses revealed that the PPy2 composition demonstrated optimal elastic modulus (723.1 ± 0.008 MPa) and tensile strength (48.5 ± 0.82 MPa), along with superior elongation at break (11.5%). Morphological studies using SEM confirmed a porous structure with increased surface roughness as curcumin content increased, while FTIR and XRD analyses highlighted synergistic interactions among components. Biocompatibility assessments using L929 cells demonstrated high cell viability, with the PPy1 composite surpassing the control group, indicating curcumin's potential to enhance biological performance. The tri-component scaffold provides electrical, mechanical, and biological properties suitable for tissue regeneration. Polypyrrole offers essential conductivity, chitosan ensures biocompatibility, and curcumin enhances bioactivity, creating an integrated system that promotes cell adhesion, proliferation, and repair. These findings emphasize the scaffold's potential for clinical applications, offering a versatile platform for the repair of electrically active tissues and paving the way for innovative solutions in regenerative medicine.en_US
dc.language.isoengen_US
dc.publisherChemistry Europeen_US
dc.relation.isversionof10.1002/slct.202500790en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.titleProduction and Characterization of Conductive Scaffolds for Conducting Tissue Engineeringen_US
dc.typearticleen_US
dc.relation.journalChemistrySelecten_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-9202-4821en_US
dc.identifier.volume10en_US
dc.identifier.issue24en_US
dc.identifier.startpage1en_US
dc.identifier.endpage10en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorÇiftçi, Fatih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster