• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM)
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Mechanical Performance and ANN-Based Prediction of Co-Cr Dental Alloys with Gyroid Cellular Structures Produced by LPBF Technology

Thumbnail

Göster/Aç

Ana Makale (6.775Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2025

Yazar

Çalışkan, Cemal İrfan
Şahin, Meryem
Koca, Aliihsan
Tarakçı, Gürkan
Okbaz, Abdulkerim
Dalkılıç, Ahmet Selim

Üst veri

Tüm öğe kaydını göster

Künye

ÇALIŞKAN, Cemal İrfan, Meryem ŞAHİN, Aliihsan KOCA, Gürkan TARAKÇI, Abdulkerim OKBAZ & Ahmet Selim DALKILIÇ. "Mechanical Performance and ANN-Based Prediction of Co-Cr Dental Alloys with Gyroid Cellular Structures Produced by LPBF Technology". Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, (2025): 1-19.

Özet

Gyroid structures exhibit significant potential in the fields of lightweight structural design, heat transfer, energy absorption, and biological applications. The use of gyroid for implants in dentistry is currently not sufficiently widespread. The research encompasses design, compression testing, cellular investigation using a digital microscope, and the application of artificial neural networks (ANNs) using data gained from the compression test. The ANN study and the test phase in which gyroid geometries are addressed by dental three-point bending tests are novel in this field. In the field of dentistry, this study compares the usability of five distinct gyroid design characteristics, including one model without a gyroid structure. During the testing, we found that the m1 model had an average maximum strength of 600 N, while the m3 model achieved 230 N. The remaining models achieved an approximate strength of 200 N. In the mechanical performance evaluation of the samples, a 40% weight reduction was achieved. An ANN model has been developed to predict the force experienced by gyroid structures under certain deformations depending on the infill ratio. This model was trained with data obtained from a three-point bending test. Using grid search and Monte Carlo cross-validation, the optimal multilayer perceptron structure was determined to have 12 neurons in the hidden layer, a mini-batch size of 8, and a learning rate of 0.0001. The Adam optimization algorithm was used to train the ANN model, which was constructed using the TensorFlow library. Evaluation metrics were used to test the model’s performance, and the results showed strong generalization capability and high accuracy with coefficient of determination (R2) of 0.997, mean squared error (MSE) of 3.337E-05 kN2, root mean square error of (RMSE) 0.005777 kN, and mean absolute error (MAE) of 0.003633 kN on the test dataset.

Kaynak

Proceedings of The Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science

Bağlantı

https://hdl.handle.net/11352/5160

Koleksiyonlar

  • Alüminyum Test Eğitim ve Araştırma Merkezi (ALUTEAM) [131]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.