• Türkçe
    • English
  • Türkçe 
    • Türkçe
    • English
  • Giriş
Öğe Göster 
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
  •   DSpace@FSM Vakıf
  • Merkezler / Centers
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM)
  • Öğe Göster
JavaScript is disabled for your browser. Some features of this site may not work without it.

Analyzing EEG Data During Opium Addiction Treatment Using a Fuzzy Logic-Based Machine Learning Model

Thumbnail

Göster/Aç

Ana Makale (2.248Mb)

Erişim

info:eu-repo/semantics/openAccess

Tarih

2025

Yazar

DehAbadi, Elnaz
Anka, Fateme Ayşin
Vafaei, Fateme
Lanjanian, Hossein
Nematzadeh, Sajjad
Afshar, Mahsa Torkamanian
Aghahosseinzargar, Nazanin
Kiani, Farzad
Abharian, Peyman Hassani

Üst veri

Tüm öğe kaydını göster

Künye

DEHABADI, Elnaz, Fateme Ayşin ANKA, Fateme VAFAEI, Hossein LANJANIAN, Sajjad NEMATZADEH, Mahsa Torkamanian-AFSHAR, Nazanin AGHAHOSSEINZARGAR, Farzad KİANİ & Peyman Hassani ABHARIAN. "Analyzing EEG Data During Opium Addiction Treatment Using a Fuzzy Logic-Based Machine Learning Model". Frontiers Psychiatry, 16 (2025): 1-15.

Özet

Background: Reliable noninvasive tools for assessing substance abuse treatment and predicting outcomes remain a challenge. We believe EEG-derived complexity measures may have a direct link to clinical diagnosis. To this aim, our study involved a psychological investigation of four groups of current and former male opium addicts. Furthermore, we propose a machine learning (ML) model incorporating fuzzy logic to analyze EEG data and identify neural complexity changes associated with opium addiction. Method: Male participants were categorized into four groups: active addicts, those with less than three days of treatment, those treated for over two weeks, and healthy controls. Psychological assessments evaluate mental health and addiction status. EEG data were collected using standardized electrode placement, preprocessed to remove noise, and analyzed using the Higuchi Fractal Dimension(HFD) to quantify neural complexity. Feature selection methods and ML classifiers were applied to identify key patterns distinguishing addiction stages. Results: Distress levels varied significantly across groups and persisted postquitting. Addicts exhibited poorer general health than controls, though treatment led to improvements. Significant differences in neural complexity were observed in brain regions linked to attention, memory, and executive function. The ML model effectively classified addiction stages based on EEG-derived features. Conclusion: This study demonstrates the potential of ML and fuzzy logic in assessing addiction-related neural dynamics, offering insights into opioid addiction’s pathophysiology. The findings highlight the promise of brainwavebased biomarkers for personalized addiction diagnosis and treatment monitoring.

Kaynak

Frontiers Psychiatry

Cilt

16

Bağlantı

https://www.frontiersin.org/journals/psychiatry/articles/10.3389/fpsyt.2025.1635933/full
https://hdl.handle.net/11352/5737

Koleksiyonlar

  • Scopus İndeksli Yayınlar / Scopus Indexed Publications [756]
  • Veri Bilimi Uygulama ve Araştırma Merkezi (VEBİM) [23]
  • WOS İndeksli Yayınlar / WOS Indexed Publications [661]



DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 




| Politika | Rehber | İletişim |

DSpace@FSM

by OpenAIRE
Gelişmiş Arama

sherpa/romeo

Göz at

Tüm DSpaceBölümler & KoleksiyonlarTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına GöreBu KoleksiyonTarihe GöreYazara GöreBaşlığa GöreKonuya GöreTüre GöreDile GöreBölüme GöreKategoriye GöreYayıncıya GöreErişim ŞekliKurum Yazarına Göre

Hesabım

GirişKayıt

İstatistikler

Google Analitik İstatistiklerini Görüntüle

DSpace software copyright © 2002-2015  DuraSpace
İletişim | Geri Bildirim
Theme by 
@mire NV
 

 


|| Politika || Rehber || Kütüphane || FSM Vakıf Üniversitesi || OAI-PMH ||

FSM Vakıf Üniversitesi, İstanbul, Türkiye
İçerikte herhangi bir hata görürseniz, lütfen bildiriniz:

Creative Commons License
FSM Vakıf Üniversitesi Institutional Repository is licensed under a Creative Commons Attribution-NonCommercial-NoDerivs 4.0 Unported License..

DSpace@FSM:


DSpace 6.2

tarafından İdeal DSpace hizmetleri çerçevesinde özelleştirilerek kurulmuştur.