• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

A Novel Hybrid Metaheuristic Method for Efficient Decentralized LoT Network Layouts

Thumbnail

Göster/Aç

Ana Makale (1.539Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2025

Yazar

Anka, Ferzat

Üst veri

Tüm öğe kaydını göster

Künye

ANKA, Ferzat. "A Novel Hybrid Metaheuristic Method for Efficient Decentralized LoT Network Layouts". Internet of Things, 32 (2025): 1-35.

Özet

This paper introduces a Hybrid Genetic Particle Swarm Optimization (HGPSO) method focusing on optimal and efficient sensor deployment in Wireless Sensor Networks (WSNs) and Decentralized IoT (DIoT) networks. Effective sensor placement in these networks necessitates the simultaneous optimization of numerous conflicting goals, such as maximizing coverage, ensuring connectivity, minimizing redundancy, and improving energy economy. Traditional optimization techniques and single metaheuristic algorithms frequently encounter these difficulties, demonstrating premature convergence or inadequately balancing exploration and exploitation phases. The suggested HGPSO effectively combines the advantageous features of Genetic Algorithm (GA) and Particle Swarm Optimization (PSO) to overcome these limitations. The strong global exploration capabilities of GA, which successfully preserve variety and avert premature convergence, are integrated with the swift local exploitation and convergence attributes of PSO. A new multiobjective fitness function specifically designed for sensor deployment issues is created, facilitating the effective handling of trade-offs between conflicting objectives. The efficacy of the HGPSO approach is meticulously assessed in seven consistent situations and practical applications, encompassing environments with intricate impediments. A comparative examination is performed against six prominent metaheuristic algorithms acknowledged in literature. Results indicate that HGPSO regularly surpasses these competing methods across all assessment categories. Regarding average fitness values, HGPSO exceeds POHBA by 14 %, MAOA by 20 %, IDDTGA by 21 %, EFSSA by 29 %, CFL-PSO by 35 %, and OBA by 45 %. These findings underscore HGPSO’s exceptional theoretical framework and validate its practical relevance for extensive, real-world IoT implementations. By adeptly utilizing the exploration capabilities of GA and the exploitation strengths of PSO, HGPSO becomes a highly versatile and resilient optimization framework, making substantial contributions to addressing the deployment issues of nextgeneration IoT and WSN.

Kaynak

Internet of Things

Cilt

32

Bağlantı

https://hdl.handle.net/11352/5286

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.