IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received February 2, 2022, accepted March 17, 2022, date of publication March 28, 2022, date of current version April 4, 2022.

Digital Object Identifier 10.1109/ACCESS.2022.3162878

Software Project Failure Process Definition

ALi NiZAM

Department of Software Engineering, Fatih Sultan Mehmet Vakif University, 80523 istanbul, Turkey

e-mail: ali.nizam @fsm.edu.tr

ABSTRACT Many researchers have attempted to identify the factors behind software project failures and
their solutions from various perspectives. However, systematic and integrated process definitions of failure
as process models for success are lacking. This study aims to build a process definition for software project
failure as an anti-pattern by identifying the main phases and their relationships in terms of team behavior.
We researched software engineering literature and case studies to gather information about critical incidents
and repeating behaviors of teams in failed projects into a novel dataset. Grounded theory was employed
to build a theoretical foundation for failure phase definitions from the collected data. The design structure
matrix and Bayesian belief network were used for the quantitative assessment of the transitions between
phases. The results revealed that common behavioral patterns occurred in approximately 89 percent of the
case studies, supporting the decision to consider software project failure as a process. The proposed failure
process definition has a simple structure that uses everyday concepts for phase names and reveals the critical
behaviors leading a software project to failure Thus, it provides critical insights for software professionals,
non-technical stakeholders, and managers to evaluate the progress of their projects and design strategies to
avoid failure.

INDEX TERMS Bayesian belief network, grounded theory, qualitative process analysis, software process

models.

I. INTRODUCTION

Successful software projects provide a competitive advantage
to enterprises; therefore, the management of software and
information technology projects is critical to the success
of the organization and the careers of participating team
members [1]. Conversely, the failure causes financial and
moral loss, reduces or destroys expected gains [2]. Despite
their importance and the spent resources, software project
failure rates have remained high during the last ten years. The
Standish Group CHAOS report found that the overall success
rate was only 29 percent, while challenged projects accounted
for 59 percent, and canceled projects for 19 percent; for big
projects, the success rate is much lower and likely to be about
10 percent [3].

Many studies have investigated the top causes of fail-
ure as poor requirements, inadequate resources, unrealistic
schedules, poor planning, unidentified risks [4], lack of top
management commitment [5], inappropriately used technol-
ogy [6], unrealistic or unarticulated project goals, inaccurate
estimates, poorly defined system requirements, poor status

The associate editor coordinating the review of this manuscript and
approving it for publication was Ricardo Colomo-Palacios.

34428

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/

reporting, and unmanaged risk [7]. Management techniques
are generally the main cause of problems [8], [9]. Further-
more, the specific characteristics of a project, an organiza-
tion, or an external environment play an essential role in
failure [10].

From an integrated perspective, project failure is a
combination of several factors and multiple interrelated
problems [9] that can be defined as a mistake chain [8].
However, the causes of failure are often investigated in
isolation [11]. The influence of failure factors on the result
of a project and the relationship between them were evalu-
ated by conducting root cause analysis (RCA) [11], logistic
regression [12], grounded theory, and latent Dirichlet alloca-
tion [13]. Researchers have generally focused on defining the
causal relationships between failure factors, not explaining
the team behaviors behind the failure factors. Thus, some
researchers argue that existing critical success (or failure)
factor models have less concentration on communication,
team, project management, and product-related issues [14].

The goal of this study is to identify patterns of team behav-
ior in the context of software project failure in contrast to pre-
vious studies. The main research questions (RQ) explored are:
“RQI: What are the critical and recurring team behaviors

VOLUME 10, 2022

https://orcid.org/0000-0002-5613-0686

A. Nizam: Software Project Failure Process Definition

IEEE Access

that lead a software project to failure phase by phase?” and
“RQ2: What are the transition patterns between the failure
phases?” . Critical team behavior is a type of behavior that
leads a project to fail by initiating an important deviation,
preventing a solution, and negatively affecting overcoming
events.

Because the reasons for failures create a complex network
and it is difficult to address a software project failure in a
linear and normative way, we first focused on identifying
important team actions leading a software project to failure,
and all the relationships between these actions. Then, for sim-
plicity, we logically categorized team behaviors into failure
phase definitions and highlighted the most likely transition
between the phases to form a process definition.

The main contribution of this study is to formulate software
project failure in the form of a process created by team behav-
iors behind failure factors. Identifying distinct breakpoints in
the failure process supports more effectively measuring and
controlling project progress and product quality and deter-
mining the future risks arising from the actions of the software
team. In addition, we constructed a dataset that describes
the relationship between software project failure factors and
team behaviors (actions). Our failure process definition that
is expressed in basic terms of behaviors supports simplifying
communication between software developers, non-technical
managers, and other stakeholders while enabling a concise
description of higher-level concepts [11].

The remainder of this paper is organized as follows.
Section 2 introduces related works from the software project
management literature and defines the gap in the existing
literature. Section 3 presents the methodology to define the
failure process. Section 4 contains a systematic analysis of
private and public case study results via qualitative grounded
theory, quantitative design structure matrix (DSM), and
Bayesian belief network (BBN) methods. Section 5 answers
the research questions and discusses the results, the structure
of the overall failure process, and threats to validity. Finally,
Section 6 presents conclusions and future work.

Il. BACKGROUND AND RELATED WORKS

In this section, the focus is to investigate existing work on
failure progress in software projects and the prediction meth-
ods of software project failure to establish the justification
for the contribution of the systemic failure process definition.
We discussed basic concepts of existing methods such as risk
management, root cause analysis, and anti-patterns that were
used to define or evaluate software project progress and their
effectiveness when failure arises in a project.

A. EXISTING FAILURE PROCESS DEFINITIONS

The mistake chain, which can be accepted as a process,
is one of the main causes of failure for various project types.
Mittelstaedt [8] defined mistake chains as follows: “The root
causes of project failure depend on similar human behav-
iors, biases, and blind spots”. He identified sequences of
mistake chains as follows: “1) An uncared initial problem,

VOLUME 10, 2022

often minor in isolation, 2) Subsequent problems that increase
the effect of the initial problem. 3) Inept corrective effects,
4) Disbelief that accelerates seriousness of the situation,
5) Generally, an attempt to hide the truth while attempting
to remediate, 6) Sudden recognition that the situation is out
of control 7) Finally, a total failure that causes significant
loss”. However, software engineering requires a specific def-
inition of the failure process, because it differs from other
engineering disciplines owing to its essential difficulties such
as complexity, relevance, mutability, and invisibility [15].

Even if there was no general process definition for software
project failure, the researchers aimed to reveal notable phased
definitions in the evaluation of failure. Jones stated [16] that
“most troubled projects, the trigger point for alerting clients
and senior management occurs when a late milestone...is
missed and. . . several well-known software disasters were not
anticipated until the very day of expected deployment! Obvi-
ously, technical personnel and even many low-level managers
were aware that things were not going according to plan, but
the political pressures. . . are often so strong that no one wants
to give bad news... When the problems finally become so
serious that they can no longer be ignored, it may well be
too late ..., and hence the project is canceled or terminated”.

Glass combined some previous work [6] to create a process
that consists of crunch mode, death march, and runaway
steps. Boddie [17] defined crunch mode as there due to a
threat reaching its original target, and a project team was
working very hard to overcome this dilemma. Yourdon [18]
defined death march as the parameters of a project that
exceeded the norm by at least 50 percent, and the project had
a nearly impossible schedule. KPMG characterized runaway
projects as failing significantly to achieve their objectives,
exceeding their original budget by at least 30 percent [19],
and getting development efforts out of control.

The existing identification of failure modes provides
important insights for understanding the status of software
projects. However, even their literary values, these terms do
not directly reflect the attitudes and behaviors of a team
against deviation; their process definitions are independent
and do not cover the whole process; some of their phases are
intersected.

B. FAILURE PREDICTION METHODS

Failure prediction methods identify the factors and risks that
affect a project’s success or failure by reviewing and inves-
tigating resources and analyzing the relationship between
predictors and outcomes [12]. A causal model for software
project failure should completely determine the causal rela-
tionships affecting failure [11]. RCA allows the identification
of causal relationships between the detected causes of project
failures in basic or categorized forms as shown in Fig. la
and 1b [20]. It produces root causes related to all process
areas such as implementation, requirements, management,
software testing, and deployment [11], [21]. Additionally,
logistic regression is another method to help project managers
to assess expected failures [12].

34429

IEEE Access

A. Nizam: Software Project Failure Process Definition

Root cause

Cause
symptom

Root cause

Failure

Bridge causel

Process areal
Local cause2
Local cause3

Bridge cau 597
Bridge cause3

Process area2
Local causel

Bridge cause4

Bridge cause5

Process area3
Local cause4

Cause
symptom

Root Cause

(a) Basic

FIGURE 1. RCA methods.

In risk analysis and RCA, the root causes at the deep-
est level may or may not be related to team behaviors,
although some studies categorize failure factors and examine
management as a separate category [11]. Additionally, one
team action may drive and assign to many failure factors.
Thus, the identification of team behavior behind the failure
factor and the connections between team behaviors leading a
project to failure become unclear and ambiguous. For exam-
ple, Boehm’s top ten risk items contain many risks (failure
factors) such as unrealistic schedules and budgets, develop-
ing the wrong functions or user interface, gold-plating, and
straining computer-science capabilities [22]. The definitions
of root causes are also similar such as unrealistic project
objectives, team technical problems, lack of user involve-
ment, requirement instability, problematic technology,
etc. [12].

