Basit öğe kaydını göster

dc.contributor.authorÖncü, Emir
dc.contributor.authorÇiftçi, Fatih
dc.date.accessioned2025-11-11T07:24:40Z
dc.date.available2025-11-11T07:24:40Z
dc.date.issued2025en_US
dc.identifier.citationÖNCÜ, Emir & Fatih ÇİFTÇİ. “Multimodal AI Framework for Lung Cancer Diagnosis: Integrating CNN and ANN Models for Imaging and Clinical Data Analysis”. Computers in Biology and Medicine, 193 (2025): 1-12.en_US
dc.identifier.urihttps://hdl.handle.net/11352/5672
dc.description.abstractLung cancer remains a leading cause of cancer-related mortality worldwide, emphasizing the critical need for accurate and early diagnostic solutions. This study introduces a novel multimodal artificial intelligence (AI) framework that integrates Convolutional Neural Networks (CNNs) and Artificial Neural Networks (ANNs) to improve lung cancer classification and severity assessment. The CNN model, trained on 1019 preprocessed CT images, classified lung tissue into four histological categories, adenocarcinoma, large cell carcinoma, squamous cell carcinoma, and normal, with a weighted accuracy of 92 %. Interpretability is enhanced using Gradientweighted Class Activation Mapping (Grad-CAM), which highlights the salient image regions influencing the model’s predictions. In parallel, an ANN trained on clinical data from 999 patients—spanning 24 key features such as demographic, symptomatic, and genetic factors—achieves 99 % accuracy in predicting cancer severity (low, medium, high). SHapley Additive exPlanations (SHAP) are employed to provide both global and local interpretability of the ANN model, enabling transparent decision-making. Both models were rigorously validated using k-fold cross-validation to ensure robustness and reduce overfitting. This hybrid approach effectively combines spatial imaging data and structured clinical information, demonstrating strong predictive performance and offering an interpretable and comprehensive AI-based solution for lung cancer diagnosis and management.en_US
dc.language.isoengen_US
dc.publisherElsevieren_US
dc.relation.isversionofhttps://doi.org/10.1016/j.compbiomed.2025.110488en_US
dc.rightsinfo:eu-repo/semantics/embargoedAccessen_US
dc.subjectLung Cancer Detectionen_US
dc.subjectConvolutional Neural Networks (CNN)en_US
dc.subjectArtificial Neural Networks (ANN)en_US
dc.subjectMedical Image Analysisen_US
dc.subjectMRI Imagingen_US
dc.subjectClinical Data Integrationen_US
dc.subjectEarly Diagnosisen_US
dc.subjectLung Cancer Subtypesen_US
dc.subjectImage Classificationen_US
dc.subjectMachine Learning in Healthcareen_US
dc.subjectTumor Detectionen_US
dc.subjectPersonalized Treatment Strategiesen_US
dc.titleMultimodal AI Framework for Lung Cancer Diagnosis: Integrating CNN and ANN Models for Imaging and Clinical Data Analysisen_US
dc.typearticleen_US
dc.relation.journalComputers in Biology and Medicineen_US
dc.contributor.departmentFSM Vakıf Üniversitesi, Mühendislik Fakültesi, Biyomedikal Mühendisliği Bölümüen_US
dc.contributor.authorIDhttps://orcid.org/0009-0001-9373-9167en_US
dc.identifier.issue193en_US
dc.identifier.startpage1en_US
dc.identifier.endpage12en_US
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.contributor.institutionauthorÇiftçi, Fatih
dc.contributor.institutionauthorÖncü, Emir


Bu öğenin dosyaları:

Thumbnail

Bu öğe aşağıdaki koleksiyon(lar)da görünmektedir.

Basit öğe kaydını göster