• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Neural Network Based Android Malware Detection with Different IP Coding Methods

Thumbnail

View/Open

Konferans Öğesi (386.5Kb)

Access

info:eu-repo/semantics/embargoedAccess

Date

2021

Author

Bayazıt, Esra Çalık
Şahingöz, Özgür Koray
Doğan, Buket

Metadata

Show full item record

Citation

BAYAZIT, Esra Çalık, Özgür Koray ŞAHİNGÖZ & Buket DOĞAN. "Neural Network Based Android Malware Detection with Different IP Coding Methods". 2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA), (2021).

Abstract

Due to the COVID-19 epidemic that has affected the whole world, internet use has increased more than in previous years. Almost all operations and transactions are done over the internet, especially with the use of cellular phones and tablet PCs. This growth results in many security deficits that need to be solved by security admins and end users. Malicious software (malware) is generally preferred for attacking the computer systems and recently for cellular phones. As a mobile operating system, Android is the main player of this sector with about 72% market share worldwide. Therefore, malware attacks especially target these devices, for reaching the maximum number of victims. The situation is getting more and more devastating with around 12,000 new Android malware attacks every day. This is one critical problem that needed to be solved by setting up an android malware detection system. Machine learning algorithms are frequently preferred in data mining-based security applications which contain lots of features in datasets. Artificial Neural networks are one of the mostly preferred learning models for training the system. Therefore, in this paper, it is aimed to implement a neural network based android malware detection system by using an up-to-date dataset presented by the Cyber Security Institute of Canada as CICMalDroid2017. Ip Addresses are one of the features in this dataset, and we focus on two different IP coding methods, as IP Splitting to Four Numbers, IP Transform to integer number, and no IP Address. In experimental study we reached a good level of accuracy rate as 98.4% by splitting an IP address to four numbers.

Source

2021 3rd International Congress on Human-Computer Interaction, Optimization and Robotic Applications (HORA)

URI

https://hdl.handle.net/11352/3936

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.