Another key aspect driving our research is that existing
failure models, such as RCA-based models, have complex
representations for non-technical people as shown in Fig. 1.
Whereas, process quality models should provide explicit
viewpoints and meet the needs of diverse stakeholder groups
for a wide range of applications [23]. Management looks
at the connection between the team structure and the prob-
lem domain to understand who owned the problem instead
of complex explanations [24]. Thus, a new perspective is
required to enlighten managers and customers about the
progress of failure in software projects.

C. ANTI-PATTERN DEFINITIONS AND FAILURE PROCESS

Failure process definition can be considered an anti-pattern.
Anti-patterns provide a common vocabulary for identifying
problems, defective processes, and implementations. They
provide useful insights into understanding the relationship
between failure and its causes. However, from an integra-
tion perspective, common anti-patterns were presented as
lists where they were isolated from one another [11]. The
relationship between project progress and the time when
the anti-patent symptoms appear is not clear except for rare

34430

}

|____Bridge cause7

\

Bridge couseﬁ—’

Process aread
Local cause5

(b) Categorized [11]

and independent examples such as escalation commitment
(continue against failure) [25], fire drill (forcing immediate
delivery after slack time) [11], and death march (trying to
catch impossible schedule) [18].

lll. METHODOLOGY

We aimed to identify and extract behavioral failure patterns
from case study data. Thus, we required methods to col-
lect case study data, detect important patterns in the data,
and qualitatively and quantitatively identify and analyze the
connections between them. The main steps of the proposed
methodology are shown in Fig. 2: (1) We researched relevant
literature to derive the structured questions. (2) For qualitative
analysis, we collected private and public case study data and
analyzed them with grounded theory to identify team behav-
iors behind failure factors for building the failure process
definition. We investigated teams’ responses to each failure
factor by examining failure causes and their context until
reaching the team behaviors behind failure. It allows further
analysis to understand how teams’ failure responses were
represented in terms of concepts, categories, and relations.
(3) We applied quantitative research based on DSM and BBN
to evaluate the transitions between phases.

We reviewed the literature and noted the similarities
between case studies and anti-patterns with our code defi-
nitions to validate our findings. We also benefited from the
definition, causes, symptoms, and consequences of similar
anti-patterns [26] such as escalation failure and death march.

A. QUALITATIVE ANALYSIS

Our grounded theory-based case study data analysis con-
tains the following interweaving steps: building memo ques-
tions from a literature analysis, theoretical sampling, constant
comparison, coding, and saturation [27]. We preferred the
Straussian grounded theory approach because it allowed for
a general idea of where to begin, forcing the theory with
structured questions [28], providing rigorous procedures, and
techniques for analyzing interpretive case study data [29].

VOLUME 10, 2022

A. Nizam: Software Project Failure Process Definition

IEEE Access

Initiating

Research

A 4 Grounded theory
Literature Data analysis
search, building

collection) (Theoretical 'Codingk >

memo from private _sempling
questions case studies The constant
comparative
method
Literature
Search

FIGURE 2. The main steps of our methodology.

We evaluated the results employing credibility, transferabil-
ity, conformability, and dependability criteria [30], [29].

Corbin and Strauss [31] claimed that some surveys in the
literature supported researchers to initiate a research project
with some knowledge of the phenomenon being studied.
Moreover, literature can be used to derive questions that
largely determine the research methods and establish the
boundaries of the study. These questions represent memos
in grounded theory and are called memo questions. We built
memo questions and linked them to pertinent expressions [32]
to identify the context of team activities. The answers to the
memo questions referred to previous and subsequent actions
against failure factors that identified the code, connections,
and categories.

Theoretical sampling [31] supports identifying what data
to collect, where to find it, when it appears, and the selection
of data sources when choosing the sample case studies in our
study [33]. Thus, we filtered out case studies whose chrono-
logical order was unreachable because of the order required
to detect transitions between phases. Therefore, because the
failure process should be traceable and auditable to identify
key points, we excluded failed projects that even if careful
change management procedures were conducted, a suddenly
appeared internal or external factor such as unexpected cus-
tomer or manager decision led to a huge deviation and termi-
nation.

To detect failure factors, we accepted each person involved
or contributing to the software project progress as a member
of the software team, including the project manager, devel-
Oper, sponsor, customer, or top manager.

The definition of software project failure is also important
to choose appropriate case studies; however, it is imprecise
and varied. Project management literature has many different
failure definitions [34]. Generally, they are based on the
degree of match or mismatch between design and reality of
process and objectives [35]. We accepted the definition of
failure as failed software projects are over budget and not

VOLUME 10, 2022

collection
from public
case studies

Qualitative Analysis

The definition of
software failure
process

Quantitative
evaluation of the
process definiton

Grounded theory
Data analysis

Theoretical
sampling
The constant

comparative
method

Design Structure
Matrix, Beyesian
Belief Network

Quantitative
evaluation

delivered on time [36]; they do not create the impact they
should have delivered [37], abandoned, or canceled with loss
of investment [38]; they do not create client benefits or are
excessively deviated from its budget and schedule [39].

Grounded theory-based data investigation involves
incremental and iterative applications of three types of cod-
ing: open (identifying, naming, categorizing, and describ-
ing phenomena), axial (relating codes to each other), and
selective (choosing a core category and relating it to other
categories) [29]. We evaluated raw data of one case study
on a sentence-by-sentence basis in each iteration to derive
codes, concepts, and categories. The main steps are as shown
in Fig. 3: (1) detecting the sections where visibility
and scale of deviation vary considerably and match-
ing them corresponding memo questions, (2) creating
open codes using key points representing team behavior in
the sections (3) creating axial code by categorizing open
codes logically, and (4) building failure definition based on
chronology in selective coding.

Each iteration investigating a case study requires the con-
stant comparison and update of incidents, codes, and cat-
egories with previously collected data [40]. The constant
comparison allowed us to control the data collection process
and ensure the consistency of codes with data and other codes.

We considered different perspectives and actions of team
members involved or contributing to the project’s progress to
conduct an integral and persuasive analysis [40]. We chose
the most dominant action as a key point leading a project to
failure even if there were objections from other members.

In open coding, we detected key points and assigned them
with labels to build codes by summarizing incidents via team
behaviors; the labels make concepts that support capturing
and collecting the main objects, instances, incidents, and
actions on the data [41].

The outcome of open coding was categories that supported
the identification of concepts from the data by grouping
similar concepts into categories or subcategories. We noted

34431

IEEE Access

A. Nizam: Software Project Failure Process Definition

The Chronological History of a Case Study

&

The request for proposal document ... The large payments
attracted many vendors to submit proposals without
considering the uncertainties in the requirements.

It seemed that they thought that they could do everything for
this price..

]» Key point ;-

«— MQ,
Rejecting deviation
(Open code »)

MQ;,

Losing control
(Open code n.)

MQ4

However, an external audit revealed ... several deviations ...
However, it seemed no change occurred in the belief of
the internal project team’s manager

about progress after receiving the report.

The customer forced the vendors to add additional [E— »
resources to the team. The vendor's team seemed to have]»"i Key point ..,
lost control of the project and was busy haggling

with the changes or additional re quests initiated by the
customer.

The project due date was missed but the business goal was
still valid, and the project team continued to work
tirelessly to finish and to delay the failure :I’
fornearly two years. ...

Key point 1~

From the vendor’s perspective, the project was a complete |
failure because the customer stopped supporting]— ffffffffff Key point ,,
the project and initiated a lawsuit based on the penalties in

the contract.

FIGURE 3. Analyzing case studies data with grounded theory.

the chronology of events to use the order of codes in axial
and selective coding. In axial coding, the open codes were
compared and categorized into code groups by looking for
similarities and differences to construct axial codes. In selec-
tive coding, core categories defined by axial codes and their
chronological order were refined to the conceptual and nar-
rative description of the storyline of the failure process defi-
nition.

Theoretical saturation was evaluated to determine whether
adding new data resulted in an update of the established
theory [42] by examining the pattern of emergence of new
concepts and transitions throughout the research process [23].
We calculated and visualized the cumulative sum of newly
identified concepts and transitions to control saturation.

We first applied grounded theory to information from
private failed case studies in various software development
areas using memo questions. For enhancing credibility and
decreasing subjectivity, we wrote down the speeches and
evaluations of team members or reporters directly by avoiding
interpretation. The main parameters used to define key failure
incidents and behaviors were as follows:

o Important event: A critical incident, behavior or action
creates a milestone in project progress toward failure
by affecting the overcoming events. The attributes of
the event are the cause of failure, the initiator, the time
of the event, the next event, and the problem scale.
The sources of information were meetings, reports, and
emails.

o The ratio between the actual and expected number of
users: Significantly lower numbers than the expected
user numbers indicate failure. We evaluated high user
numbers considering user satisfaction and productivity,

34432

«— MQ4

»in the requirements

~—Key point ;%

----»failure

The Open Codes from
the Other Case Studies

)
1
1
1

Ignoring the uncertainties

(Open code 4)

Continuing against

(Open code 1)

@ Categorization

Stopping support
(Open code ,)

because a manager may force end-users to use the sys-
tem unwillingly. The sources of information were on-
site observations, meetings, and system-usage logs.

o User satisfaction: It demonstrates the quality and con-
tent of interaction between the information produced by
the system and the recipients [35]. On-site observations
and meetings were the main resources for understanding
a user’s satisfaction level.

o Developer viewpoint: On-site observations and meetings
were the main sources for obtaining a detailed under-
standing of developers’ perspectives on project progress.

