Basit öğe kaydını göster

dc.contributor.authorÖzder, Melike Nur
dc.contributor.authorYelkenci, Aslıhan
dc.contributor.authorKuçak, Mine
dc.contributor.authorAltınbay, Aylin
dc.contributor.authorÜstündağ, Cem Bülent
dc.contributor.authorÇiftçi, Fatih
dc.date.accessioned2025-04-07T14:41:35Z
dc.date.available2025-04-07T14:41:35Z
dc.date.issued2025en_US
dc.identifier.citationÖZDER, Melike Nur, Aslıhan YELKENCİ, Mine KUÇAK, Aylin ALTINBAY, Cem Bülent ÜSTÜNDAĞ & Fatih ÇİFTÇİ. "Development and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprinting". Pharmaceutics, 17.346 (2025): 1-21.en_US
dc.identifier.urihttps://www.mdpi.com/1999-4923/17/3/346
dc.identifier.urihttps://hdl.handle.net/11352/5274
dc.description.abstractMeniscus injuries represent a critical challenge in orthopedic medicine due to the limited self-healing capacity of the tissue. This study presents the development and characterization of polycaprolactone/graphene oxide (PCL/GO) scaffolds fabricated using 3D bioprinting technology for meniscus cartilage regeneration.Methods: GO was incorporated at varying concentrations (1%, 3%, 5% w/w) to enhance the bioactivity, mechanical, thermal, and rheological properties of PCL scaffolds. Results: Rheological analyses revealed that GO significantly improved the storage modulus (G’) from 36.1 Pa to 97.1 Pa and the yield shear stress from 97.2 Pa to 507.1 Pa, demonstrating enhanced elasticity and flow resistance. Mechanical testing showed that scaffolds with 1% GO achieved an optimal balance, with an elasticmodulus of 614MPa and ultimate tensile strength of 46.3MPa, closely mimicking the native meniscus’s mechanical behavior. FTIR analysis confirmed the successful integration of GO into the PCL matrix without disrupting its chemical integrity, while DSC analysis indicated improved thermal stability, with increases in melting temperatures. SEManalysis demonstrated a roughened surface morphology conducive to cellular adhesion and proliferation. Fluorescence microscopy using DAPI staining revealed enhanced cell attachment and regular nuclear distribution on PCL/GO scaffolds, particularly at lower GO concentrations. Antibacterial assays exhibited larger inhibition zones against E. coli and S. aureus, while cytotoxicity tests confirmed the biocompatibility of the PCL/GO scaffolds with fibroblast cells. Conclusions: This study highlights the potential of PCL/GO 3D-printed scaffolds as biofunctional platforms for meniscus tissue engineering, combining favorable mechanical, rheological, biological, and antibacterial properties.en_US
dc.language.isoengen_US
dc.publisherMDPIen_US
dc.relation.isversionof10.3390/pharmaceutics17030346en_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subject3D Bioprintingen_US
dc.subjectGraphene Oxideen_US
dc.subjectMeniscus Scaffoldsen_US
dc.subjectCartilageen_US
dc.subjectPCLen_US
dc.titleDevelopment and Characterization of a Polycaprolactone/Graphene Oxide Scaffold for Meniscus Cartilage Regeneration Using 3D Bioprintingen_US
dc.typearticleen_US
dc.relation.journalPharmaceuticsen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-3991-4953en_US
dc.contributor.authorIDhttps://orcid.org/0000-0003-2356-1452en_US
dc.contributor.authorIDhttps://orcid.org/0000-0002-3062-2404en_US
dc.identifier.volume17en_US
dc.identifier.issue346en_US
dc.identifier.startpage1en_US
dc.identifier.endpage21en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorÇiftçi, Fatih


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster