• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Machine Learning Approaches for Predicting Diesel engine Emissions Using Waste tire Pyrolysis Oil – Hydrotreated Vegetable Oil Blends

Thumbnail

Göster/Aç

Ana Makale (1.286Mb)

Erişim

info:eu-repo/semantics/embargoedAccess

Tarih

2025

Yazar

Mickevicius, Tomas
Matijosius, Jonas
Varuvel, Edwin Geo
Js, Femilda Josephin
M, Jerome Stanley
Zvirblis, Tadas
Anka, Ferzat
Kilikevicius, Arturas

Üst veri

Tüm öğe kaydını göster

Künye

MICKEVICIUS, Tomas, Jonas MATIJOSIUS, Edwin Geo VARUVEL, Femilda Josephin JS, Jerome Stanley M, Tadas ZVIRBLIS, Ferzat ANKA & Arturas KILIKEVICIUS. "Machine Learning Approaches for Predicting Diesel engine Emissions Using Waste tire Pyrolysis Oil – Hydrotreated Vegetable Oil Blends". Process Safety and Environmental Protection, 204 (2025): 1-23.

Özet

This experimental study explores the use of blended Tire Pyrolysis Oil (TPO) with Hydrotreated Vegetable Oil (HVO) as potential substitutes for diesel fuel in compression ignition engines. The assessment of the investigation on the three blends of TPO with HVO as the varying %vol addition as 15 %, 30 % and 60 % under various engine load conditions. The performance and emission characteristics are compared with the neat fuels like diesel oil, HVO and neat TPO for conclusive results. Further to enhance the analysis and reduce dependency on extensive physical testing, machine learning (ML) techniques were employed to model and predict engine out emissions. Four machine learning models including Linear Regression (LR), k-Nearest Neighbors (KNN), Random Forest (RF), and Gradient Boosting (GB) were developed to estimate these outputs. The performance of the models was evaluated using R², Root Mean Square Error (RMSE), and Mean Absolute Error (MAE). Among the models, Random Forest achieved the lowest RMSE, MAE values and highest R² across the target variables, followed by Gradient Boosting, while KNN and Linear Regression demonstrated relatively lower R² and higher errors. The findings emphasize the strength of ensemble-based models in accurately predicting engine behaviour under varying fuel conditions. The experimental results shows that the engine operations with HVO as the working fuel has improved brake thermal efficiency of 30.8 % with reduced emission formation. The addition of 15 % vol of TPO with HVO also has the improved thermal efficiency of 28.2 % and with the consistent increase of TPO with HVO as 30 and 60 %vol the brake thermal efficiency tends to decrease. The integration of experimental data with machine learning provides a valuable framework for optimizing alternative fuel usage in diesel engines, contributing to more sustainable energy systems.

Kaynak

Process Safety and Environmental Protection

Cilt

204

Bağlantı

https://hdl.handle.net/11352/5734

Koleksiyonlar

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.