• Türkçe
    • English
  • English 
    • Türkçe
    • English
  • Login
View Item 
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
  •   FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • View Item
JavaScript is disabled for your browser. Some features of this site may not work without it.

Enhancing GPS Accuracy with Machine Learning: A Comparative Analysis of Algorithms

Thumbnail

View/Open

Ana Makale (1.331Mb)

Access

info:eu-repo/semantics/openAccess

Date

2024

Author

Zontul, Metin
Ersan, Ziya Gökalp
Yelmen, İlkay
Çevik, Taner
Anka, Ferzat
Gesoğlu, Kevser

Metadata

Show full item record

Citation

ZONTUL, Metin, Ziya Gökalp ERSAN, İlkay YELMEN, Taner ÇEVİK, Ferzat ANKA & Kevser GESOĞLU. "Enhancing GPS Accuracy with Machine Learning: A Comparative Analysis of Algorithms". Traitement du Signal, 41.3(2024): 1441-1450.

Abstract

In the realm of wireless communications, the Global Positioning System (GPS), integral to Global Navigation Satellite Systems (GNSS), finds extensive applications ranging from vehicle navigation to military operations, aircraft tracking, and Geographic Information Systems (GIS). The reliability of GPS is often compromised by errors particularly prevalent in dense and structurally complex environments, where signal attenuation by environmental obstacles like mountains and buildings is common. These challenges necessitate the deployment of high-cost, precision GPS receivers capable of enhanced signal tracking and acquisition. This study investigates the reduction of GPS positioning errors by implementing a machine learning framework, utilizing a dataset from vehicle tracking devices equipped with Novatel and Ublox technologies. Ten machine learning prediction algorithms were evaluated, focusing on techniques that introduce randomness for stability, employ proximity for predictions, incorporate regularization to prevent overfitting, and leverage both single and ensemble methods to refine analyses. Among the evaluated algorithms, the Extra Trees algorithm was distinguished by its superior performance, achieving a coefficient of determination (R²) of 99.6%, with the lowest error rates compared to its counterparts. The errors were quantified as Root Mean Square Error (RMSE) at 1.01E-4, Mean Absolute Error (MAE) at 4.14E-5, and Mean Square Error (MSE) at 1.03E+0 for normalized data. A comparative assessment across ten scenarios demonstrated that the machine learning-enhanced approach deviated by approximately 6.8 meters on average, markedly improving accuracy over traditional GPS methods and reducing positional deviations to a scale of meters. This advance represents a significant stride towards minimizing GPS inaccuracies in complex environments, providing a robust framework for enhancing navigational precision in critical applications.

Source

Traitement du Signal

Volume

41

Issue

3

URI

https://www.iieta.org/journals/ts/paper/10.18280/ts.410332
https://hdl.handle.net/11352/4965

Collections

  • Bilgisayar Mühendisliği Bölümü [214]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 




| Policy | Guide | Contact |

DSpace@FSM

by OpenAIRE
Advanced Search

sherpa/romeo

Browse

All of DSpaceCommunities & CollectionsBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution AuthorThis CollectionBy Issue DateAuthorsTitlesSubjectsTypeLanguageDepartmentCategoryPublisherAccess TypeInstitution Author

My Account

LoginRegister

Statistics

View Google Analytics Statistics

DSpace software copyright © 2002-2015  DuraSpace
Contact Us | Send Feedback
Theme by 
@mire NV
 

 


|| Policy || Guide || Library || FSM Vakıf University || OAI-PMH ||

FSM Vakıf University, İstanbul, Turkey
If you find any errors in content, please contact:

Creative Commons License
FSM Vakıf University Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.