After completing the private case study analysis, further
sampling was required to fill the gaps in the credibility
and transferability of the emergent theory. This led to the
public case study search and analysis. The data collection
methods were different for private and public case studies;
thus, we conducted the grounded theory coding process for
them separately. However, we employed the same parameters
and methods in analysis to maintain the standard grounded
theory approach, which required an integrated coding
process.

The public case study analysis was provided to improve
the credibility and transferability of previous codes by satu-
rating them using well-known failed and overbudget software
project lists [6], [43]. To increase credibility, we gathered
data from multiple sources such as public records, articles,
newspapers, published reports, and official statements [44].
To ensure transferability and applicability, we evaluated the
generalization of the findings by comparing the outcomes
of private and public case studies and checking whether the
same results were obtained in other contexts with similar
properties and codes [29].

VOLUME 10, 2022

A. Nizam: Software Project Failure Process Definition

IEEE Access

B. QUANTITATIVE ANALYSIS

Modeling a process requires decomposing the process into
steps, determining transitions among the steps, and analyzing
the sequence of the steps into a process flow [45]. The quan-
titative assessment of process definition via DSM and BBN
unveiled the probability of relationships between core cate-
gories in selective coding. The inputs of quantitative assess-
ment were the codes, occurrence numbers, and chronological
order of codes identified by grounded theory. The output was
the transition patterns between failure phases.

DSM is a system modeling tool that can represent sys-
tem elements and their relationships in a compact way that
highlights important patterns in the data [45]. It is a square
matrix with identical row and column labels. A quantification
scheme (not categorical) and time-based DSM were utilized
for analysis. In time-based DSMs, the ordering of rows and
columns indicates a flow-through time: upstream activities
in a process precede downstream activities. In our work,
the DSM represented the general characteristics of the sys-
tem model via the chronological order of phases. However,
an additional model was required to express the probabilistic
relationships in the entire system.

Thus, we employed the BBN to represent the condi-
tional dependence of phases in a directed graph that encodes
probabilistic relationships among variables of interest [46].
A BBN utilizes a probability table that is associated with each
node, providing the probabilities of each state of a variable
and it provides a graphical representation of the causal struc-
ture using directed acyclic graphs [47].

IV. RESULTS

This section reports the grounded theory analysis results
of case studies, followed by quantitative assessment results
of the DSM and BBN methods. Four questions arise from
the literature when considering team actions against failure,
as shown in Table 1. The literature suggests a categoriza-
tion of problems associated with their visibility and scale as
minor, medium, and large [8], [16], [17]. Thus, the first three
questions represent the team’s answers to the progress of a
problem as initiating, getting bigger, and serious or out of
control. The fourth question address the actions of software
teams when a failure has a high probability or is inevitable.

A. PRIVATE CASE STUDIES FOR INITIAL PROCESS
DEFINITION

We gathered chronological failure data and critical incidents
from seven failed software projects from different business
sectors and software types to evaluate the failure progress
in software projects. The context of these case studies varies
from in-house software development to an extensive range of
software applications such as document management, proto-
typing, and outsourcing. Private case study histories, match-
ing memo questions, open codes, and resources are briefly
presented in Supplementary Material A. The projects’ general
attributes are the goal, team structure, and team experience.

VOLUME 10, 2022

TABLE 1. Failure progress and memo questions.

Scale of Visibility of ~ Resources Memo questions (MQs)
deviation ~ deviation for failed software
projects
Small visible to the the minor problem [8], (MQ!1) What is the primary
team as a minor missing trigger point action of a software team
problem [16] against problems that initiate
failure?
Medium visible to the accelerating (MQ2) How does a software

team as a serious seriousness [8], team react to a deviation
problem problems finally when they understand its
become so serious [16] seriousness?

(MQ3) How do a software

progress) customers, late to solve the team behave when they miss
managers, and problem [16], a threat an important milestone or
other to reaching the original finish date?
stakeholders target [17]

Devastating Visibility of a impossible schedule (MQ4) What are the major
high failure [18], runaway projects actions leading to the
possibility [19] termination of a project?

Large (hurt Visible to out of control 8], too

Additionally, the approximate values of numerical attributes
were given as team size, duration, budget, and company size.
Analysis software (ATLAS.ti) was used to map the logically
related open codes to the code groups and code groups to
axial codes. More details of the coding activities for private
case studies can be found in Supplementary Material. B. The
axial code analysis is presented in Table 2. The real names of
the companies and projects were omitted to protect company
information.

Open codes represent the direct behavioral responses of a
team to a failure factor. The mental preparation and interme-
diate processes were not the main focus of interest. For exam-
ple, in case study 1, MQ1 related to the problem expression
as “The large payments attracted many vendors to submit
proposals without considering inconsistencies.”. It can be
evaluated as “wishful thinking” or ““desire for money” for
the vendor. However, our open code definition was a combi-
nation of the failure factor or problem source as ‘‘inconsis-
tencies in analysis” and the team action against the problem
as “ignoring”’.

In axial coding, we attempted to assign the most compre-
hensive term covering specific variants of team behaviors to
axial codes by considering the occurrence frequencies and
logical relations between open codes. The open code count
refers to the sum of the occurrence of open codes in case study
analysis. It was calculated from Table 1-7 in Supplementary
Material A.

Table 3 contains the transitions between axial codes that
were obtained from the notes in the open code section of
Tables 1-7 in Supplementary Material A. The number in a
cell corresponds to the next axial code. The occurrence rate
was calculated by dividing the number of occurrences by the
total private case studies number (7). EP was omitted because
all failed projects ended up with the same phase.

The selective coding revealed the generic process and
phase definitions via axial codes. The narrative description of
the storyline: The failure process starts with small slippages
of the tasks; however, the team ignores warnings or devia-
tions. As the harmful effects of deviations appear, the team

34433

IEEE Access

A. Nizam: Software Project Failure Process Definition

TABLE 2. Open and axial codes in private case studies.

Open code (occurrence number) Axial code

Comment

Ignoring deviation (1)

Ignoring the problems (1)

Ignoring the requirements difficult to implement (1)
Ignoring the uncertainties in the requirements (1)
Ignoring warnings (3)

Rejecting deviation (3)

Rejecting the problems (2)

Getting into panic (4)

Losing control (2)

Blaming team members (1)

Firing or departure of the key members (1)
Continuing against failure (2)

Escalating failure (4)

Losing customer interest (3) Losing support (LS)
Losing support (2)

Stopping support (3)

Failed partially (4) Ending project (EP)

Terminating with failure (3)

Ignoring warnings (IW)

Rejecting deviations (RD)

Getting into panic (GIP)

Escalating failure (EF)

Ignorance is the keyword expressing a team’s action when they
encounter a problem the first time or early stages. We chose
“warnings” because it is a high-frequency and inclusive term. The
alternative names can be “Ignoring deviation” or “Ignoring early
warning signs”.

The deviation is an umbrella term that refers to many negative
situations including time delays, quality issues, and unsatisfied
customer expectations.

The usage frequency of getting into panic is higher than the other
codes.

Escalating failure provides a clearer definition of continuing
investment in failed projects.
The effect of losing support is detrimental to projects.

“End” is an umbrella term covering termination with failure and
partial failure by exceeding limits.

TABLE 3. The phase transition matrix for private case studies.

w RD GIP EF LS

Case study 1 2 3 4 5 6
Case study 2 2 3 4 6

Case study 3 3 4 2 5 6
Case study 4 3 4 5 6
Case study 5 2 3 4 5 6
Case study 6 5 6
Case study 7 2 4 5 3 6
The occurrence rate % 100 71,4 85,7 85,7 85,7

tries to reject the deviation first; however, when the deviation
exceeds the limits, panic begins to catch the plan. After the
committed finish date is missed, the project team attempts
to save investments and continue the project against negative
conditions. When corrective actions are not implemented on
time, stakeholders lose interest and decrease their support;
thus, termination is inevitable.

The cumulative sum of identified new concepts for each
case study diminished quickly, as shown in Fig. 4. This indi-
cates the maturity of the proposed model was high for phase
definitions; therefore, adding further case studies would be
unlikely to discover significant numbers of additional con-
cepts [23]. However, the number of transitions between
phases (axial codes) was more gradual, indicating a lower
level of theoretical saturation. Thus, we further examined the
transitions in evaluating the combined codes of private and
public case studies using DSM and BBN methods.

B. SATURATING THE PHASE NAMES AND TRANSITIONS
WITH PUBLIC CASE STUDIES

The main purpose of the public case study analysis with
grounded theory was to further saturate the initial codes
using the well-known, failed, and overbudget software project
case study lists [6], [43]. Additionally, we searched the
databases IEEE Xplore, ScienceDirect, ACM, and Google

34434

20
15
10
5 ;
Cumulative sum of new concepts
0 ==@== Cumulative sum of new transitions

CS1 (CS2 (CS3 CSs4 (CS5 Cse6 CS7

FIGURE 4. The saturation of concepts.

