Basit öğe kaydını göster

dc.contributor.authorAtalı, Selin Sude
dc.contributor.authorKozlucalı, Betül
dc.contributor.authorZeybek, Sultan
dc.date.accessioned2025-09-16T13:29:23Z
dc.date.available2025-09-16T13:29:23Z
dc.date.issued2025en_US
dc.identifier.citationATALI, Selin Sude, Betül KOZLUCALI & Sultan ZEYBEK. "Detecting Spam Comments in Product Reviews on E-Commerce Websites". 2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS), (2025): 1-4.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5579
dc.description.abstractWith the increasing use of e-commerce platforms, user reviews have become a major factor influencing customer decisions. However, the presence of spam comments—whether posted automatically or manually—negatively affects the relia-bility of these reviews. In this study, we focus on detecting spam comments in product reviews using various machine learning techniques. The data was collected from a real e-commerce platform and preprocessed through steps like stopword removal, normalization, and vectorization. Different models such as Sup-port Vector Machine (SVM), Na'ı've Bayes, Random Forest, and Logistic Regression were trained and tested. Besides text-based features, behavioral indicators such as repetitive comment pat-terns and posting frequency were also considered. Experimental results show that combining multiple features improves classi-fication performance, with SVM and Random Forest achieving the highest accuracy. This project aims to contribute to making online reviews more trustworthy and to support users in making more informed purchase decisions.en_US
dc.language.isoengen_US
dc.publisherIEEEen_US
dc.relation.isversionof10.1109/ISAS66241.2025.11101848en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectSpam Detectionen_US
dc.subjectMachine Learningen_US
dc.subjectE-Commerce Reviewsen_US
dc.subjectText Classificationen_US
dc.subjectTF-IDFen_US
dc.subjectNatural Language Processingen_US
dc.subjectSupervised Learningen_US
dc.titleDetecting Spam Comments in Product Reviews on E-Commerce Websitesen_US
dc.typeconferenceObjecten_US
dc.relation.journal2025 9th International Symposium on Innovative Approaches in Smart Technologies (ISAS)en_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.startpage1en_US
dc.identifier.endpage4en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorAtalı, Selin Sude
dc.contributor.institutionauthorKozlucalı, Betül
dc.contributor.institutionauthorZeybek, Sultan


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster