Basit öğe kaydını göster

dc.contributor.authorAresteh, Bahman
dc.contributor.authorSefati, Seyed Salar
dc.contributor.authorPopovici, Eduard-Cristian
dc.contributor.authorİnce, İbrahim Furkan
dc.contributor.authorKiani, Farzad
dc.date.accessioned2025-11-27T13:44:49Z
dc.date.available2025-11-27T13:44:49Z
dc.date.issued2025en_US
dc.identifier.citationARASTEH, Bahman, Seyed Salar SEFATI, Eduard-Cristian POPOVICI, İbrahim Furkan İNCE & Farzad KIANI. "A Bedbug Optimization-Based Machine Learning Framework for Software Fault Prediction". Mathematics, 13.21 (2025): 1-26.en_US
dc.identifier.urihttps://www.mdpi.com/2227-7390/13/21/3531
dc.identifier.urihttps://hdl.handle.net/11352/5736
dc.description.abstractPredicting software faults and identifying defective modules is a significant challenge in developing reliable software products. Machine Learning (ML) approaches on the historical fault datasets are utilized to classify faulty software modules. The presence of irrelevant features within the training datasets undermines the accuracy and precision of the software prediction models. Consequently, selecting the most effective features for module classification constitutes an NP-hard problem. This research introduces the Binary Bedbug Optimization Algorithm (BBOA) to extract the most effective features of training datasets. The primary contribution lies in the development of a binary variant of the Bedbug Optimization Algorithm (BOA) designed to effectively select effective features and build a classifier for identifying faulty software modules using ANN, SVM, DT, and NB algorithms. The model’s performance was evaluated using five standard real-world NASA datasets. The findings reveal that among the 21 features analyzed, features such as code complexity, lines of code, the total number of operands and operators, lines containing both code and comments, the total count of operators and operands, and the number of branch instructions play a critical role in predicting software faults. The proposed method achieved notable improvements, with increases of 5.97% in accuracy, 3.86% in precision, 2.37% in sensitivity (recall), and 3.06% in F1-score.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/ math13213531en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectFault Predictionen_US
dc.subjectBinary Bedbug Optimization Algorithmen_US
dc.subjectFeature Selectionen_US
dc.subjectMachine Learningen_US
dc.titleA Bedbug Optimization-Based Machine Learning Framework for Software Fault Predictionen_US
dc.typearticleen_US
dc.relation.journalMathematicsen_US
dc.contributor.departmentFSM Vakıf Üniversitesien_US
dc.contributor.authorIDhttps://orcid.org/0000-0001-5202-6315en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-7208-3576en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-2639-8048en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-1570-875Xen_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-0354-9344en_US
dc.identifier.volume13en_US
dc.identifier.issue21en_US
dc.identifier.startpage1en_US
dc.identifier.endpage26en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorKiani, Farzad


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster