• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Sahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithm

Thumbnail

Göster/Aç

Ana Makale (2.285Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2024

Yazar

Arasteh, Bahman
Golshan, Sahar
Shami, Shlva
Kiani, Farzad

Üst veri

Tüm öğe kaydını göster

Künye

ARASTEH, Bahman, Sahar GOLSHAN, Shiva SHAMI & Farzad KIANI. "Sahand: A Software Fault-Prediction Method Using Autoencoder Neural Network and K-Means Algorithm". Journal of Electronic Testing, (2024): 1-15.

Özet

Software is playing a growing role in many safety-critical applications, and software systems dependability is a major concern. Predicting faulty modules of software before the testing phase is one method for enhancing software reliability. The ability to predict and identify the faulty modules of software can lower software testing costs. Machine learning algorithms can be used to solve software fault prediction problem. Identifying the faulty modules of software with the maximum accuracy, precision, and performance are the main objectives of this study. A hybrid method combining the autoencoder and the K-means algorithm is utilized in this paper to develop a software fault predictor. The autoencoder algorithm, as a preprocessor, is used to select the effective attributes of the training dataset and consequently to reduce its size. Using an autoencoder with the K-means clustering method results in lower clustering error and time. Tests conducted on the standard NASA PROMIS data sets demonstrate that by removing the inefficient elements from the training data set, the proposed fault predictor has increased accuracy (96%) and precision (93%). The recall criteria provided by the proposed method is about 87%. Also, reducing the time necessary to create the software fault predictor is the other merit of this study.

Kaynak

Journal of Electronic Testing

Bağlantı

https://hdl.handle.net/11352/4889

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.