Scholar using the following combinations of keywords: soft-
ware project failure, failed case study, failure process, phase
of failure, and failure phase. The data collection principles
were (1) using multiple sources of evidence, (2) creating a
case study dataset, and (3) validating data [48]. The literature
search resulted in a collection of more than 100 academic
research papers, resources, and books, including case stud-
ies of software project failures. We investigated 15 projects
with a failure history in the case study resources, as shown
in Table 4. To represent the relationship between the gathered
information and its context, a full set of data and transitions
are provided in Supplementary Materials C and D, not to
overextend the article.

Nine new open codes emerged from public case studies.
The conceptual meaning of these open codes allowed us
to map them to the existing axial codes as (IW - misun-
derstanding requirements, starting with unreachable require-
ments, ignoring constantly changing requirements, starting
with known problems, ignoring too long plan issue),
(RD - hiding deviation, continue as there is no problem,
underestimating deviation), and (EF - indecision to continue
or terminate, slipping scope or schedule constantly). Because
the usage frequency of losing control was higher in public

VOLUME 10, 2022

A. Nizam: Software Project Failure Process Definition

IEEE Access

TABLE 4. The open codes in public case studies.

w RD Losing control (LC) EF LS EP

The CONFIG project misunderstanding requirements rejecting deviation, blaming (sales) team continuing against failure losing support [49], terminating with
[49], starting with known hiding deviation [25] [25] [49] losing customer failure [25]
problems [25] interest [25]

Denver Airport misunderstanding (importance and hiding deviation [50] got into panic mode, continuing against failure losing support [6]. partially failed

Baggage handling significance) requirements [6] (customer and vendor) [S1], indecision to [52]

system blame each other [6] continue or terminate [6]

continue as there is no
problem [6]

Florida fiasco(welfare) starting with unreachable

requirements [6], ignoring the

inconsistencies in the requirement

analysis [53]

ignoring constantly changing underestimating deviation

requirements [6] [6]

starting with known problems [6] hiding deviation [6]
rejecting deviation [54]

FAA Automation
System
Confirm project

Kapor ON location starting with known problems [6] underestimating deviation
Project [6]

continue as there is no
problem [6] [55]

New Jersey Division
of Motor Computer

ignoring warnings [6]

losing control, firing, or
departure of the key
members [6]

losing control[6]
[6]
blame team members, escalating failure[6]
firing or departure of
the key members [54]
losing control, conflict

in team [6]

slipping schedule
constantly (further and
further) [6]

escalating failure [6]

continue against problems

losing support [6]

losing (partner)
support [6]

losing (partner)
support [6]

partially failed
[6]
totally failed [6]

terminated with
a lawsuit [6]

totally
terminated [6]

totally failed
(rewriting) [6]

System
BMBC e-procurement ignoring warning (signs) [56] Rejecting deviation [56] conflict in team [56] continue against losing (user failed partially
project failure[56] manager) support [56]
[56]

ignoring warning (signs) [49]. hiding deviation [7] losing control[57] , slipping schedule losing (major totally failed

Taurus project [58] constantly [57], continue supplier support) [60]
against failure [59] [57]

BOLIT ignoring the inconsistencies in the continue as there is no escalating failure [61] totally failed

requirement analysis [61] problem [61] [61]
CSIO portal ignoring unreachable requirements hiding deviation[64]. losing control [65] indecision to continue or losing support (a totally failed

[62], ignoring too long plan issue terminate [65], escalating funding partners) [66]

[63] failure [66] [64], stopping

support [66]
IS project in British ignoring warning (signs) [10] hiding deviation [10]. firing or departure of indecision to continue or losing customer totally failed
Utilities the key members, terminate [10] interest [10] [10]
losing control [10].

NHS Connecting for ignoring the inconsistencies in the rejecting deviation [68] continuing (some losing support [67] partially failed
Health requirement analysis [67], ignoring module) against failure [67]

warning (signs) [68] [69]
Polsag ignoring warning (about hiding deviation [70], conflict in team [70] escalating failure [71] losing support (of a totally failed

feasibility) [70] [71] supplier) [72] [71]
Cover Oregon ignoring warning [73], [74] rejecting deviation [75], conflict in team [73] slipping scope or losing support [76] totally failed

hiding deviation [74] schedule constantly [73] [76]

case studies, and it had a more comprehensive meaning to
map with conflict in team, it was replaced with getting into
panic.

Table 5 contains the transition information and occurrence
rates of public case studies. The number of new open codes
was relatively low. This indicates that our process definition
was near saturation; therefore, an additional case study anal-
ysis would not produce significant differences.

C. QUANTITATIVE EVALUATION

The occurrence rates of the phases are shown in Fig. 5.
They are higher than 80 percent for private or public
case studies on average. The only exception is the occur-
rence of rejecting deviations phase in private case study
analysis.

The total number of transitions between the phases is given
by the DSM in Table 6. The matrix as a quantification scheme
facilitates weighting the interactions relative to each other.
n;; is the total number of transitions from phase i to phase j
and reveals the other phases followed by i. The marks below
the diagonal are called feedback marks and the marks above
the diagonal are called feedforward.

VOLUME 10, 2022

TABLE 5. The phase transition matrix for public case studies.

IW RD LC EF 1S
The CONFIG project 2 3 4 5 6
Denver Airport Baggage handling system 2 3 4 5 6
Florida fiasco(welfare) 2 3 6
FAA Advanced Automation System 2 3 4 5 6
Confirm project 2 3 4 5 6
Kapor ON location Project 2 4 5 3 6
New Jersey Division of Motor new 2 4 6

Computer System

BMBC e-procurement project 2 3 4 5 6
Taurus project 2 3 4 5 6
BOLIT 2 4 6
CSIO portal 2 3 5 6
IS project in British Utilities 2 3 5 6 4
NHS Connecting for Health 2 4 5 6
Polsag 3 4 2 5 6
Cover Oregon 2 3 4 5 6
The occurrence rate percentage 100 100 80.0 93.3 80.0

The probabilistic relationships of the transitions between
the phases were evaluated using the BBN. The standard
BBN representation contains a detailed table with each
node providing the probabilities of each state of a variable.

34435

IEEE Access

A. Nizam: Software Project Failure Process Definition

100

100 90.9 90.9
81.8 81.8
50 M Private
Public
0 Combined
W RD LC EF LS

FIGURE 5. The total occurrence rates for case studies.

TABLE 6. DSM for transitions between phases.

W RD LC EF LS EP
W 0 18 3 0 1 0
RD 0 0 13 7 0 0
LC 0 2 0 12 3 1
EF 0 0 2 0 14 4
LS 0 0 0 1 0 17
EP 0 0 0 0 0 0

However, for simplicity, we represent only the joint probabil-
ity of transition on the edges calculated using the following
equations:

Probability of node i = P; = o) (1)
n
Probability of transitionij = PTj; = %)
i

where 7 is the total number of case studies and #; is the num-
ber of occurrences of phase i. n;; is the number of transitions
from phase i to phase j, and ¢; is the total number of transitions
initiated from phase i. PT ;) is the joint probability of a
transition from phase i to phase j which is defined as:

PT(ij/i) = P (ij) xP(i) 3

Fig. 6 shows the BBN analysis results of the proposed
failure process model. The nodes in the graph are phase
names, while the edges represent the joint probabilities of the
transitions between phases. The transition with the highest
probability value between two phases is highlighted by a thick
line to illustrate its importance. The feedback transitions are
represented by dashed lines.

V. DISCUSSION
In this section, we discuss the outcomes of our work con-
cerning the research questions and compare our findings with
those of previous studies on project failure. We have defined
the phase details and highlighted the threats to the validity of
our conclusions.

A. ANSWERING THE RESEARCH QUESTIONS
RQ1: What are the critical and recurring team behaviors that
lead a software project to failure phase by phase?

Answer 1: Our findings suggest that similar team behaviors
are perceived in failed software projects, whereas the appar-
ent failure symptoms are different. The phase definitions

34436

created by grouping and categorizing codes have high occur-
rence rates in the case studies as shown in Fig. 6. On average,
similar phase definitions appeared in 89 percent (standard
deviation 6.8 percent) of case studies.

RQ?2: What are the transition patterns between the failure
phases?

Answer 2: The joint probability of transitions indicates
that the order of IW — RD — LC — EF — LS — EP is
more frequent than that of other paths as shown in Fig. 6.
The probabilities in this path have at least twice as much
frequency as backward and forward jumps although some
have low probability values. Thus, we accept this as the
primary path for defining the failure process.

Our findings contribute to previous studies on building
an integrated software-specific failure process model with
standard phase and transition definitions. Table 7 summarizes
the intersections and shared concepts between existing defi-
nitions from the literature and the proposed failure process;
they indicate a reasonable consistency of content. However,
existing software-specific anti-patterns have isolated defini-
tions and the general failure process does not include some
of them. For example, escalating failure and losing support
phases did not exist in the mistake chain [8] while rejecting
deviations was emphasized in the passive form as the mum
effect [77] or hiding the truth [8]. The central role of these
differences is the essential difficulties of software develop-
ment that make measuring the correlation between outcomes,
objectives, and progress difficult especially, for non-technical
people. In other engineering disciplines, such as civil or
mechanical, the team can see the whole product at once;
hiding problems is not easy and may not result in extreme
situations [78]. In a construction project, the visibility of
the outcome causes a delay to be realized almost immedi-
ately [79]. Minimal technical knowledge can be sufficient to
evaluate the overall progress.

