• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Fakülteler / Faculties
  • Mühendislik Fakültesi / Faculty of Engineering
  • Bilgisayar Mühendisliği Bölümü
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Population-based Local Search Algorithms for Cross-domain Search

Thumbnail

Göster/Aç

Ana Makale (1.469Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2025

Yazar

Kiraz, Berna
Ergin, Fatma Corut

Üst veri

Tüm öğe kaydını göster

Künye

KİRAZ, Berna & Fatma Corut ERGİN. "Population-based Local Search Algorithms for Cross-domain Search". Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi, 31.1 (2025): 86-97.

Özet

Population-based local search is a meta-heuristic algorithm combining the principles of the population-based search and the local search. This study presents an extensive comparison of two population-based local search approaches, specifically, the steady state memetic algorithm (SSMA) and a population-based iterated local search (PILS). To the best of our knowledge, PILS is proposed first for cross-domain search. Both approaches are implemented in Hyper-heuristics Flexible Framework (HyFlex) which contains different operators for different problem domains. The operators used in PILS and SSMA are the ones defined in HyFlex and the operator selection is done using two heuristic selection methods, namely, Simple Random and Reinforcement Learning with Tournament selection. The performance of the proposed methods with the selection methods is assessed over nine problem domains in HyFlex. The results reveal the success of the presented approaches for the cross-domain search.
 
Popülasyona dayalı yerel arama, popülasyona dayalı arama ve yerel aramanın ilkelerini birleştiren meta-sezgisel bir algoritmadır. Bu çalışma, iki farklı popülasyona dayalı yerel arama yaklaşımının kapsamlı bir karşılaştırmasını sunmaktadır: kararlı durum memetik algoritma (SSMA) ve popülasyona dayalı iteratif yerel arama (PILS). PILS, bildiğimiz kadarıyla, alanlar arası arama için ilk önerilen yöntemdir. Her iki yaklaşım da farklı problem alanları için farklı operatörler içeren Hyper-heuristics Flexible Framework (HyFlex) üzerinde uygulanmıştır. PILS ve SSMA'da kullanılan operatörler, HyFlex'te tanımlanan operatörlerdir ve bu operatörler arasından seçim yapmak için Basit Rastgele ve Turnuva seçimi ile Pekiştirmeli Öğrenme yöntemleri kullanılmaktadır. Önerilen yöntemlerin her iki seçim yöntemiyle performansı HyFlex' teki dokuz farklı problem üzerinden değerlendirilmiştir. Sonuçlar, alanlar arası arama için sunulan yaklaşımların başarılı olduğunu ortaya koymaktadır.
 

Kaynak

Pamukkale Üniversitesi Mühendislik Bilimleri Dergisi

Cilt

31

Sayı

1

Bağlantı

https://pajes.pau.edu.tr/jvi.aspx?un=PAJES-90390
https://hdl.handle.net/11352/5718

Koleksiyonlar

  • Bilgisayar Mühendisliği Bölümü [214]
  • TR-Dizin İndeksli Yayınlar / TR-Dizin Indexed Publications [672]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.