B. DEFINITION OF SOFTWARE FAILURE PROCESS
The main outcome of this study is the definition of a process
model for failed software projects. At the beginning of the
process, early warning signs arise; however, there is no visible
indication of failure. The project team does not understand
the overall problem and ignores warnings. In the rejecting
deviations phase, the significant deviation is visible to the
team; however, the majority of members do not accept the
importance of the problem and tend to mask the problem
hoping to overcome it without attracting the scrutiny of exec-
utives and other stakeholders [2]. When deviation from the
schedule exceeds the nominal limits, the team loses control
and unconsciously attempts to rescue the project. Escalating
failure occurs when the team continues to invest even through
negative events and missed results. After a long unproductive
escalation cycle, the project loses the support of clients or
sponsors, causing its termination.

We prefer the term ““the software project failure process”
to express the process leading a project to failure. Another
possible term may be inspired by nature, such as the waterfall

VOLUME 10, 2022

A. Nizam: Software Project Failure Process Definition

IEEE Access

0,05
0.32
0.05
0.14 0.18
M—0.14
v vY AL

@0.82@0.59 LC 0.55 EF 0.64 0.77@

i P b |

: ' ¥ !

temmm 0.09------- b 0.09------ it 0.05-------+
FIGURE 6. The probabilities of the transitions between failure phases.

TABLE 7. The proposed and existing failure phase definitions.
w > RD > LC > EF > LS

Mittelstaedt [8]
Jones [16]

Glass [6]
(combined phases)

Keil and Mann [25]
Blumen [37]

disbelief seriousness attempt to hide the truth

missed alert

crunch mode[17], death march[18]

sudden recognition out of control

no one wants to give bad news until the very day of the expected deployment

runaway projects[19]

escalating failure

lost the support

process as “‘the swamping process’”. The more you struggle
unconsciously, the more you sink until you drown. More
importantly, you will lose your chance to rescue. ““Sink” was
also used to identify runaway projects in the literature [6].

1) IGNORING WARNINGS

This phase refers to a situation in which the software team
underestimates or ignores warning signs and the initial emer-
gence of deviations, leading to project failure in the future.
Brooks [15] asked the question, “How does a large software
project get to be one year late?”” and answered it as “One day
at a time! Incremental slippages on many fronts eventually
accumulate to produce a large overall delay”. All project
tasks are linked in a complex decision network; thus, total
failure can be initiated by the first wrongdoing in the tasks
and/or decisions that aggregate and accumulate into more
critical problems [24].

Early warning signs arise as predictions, cautions, or alerts
to possible or impending problems. They provide an assess-
ment of risks, future difficulties, and failures during project
development [1]. They do not directly represent a major crisis
but indicate a need for further investigation to prevent the
start of a mistake series [10]. Lui and Chan [79] reported
that the dynamic and multifactorial nature of many software
project problems may prevent immediate or even timely iden-
tification of root causes. Moreover, the intangible nature of
software makes it difficult to estimate the proportion of work
that has been completed [77]. Project managers are often
missing the appropriate response to early warnings in many
cases [80].

VOLUME 10, 2022

2) REJECTING DEVIATIONS

In this phase, the project team intentionally rejects problems
or withholds bad news about the project status, as the scale
and visibility of deviation increase. The reluctance of peo-
ple to report bad news about a troubled project is called
the “Mum Effect” [77]. This could be a major contributor
to the phenomenon of uncontrollable (runaway) software
projects [81]. As a passive version of rejecting deviation,
it may disrupt communication between team members [82]
and occurs very frequently [82], [83]. Snow et al. [83]
claimed that biased, generally optimistic status reporting
occurs in more than 60 percent of projects.

3) LOSING CONTROL

The losing control phase represents the unconscious attempts
of a software team to rescue a project after skipping an
important milestone or finish date. It is similar to the crunch
mode reported in the literature. Huang and Han [84] stated
that as the date to deliver the slipping milestone approached,
teams tried to compensate for the lost time by forcing a team
to work more days and hours per week, developers sleeping
on the floor for days on end. The exhaustion leads to more
bugs that need to be fixed and causes wasting even more time.
The delay may affect the management to initiate multiple
forms of coping strategies aiming for the same goal [85]:
ownership problems, no owner or more than one owner can
create political fighting and convert a small problem into a
big issue; moreover, team members may be firefighting with
or even withholding their problems without considering how
these problems might create other problems [79]. The team

34437

IEEE Access

A. Nizam: Software Project Failure Process Definition

members stop moving according to the plan and try to catch
the schedule unconsciously by focusing on only their tasks.

4) ESCALATING FAILURE

Keil and Mann’s [25] description of the escalating failure is
parallel to our findings as “continued commitment against
negative information” and “‘an escalation cycle starts fol-
lowing a series of negative project events and the commit-
ment of more resources when decision-makers neither decide
to abandon the project nor take corrective actions despite
unambiguous negative feedback™. Keil et al. [86] used it to
explain ‘“‘troubled projects were continued instead of being
abandoned or redirected”. According to Keil and Mann [87],
30-40 percent of all information system (software) projects
involve some degree of project escalation, the average esca-
lation time is 21 months, and less than 25 percent of the esca-
lated projects are completed or implemented. The causes of
escalation are more than simple mismanagement of projects
and can be psychological, social, and organizational [87].

5) LOSING SUPPORT

This phase refers to losing support of customers, managers,
or other stakeholders because the development process does
not meet their requirements and expectations on time. The
key reason is the loss of sponsorship support in 80 percent
of project abandonment [37] similar to our findings. The
management of stakeholders leads a project to success or
failure [14]. The withdrawal of a sponsor or stakeholder
already contributing to the project has a more detrimental
effect on perceptions of project success than starting without a
sponsor [88]. Without the strong support of the organization’s
managers and sponsor commitment, developers perceive little
chance of project success [88], [89].

6) ENDING PROJECT

If there is no way for a project to be completed, the termi-
nating project is natural and even healthy [90]. In this phase,
the business goal shifts to terminate the project with minimal
losses. The primary actions are preparing a termination plan,
managing public relations crises, and learning from failures.

C. THREATS TO VALIDITY

In this section, we address increasing the validity of our work
by minimizing the risk of potential threats. For dependability,
we conducted a systematic and well-documented research
process. Therefore, we have provided the raw data and anal-
ysis procedures with the intermediate results of the qual-
itative and quantitative analyses to ensure confirmability.
Other researchers can evaluate the code, phase, and transition
definitions from different perspectives using raw data and
analysis notes to unveil new concepts.

The credibility of this research inherits some inter-
nal limitations from the grounded theory. Grounded the-
ory might restrict the potential of the data and the
creativity of the qualitative analyst, and it may be
influenced by the personality, experience, or perspectives of

34438

researchers [41], [91]. To overcome this bias and increase
credibility, we collected data from multiple sources using
various methods. Individuals and companies withhold infor-
mation about their failed project with feeling guilt or shame;
hence, some details may have been missed. To overcome this
problem, we examined 22 case studies (private 7 + public 15)
that exceeded the ideal limit to build a theory defined
between 4 and 10 [92]. In addition, we researched many
papers or websites for each case study to gather data for
cross-validation.

A threat to the transferability of our process definition
was the effect of bias in case study selection and the data
collection process. We increased diversity by researching
projects of different scales and domains to mitigate this threat.
Moreover, we saturated our process definition by adding
public case study data and comparing them with private case
study data. The comparative analysis facilitates a decrease
in a threat related to the generalizability of the findings that
appears the selected sample of case studies is not sufficient
to represent different perspectives to be generally applica-
ble [23]. We assessed that the effect of this threat decreased
significantly in the final version of the process definition as
relatively few new concepts arose in public case studies.

Another validation technique for results discovered using
grounded theory is a literature search [41]. The parallel
definitions in the literature and our process model indicate
consistency between existing studies and our process model
as demonstrated in Sections 5.1 and 5.2. The existing studies
contain similar observations, symptoms, and outcomes; how-
ever, their definitions are isolated and not integrated into a
failure process.

Employing an additional analytic strategy can produce
credible and dependable research findings [91]. Thus,
we supported grounded theory with quantitative DSM and
BBN approaches. The quantitative methods highlighted the
main path of failure process definition by analyzing the
transition probabilities. However, the quantitative evaluation
also revealed a significant number of feedbacks and feedfor-
ward jumps between RD, LC, and EF phases that may have
weakened the failure process definition and external validity.
The main reason behind this was the difficulty in finding
the full chronology of failure stories because many studies
have investigated failure causes in isolation [11]. Moreover,
people, projects, and organization-specific reasons can dif-
ferentiate the failure process. The exceptional feedback and
feedforward transitions also appear in other development
processes, and their probability values are too small to distort
the failure process definition.

There are some other limitations to our study. First, infor-
mants’ perceptions may have biased the collected data sam-
ples; although, we preferred to use multiple data sources for
each case study. However, the addition of more failure cases
may not have eliminated the perceptual effect. To reduce the
effect of this limitation, surveys can be conducted to define
the failure process through expert validation. Second, because
there is a lack of research and datasets directly investigating

VOLUME 10, 2022

A. Nizam: Software Project Failure Process Definition

IEEE Access

the relationships between team actions behind failure factors
in the software engineering literature, for some case studies,
we had to collect data from unusual sources such as news-
papers or websites for scientific research to generate a novel
chronological dataset on software project failure. This may
have adversely affected the quality of this study.

VI. CONCLUSION

The principal contribution of this study is a failure process
model for software projects. The model reveals critical team
behaviors and transitions among them leading a software
project to failure. It was derived from a comprehensive case
study search, qualitative grounded theory analysis, quantita-
tive DSM, and BBN methods.

The important theoretical and practical implications of
the results can raise the awareness of researchers, software
professionals, managers, and other stakeholders to evaluate a
more realistic picture of project failures, failure milestones,
real progress, and estimate future incidents. From a theoreti-
cal perspective, the researcher can use the methods, interme-
diate analysis notes, and dataset in our study as inputs for new
research to further understand software failures and develop
methods for successful projects. Additionally, thinking fail-
ure as a process can create a scientific background to develop
and offer models for improving process monitoring and con-
trol tools. From a practical perspective, our process model,
which has simple behavioral definitions helps software teams
and managers to identify and manage the deviations and
risks in software projects. Thus, they can handle and prevent
the spread of failures in a project’s progress by an in-depth
understanding of initiating team action.

Although we believe that the results of this study will
be useful to understand the progress of a failed software
project, there are some requirements for further research on
failure in software development process methodologies and
phases. The first improvement would be to match failure
phases with their solutions that support important insights
for identifying solution methods. The second improvement
is systematically elaborating the connection of the software
project failure process to various software development pro-
cess models, such as waterfall, incremental, agile models,
and their phase definitions. Another future improvement is
a domain-specific analysis of the failure process. There are
important domains that can be investigated specifically, such
as the back-end, system, and real-time software. Additionally,
predictive modeling using computational intelligence for the
effects of failure factors, personal roles, and personal charac-
teristics on failure phases can reveal useful concepts. It will be
interesting to extend this study by examining the subphases
of the primary failure phases.

REFERENCES

[1]1 L. A. Kappelman, R. McKeeman, and L. Zhang, “Early warning signs
of it project failure: The dominant dozen,” Inf. Syst. Manage., vol. 23,
no. 4, pp.31-36, Sep. 2006, doi: 10.1201/1078.10580530/46352.23.
4.20060901/95110.4.

VOLUME 10, 2022

[2]

3

—

[4

=

[5

—

[6]
[71

[8

—

9

—

(10]

(11]

[12]

[13]

(14]

[15]
[16]
[17]
(18]
(19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

C. L. Tacovou and A. S. Dexter, “Turning around runaway information
technology projects,” California Manage. Rev., vol. 46, no. 4, pp. 68—88,
Jul. 2004, doi: 10.2307/41166275.

G. Standish, “Chaos report on software projects,” Project Smart, Standish
Group, Boston, MA, USA, 2014.

Project Management Solutions. (2011). Strategies for Project Recovery:
A PM Solutions Research Report. [Online]. Available: https://www.
pmsolutions.com/audio/Strategies_for_Project_Recovery_Research_
Report.pdf

R. Schmidt, K. Lyytinen, M. Keil, and P. Cule, “Identifying software
project risks: An international Delphi study,” J. Manage. Inf. Syst., vol. 17,
no. 4, pp. 5-36, 2001, doi: 10.1080/07421222.2001.11045662.

R. L. Glass, Software Runaways: Monumental Software Disasters.
Upper Saddle River, NJ, USA: Prentice-Hall, 1998.

R. N. Charette, “Why software fails [software failure],” IEEE Spectr.,
vol. 42, no. 9, pp. 42-49, Sep. 2005, doi: 10.1109/MSPEC.2005.1502528.
R. Mittelstaedt, Will Your Next Mistake Be Fatal: Avoiding the Chain of
Mistakes That Can Destroy Your Organization. Upper Saddle River, NJ,
USA: Prentice-Hall, 2004.

J. Verner, J. Sampson, and N. Cerpa, “What factors lead to software project
failure?”” in Proc. 2nd Int. Conf. Res. Challenges Inf. Sci., Jun. 2008,
pp. 71-80, doi: 10.1109/RCIS.2008.4632095.

G. Pan, S. L. Pan, and M. Newman, ‘“Managing information technology
project escalation and de-escalation: An approach-avoidance perspective,”
IEEE Trans. Eng. Manage., vol. 56, no. 1, pp. 76-94, Feb. 2009.

T. O. A. Lehtinen, M. V. Mintyld, J. Vanhanen, J. Itkonen, and
C. Lassenius, ““Perceived causes of software project failures—An analysis
of their relationships,” Inf. Softw. Technol., vol. 56, no. 6, pp. 623-643,
2014, doi: 10.1016/.infsof.2014.01.015.

M. A. Ibraigheeth and S. A. Fadzli, “Software project failures prediction
using logistic regression modeling,” in Proc. 2nd Int. Conf. Comput. Inf.
Sci. (ICCIS), Oct. 2020, doi: 10.1109/ICCIS49240.2020.9257648.

D. A. Tamburri, F. Palomba, and R. Kazman, “Success and failure in
software engineering: A followup systematic literature review,” IEEE
Trans. Eng. Manag., vol. 68, no. 2, pp.599-611, Apr. 2021, doi:
10.1109/TEM.2020.2976642.

G. P. Sudhakar, “A model of critical success factors for software projects,”
J. Enterprise Inf. Manage., vol. 25, no. 6, pp.537-558, 2012, doi:
10.1108/17410391211272829.

B. F. P. Brooks, The Mythical Man-Month, Essays on Software Engineer-
ing. Reading, MA, USA: Addison-Wesley, 1995.

C. Jones, “Patterns of large software systems: Failure and success,” Com-
puter, vol. 28, no. 3, pp. 86-87, Mar. 1995.

J. Boddie, Crunch Mode: Building Effective Systems on a Tight Schedule.
Englewood Cliffs, NJ, USA: Prentice-Hall, 1987.

E. Yourdon, Death March. Upper Saddle River, NJ, USA: Prentice-Hall,
2004.

Report on IT Runaway Systems, KPMG, Amstelveen, The Netherlands,
1995.

M. Jgrgensen, T. Dybd, K. Liestgl, and D. I. K. Sjgberg, “Incorrect
results in software engineering experiments: How to improve research
practices,” J. Syst. Softw., vol. 116, pp. 133-145, Jun. 2016, doi:
10.1016/j.s5.2015.03.065.

P. Savolainen, J. J. Ahonen, and I. Richardson, “Software development
project success and failure from the supplier’s perspective: A systematic
literature review,” Int. J. Project Manage., vol. 30, no. 4, pp. 458-469,
May 2012, doi: 10.1016/j.ijproman.2011.07.002.

B. W. Boehm, “Software risk management: Principles and practices,”
IEEE Softw., vol. 8, no. 1, pp. 32-41, Jan. 1991, doi: 10.1109/52.62930.
T. A. Kroeger, N. J. Davidson, and S. C. Cook, “Understanding the
characteristics of quality for software engineering processes: A grounded
theory investigation,” Inf. Softw. Technol., vol. 56, no. 2, pp. 252-271,
2014, doi: 10.1016/j.infsof.2013.10.003.

T. N. Nguyen, “Software project management towards failure avoid-
ance,” in Proc. 9th Int. Conf. Softw. Eng. Appl. (ICSOFT-EA), Aug. 2014,
pp. 560-567.

M. Keil, “Pulling the plug: Software project management and the problem
of project escalation,” MIS Quart., vol. 19, no. 4, pp. 421-447, 1995, doi:
10.2307/249627.

1. Stamelos, ““Software project management anti-patterns,” J. Syst. Softw.,
vol. 83, no. 1, pp. 5259, Jan. 2010, doi: 10.1016/j.j35.2009.09.016.

B. G. Glaser and A. L. Strauss, The Discovery of Grounded Theory:
Strategies for Qualitative Research. London, U.K.: Aldine, 1967.

34439

http://dx.doi.org/10.1201/1078.10580530/46352.23.4.20060901/95110.4
http://dx.doi.org/10.1201/1078.10580530/46352.23.4.20060901/95110.4
http://dx.doi.org/10.2307/41166275
http://dx.doi.org/10.1080/07421222.2001.11045662
http://dx.doi.org/10.1109/MSPEC.2005.1502528
http://dx.doi.org/10.1109/RCIS.2008.4632095
http://dx.doi.org/10.1016/j.infsof.2014.01.015
http://dx.doi.org/10.1109/ICCIS49240.2020.9257648
http://dx.doi.org/10.1109/TEM.2020.2976642
http://dx.doi.org/10.1108/17410391211272829
http://dx.doi.org/10.1016/j.jss.2015.03.065
http://dx.doi.org/10.1016/j.ijproman.2011.07.002
http://dx.doi.org/10.1109/52.62930
http://dx.doi.org/10.1016/j.infsof.2013.10.003
http://dx.doi.org/10.2307/249627
http://dx.doi.org/10.1016/j.jss.2009.09.016

IEEE Access

A. Nizam: Software Project Failure Process Definition

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]
[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

P. E. W. Onions, “Grounded theory applications in reviewing knowledge
management literature,” in Proc. Leeds Metrop. Univ. Innov. North Res.
Conf., 2006, pp. 1-20.

M. Halaweh, C. Fidler and S. McRobb, “Integrating the grounded the-
ory method and case study research methodology within IS research: A
possible ‘road map,” in Proc. 29th Int. Conf. Inf. Syst., 2008. [Online].
Available: http://aisel.aisnet.org/icis2008/165

Y. S. Lincoln and E. G. Guba, Naturalistic Inquiry. Newbury Park, CA,
USA: Sage, 1985.

J. Corbin and A. Strauss, Basics of qualitative research: Techniques and
procedures for Developing Grounded Theory. Newbury Park, CA, USA:
Sage, 2014.

S. Friese. (2009). Working Effectively With Atlas.TI. [Online]. Available:
http://downloads.atlasti.com/library/Friese_2009-09_1.pdf

W. D. Fernandez, “The grounded theory method and case study data
in IS research: Issues and design,” in Information Systems Foundations
Workshop: Constructing and Criticising. Canberra, QLD, Australia: ANU
Press, 2004, pp. 43-59.

J. K. Pinto and S. J. Mantel, Jr., “The causes of project failure,”
IEEE Trans. Eng. Manag., vol. 37, no. 4, pp. 269-276, Nov. 1990, doi:
10.1109/17.62322.

A. Hawari and R. Heeks, “Explaining ERP failure in a developing coun-
try: A Jordanian case study,” J. Enterprise Inf. Manage., vol. 23, no. 2,
pp. 135-160, Feb. 2010, doi: 10.1108/17410391011019741.

J. Mishra, Software Engineering. New Delhi, India: Pearson, 2011.

R. Blumen, “Jirgen Laartz and Alexander Budzier on why large IT
projects fail,” IEEE Softw., vol. 33, no. 4, pp. 117-120, Jul./Aug. 2016,
doi: 10.1109/MS.2016.102.

R. Frese and V. Sauter, “Improving your odds for software project suc-
cess,” IEEE Eng. Manag. Rev., vol. 42, no. 4, pp. 125-131, Fourth 2014,
doi: 10.1109/EMR.2014.6966952.

M. Jgrgensen, “A survey on the characteristics of projects with success
in delivering client benefits,” Inf. Softw. Technol., vol. 78, pp. 83-94,
Oct. 2016, doi: 10.1016/j.infsof.2016.05.008.

A.D. Andrade, “Interpretive research aiming at theory building: Adopting
and adapting the case study design,” Qualitative Rep., vol. 14, no. 1,
pp. 42-60, 2009.

H. K. Gidey, D. Marmsoler, and J. Eckhardt, “Grounded architectures:
Using grounded theory for the design of software architectures,” in
Proc. IEEE Int. Conf. Softw. Archit. Workshops (ICSAW), Apr. 2017,
pp. 141-148, doi: 10.1109/ICSAW.2017.41.

R. Verdecchia, P. Kruchten, P. Lago, and 1. Malavolta, “Building and
evaluating a theory of architectural technical debt in software-intensive
systems,” J. Syst. Softw., vol. 176, Jun. 2021, Art. no. 110925, doi:
10.1016/j.jss.2021.110925.

Wikipedia. (2020). List of Failed and Overbudget Custom Software
Projects. Accessed: Feb. 5,2020. [Online]. Available: https://en.wikipedia.
org/wiki/List_of_failed_and_overbudget_custom_software_projects

A. Alami, “The UK e-borders project failure,” PM World J., vol. 5, no. 3,
pp. 1-14, 2016.

T. R. Browning, “Applying the design structure matrix to system decom-
position and integration problems: A review and new directions,” IEEE
Trans. Eng. Manag., vol. 48, no. 3, pp.292-306, Aug. 2001, doi:
10.1109/17.946528.

D. Heckerman, “Bayesian networks for data mining,” Data Mining Knowl.
Discoveryvol. 1,no. 1, pp. 79-119, 1997, doi: 10.1023/A:1009730122752.
N.-T. Nguyen, Q.-T. Huynh, and T.-H.-G. Vu, “A Bayesian critical path
method for managing common risks in software project scheduling,” in
Proc. 9th Int. Symp. Inf. Commun. Technol. (SoICT), 2018, pp. 382-388.
J. M. Verner and L. M. Abdullah, “Exploratory case study research: Out-
sourced project failure,” Inf. Softw. Technol., vol. 54, no. 8, pp. 866—886,
2012, doi: 10.1016/j.infsof.2011.11.001.

K. Lyytinen and D. Robey, “Learning failure in information systems
development,” Inf. Syst. J., vol. 9, no. 2, pp. 85-101, Apr. 1999, doi:
10.1046/j.1365-2575.1999.00051 .x.

J. Swartz, “Simulating the Denver airport automated baggage system,”
Dr. Dobb’s J., vol. 22, no. 1, pp. 56-62, 1997.

S. Dalal and R. Chhillar, “Case studies of most common and severe types of
software system failure,” Int. J. Adv. Res. Comput. Sci. Softw. Eng., vol. 2,
no. 8, pp. 341-347, 2012.

K. R. Linberg, “Software developer perceptions about software project
failure: A case study,” J. Syst. Softw., vol. 49, no. 2, pp. 177-192, 1999,
doi: 10.1016/S0164-1212(99)00094-1.

34440

(53]

(54]

[55]

[56]

[57]

(58]

(591

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

(68]

[69]

[70]

(711

(72]

(73]

[74]

(751

S. C. Rollins and R. Lanza, Essential Project Investment Governance
and Reporting: Preventing Project Fraud and Ensuring Sarbanes-Oxley
Compliance. FL, USA: J Ross Publishing, 2005.

E. Oz, “When professional standards are lax: The CONFIRM failure and
its lessons,” Commun. ACM, vol. 37, no. 10, pp. 29—43, Oct. 1994, doi:
10.1145/194313.194319.

P. A. Strassmann, The Business Value of Computers: An Executive’s Guide.
New Canaan, CT, USA: Information Economics Pr, 1990.

G. S. C. Pan, S. L. Pan, and D. Flynn, “De-escalation of com-
mitment to information systems projects: A process perspective,’
J. Strategic Inf. Syst., vol. 13, no. 3, pp.247-270, Sep. 2004, doi:
10.1016/j.jsis.2004.08.001.

H. Drummond, “The politics of risk: Trials and tribulations of the taurus
project,” J. Inf. Technol., vol. 11, no. 4, pp. 347-357, Dec. 1996.

H. Drummond, “Are we any closer to the end? Escalation and the case
of Taurus,” Int. J. Project Manage., vol. 17, no. 1, pp. 11-16, 1999, doi:
10.1016/S0263-7863(97)00074-4.

M. Keil and D. Robey, “Turning around troubled software projects: An
exploratory study of the deescalation of commitment to failing courses
of action,” J. Manage. Inf. Syst., vol. 15, no. 4, pp. 63-87, 1999, doi:
10.1080/07421222.1999.11518222.

M. H. B. Afzal, “Large scale IT projects: Study and analysis of failures and
winning factors,” IETE Tech. Rev., vol. 31, no. 3, pp. 214-219, May 2014,
doi: 10.1080/02564602.2014.906862.

T. Cegrell. (2010). BOLIT. [Online]. Available: https://cio.idg.se/2.1782/
1.326833/darfor-floppade-projektentre-svenska-it-fiaskon-under-lupp

C. Harris. (2006). 2006 LT. FOCUS: Reality Check. Accessed:
Dec. 5, 2019. [Online]. Available: https://web.archive.org/web/
20150402130915/http://www.canadianunderwriter.ca/news/2006-i-t-
focus-reality-check/1000202197/

K. Westera, “CSIO portal update: Focus on Critical Mass,” Canadian
Underwriter, 2002.

D. Glasgow. (2006). CSIO Portal Abandoned Due to Lack of Insurer
Support and Availability of Other Solutions. Insurance Portal. [Online].
Available: https://insurance-portal.ca/article/csio-portal-abandoned-due-
to-lack-of-insurer-support-and-availability-of-other-solutions/

Canadian Underwriter. (2003). CSIO Role in Future Portal Development
Uncertain. Can. Underwriter. Accessed: Jan. 29, 2020. [Online]. Available:
https://www.canadianunderwriter.ca/insurance/csio-role-in-future-portal-
development-uncertain-1000008354/

CSIO Closes Door on Portal Project, Can. Underwriter, Toronto, ON,
Canada, 2006.

G. Dhillon and J. Backhouse, “‘Risks in the use of information technology
within organizations,” Int. J. Inf. Manage., vol. 16, no. 1, pp. 65-74, 1996,
doi: 10.1016/0268-4012(95)00062-3.

R. Francis, Independent Inquiry Into Care Provided by Mid Staffordshire
NHS Foundation Trust January 2005-March 2009, vol. 375. London, U.K.:
The Stationery Office, 2010.

G. Southon, C. Sauer, and K. Dampney, ‘‘Lessons from a failed information
systems initiative: Issues for complex organisations,” Int. J. Med. Inform.,
vol. 55, no. 1, pp. 33-46, 1999, doi: 10.1016/S1386-5056(99)00018-0.

S. Lauesen, “Damage and damage causes in large government IT
projects,” IT Univ. Copenhagen, Copenhagen, Denmark, 2018.

Extract From the Report to the Public Accounts Committee on the Dan-
ish Police’s IT System POLSAG March, Rigsrevisionen, Copenhagen,
Denmark, 2013.

I. Reporters. (2012). Outsourcer Facing Challenges on Multiple Fronts.
Computerworld U.K. Accessed: Dec. 21, 2019. [Online]. Available:
https://www.cio.co.U.K /it-strategy/large-csc-project-dumped-amid-
growing-crisis-3335166/

D. Lane. (2014). ‘We Look Like Fools:’ A History of Cover Oregon’s
Failure. Investigators2. Accessed: Jan. 9, 2020. [Online]. Available:
https://web.archive.org/web/20150128010047/http://www.katu.com/news/
investigators/We-look-like-fools-A-history-of-Cover-Oregons-failure-
239699521 .html

N. Budnick. (2016). Documents Damning on Oracle’s Cover Oregon
Release. Portland Tribune. Accessed: Jan. 9, 2020. Accessed: Jan. 9, 2020.
[Online]. Available: https://pamplinmedia.com/pt/9-news/294405-
171739-documents-oracle-doesnt-want-you-to-read-

G. Friedman. (2016). Cover OregonKitzhaber, Oracle Respond to
Report Critical of Cover Oregon. Statesman J. Accessed: Jan. 9, 2020.
[Online]. Available: https://www.statesmanjournal.com/story/news/
politics/2016/05/25/congressional-panel-releases-critical-cover-oregon-
report/84901000/

VOLUME 10, 2022

http://dx.doi.org/10.1109/17.62322
http://dx.doi.org/10.1108/17410391011019741
http://dx.doi.org/10.1109/MS.2016.102
http://dx.doi.org/10.1109/EMR.2014.6966952
http://dx.doi.org/10.1016/j.infsof.2016.05.008
http://dx.doi.org/10.1109/ICSAW.2017.41
http://dx.doi.org/10.1016/j.jss.2021.110925
http://dx.doi.org/10.1109/17.946528
http://dx.doi.org/10.1023/A:1009730122752
http://dx.doi.org/10.1016/j.infsof.2011.11.001
http://dx.doi.org/10.1046/j.1365-2575.1999.00051.x
http://dx.doi.org/10.1016/S0164-1212(99)00094-1
http://dx.doi.org/10.1145/194313.194319
http://dx.doi.org/10.1016/j.jsis.2004.08.001
http://dx.doi.org/10.1016/S0263-7863(97)00074-4
http://dx.doi.org/10.1080/07421222.1999.11518222
http://dx.doi.org/10.1080/02564602.2014.906862
http://dx.doi.org/10.1016/0268-4012(95)00062-3
http://dx.doi.org/10.1016/S1386-5056(99)00018-0

A. Nizam: Software Project Failure Process Definition

IEEE Access

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

S. Gallaghe. (2014). Oregon Attorney General Sues Oracle for
‘Racketeering Activity’. ArsTechnica. Accessed: Jan. 9, 2020. [Online].
Available: https://arstechnica.com/tech-policy/2014/08/oregon-attorney-
general-sues-oracle-for-racketeering-activity/

H. J. Smith, M. Keil, and G. Depledge, “Keeping mum as the project goes
under: Toward an explanatory model,” J. Manage. Inf. Syst., vol. 18, no. 2,
pp. 189-227, Oct. 2001, doi: 10.1080/07421222.2001.11045677.

S. Ramingwong and L. Ramingwong, “A tale behind mum effect,”
Int. J. Inf. Syst. Project Manage., vol. 1, no. 3, pp.47-58, 2013, doi:
10.12821/ijispm010303.

K. M. Lui and K. C. C. Chan, “Rescuing troubled software projects
by team transformation: A case study with an ERP project,” IEEE
Trans. Eng. Manag., vol. 55, no. 1, pp.171-184, Feb. 2008, doi:
10.1109/TEM.2007.912933.

S. Haji-Kazemi, B. Andersen, and O. J. Klakegg, ‘Barriers
against effective responses to early warning signs in projects,” Int.
J. Project Manage., vol. 33, no. 5, pp.1068-1083, Jul. 2015, doi:
10.1016/j.ijproman.2015.01.002.

B. C. Y. Tan, H. J. Smith, and M. Keil, “Reporting bad news about
software projects: Impact of organizational climate and information
asymmetry in an individualistic and a collectivistic culture,” IEEE Trans.
Eng. Manage., vol. 50, no. 1, pp. 65-77, Feb. 2003. [Online]. Available:
http://search.ebscohost.com/login.aspx ?direct=true&db=epref& AN=
ITEM.EJ.FE.TAN.RBNASP

J. Natovich, R. Natovich, and Z. Derzy, “Withholding bad news in
information technology projects: The effect of positive psychology,” in
Proc. 15th Pacific Asia Conf. Inf. Syst. Qual. Res. Pacific (PACIS), 2011,
pp. 139-150.

A. P. Snow, M. Keil, and L. Wallace, “The effects of optimistic and
pessimistic biasing on software project status reporting,” Inf. Manage.,
vol. 44, no. 2, pp. 130-141, Mar. 2007, doi: 10.1016/j.im.2006.10.009.
S.-J. Huang and W.-M. Han, “Exploring the relationship between software
project duration and risk exposure: A cluster analysis,” Inf. Manage.,
vol. 45, no. 3, pp. 175-182, Apr. 2008, doi: 10.1016/j.im.2008.02.001.
M. S. Granlien, J. Pries-Heje, and R. Baskerville, ‘“Project management
strategies for prototyping breakdowns,” in Proc. 42nd Hawaii Int. Conf.
Syst. Sci. (HICSS), Jan. 2009, pp. 1-10, doi: 10.1109/HICSS.2009.357.
M. Keil, A. Rai, J. Ellen, C. Mann, and G. P. Zhang, “Why software
projects escalate: The importance of project management constructs,”
IEEE Trans. Eng. Manage., vol. 50, no. 3, pp. 251-261, Aug. 2003.

M. Keil and J. Mann, “Understanding the nature and extent of IS project
escalation: Results from a survey of IS audit and control professionals,” in
Proc. 13th Hawaii Int. Conf. Syst. Sci., vol. 3, Jan. 1997, pp. 139-148, doi:
10.1109/HICSS.1997.661582.

VOLUME 10, 2022

[88] J.D.Procaccino,J. M. Verner, S. Overmyer, and M. E. Darter, “Case study:
Factors for early prediction of software development success,” Inform.
Softw. Tech., vol. 44, no. 1, pp. 53-62, Jan. 2002, doi: 10.1016/S0950-
5849(01)00217-8.

[89] D. Viskovic, M. Varga, and K. Curko, “Bad practices in complex IT
projects,” in Proc. 30th Int. Conf. Inf. Technol. Interface (ITI), Jun. 2008,
pp. 301-306, doi: 10.1109/IT1.2008.4588425.

[90] B.Boehm, “Project termination doesn’t equal project failure,” Computer,
vol. 33, no. 7, pp. 94-96, Sep. 2000, doi: 10.1109/2.868706.

[91] M. Mehmetoglu and L. Altinay, ‘‘Examination of grounded theory analysis
with an application to hospitality research,” Int. J. Hospitality Manage.,
vol. 25, no. 1, pp. 12-33, Mar. 2006, doi: 10.1016/j.ijhm.2004.12.002.

[92] K. M. Eisenhardt, “Building theories from case study research,” Acad.
Manage. Rev., vol. 14, no. 4, pp. 532-550, 1989.

ALI NIZAM was born in Fatih, Istanbul, Turkey,
in 1976. He received the B.S. degree in elec-
tronic engineering from Yildiz Technical Univer-
sity, Istanbul, in 1997, and the M.S. and Ph.D.
degrees in electronic-biomedical engineering from
Istanbul Technical University, Istanbul, in 2000 and
2009, respectively.
\ 3 From 1997 to 2011, he worked at ISKI as
‘_ﬁ (a Software Engineer, the Project Manager, and
8 the Management Information Systems Manager.
Since 2011, he has been an Assistant Professor with the Computer Engineer-
ing Department, Fatih Sultan Mehmet Vakif University, Istanbul. He is the
author of four books, one chapter, and seven articles. His research interests
include software engineering, relational database concepts, and data science.
Dr. Nizam’s awards and honors include the Turkey Academy of Science
(TUBA) and the University Textbooks Award Program Best Original Book
Award with Software Project Management Book.

34441

http://dx.doi.org/10.1080/07421222.2001.11045677
http://dx.doi.org/10.12821/ijispm010303
http://dx.doi.org/10.1109/TEM.2007.912933
http://dx.doi.org/10.1016/j.ijproman.2015.01.002
http://dx.doi.org/10.1016/j.im.2006.10.009
http://dx.doi.org/10.1016/j.im.2008.02.001
http://dx.doi.org/10.1109/HICSS.2009.357
http://dx.doi.org/10.1109/HICSS.1997.661582
http://dx.doi.org/10.1016/S0950-5849(01)00217-8
http://dx.doi.org/10.1016/S0950-5849(01)00217-8
http://dx.doi.org/10.1109/ITI.2008.4588425
http://dx.doi.org/10.1109/2.868706
http://dx.doi.org/10.1016/j.ijhm.2004.12.002

