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Koç University, Istanbul, Turkey

* maydin@fsm.edu.tr (MA); akiraz@ku.edu.tr (AK)

Abstract

When combined with computational approaches, fluorescence imaging becomes one of the

most powerful tools in biomedical research. It is possible to achieve resolution figures

beyond the diffraction limit, and improve the performance and flexibility of high-resolution

imaging systems with techniques such as structured illumination microscopy (SIM) recon-

struction. In this study, the hardware and software implementation of an LED-based super-

resolution imaging system using SIM employing GPU accelerated parallel image recon-

struction is presented. The sample is illuminated with two-dimensional sinusoidal patterns

with various orientations and lateral phase shifts generated using a digital micromirror

device (DMD). SIM reconstruction is carried out in frequency space using parallel CUDA

kernel functions. Furthermore, a general purpose toolbox for the parallel image reconstruc-

tion algorithm and an infrastructure that allows all users to perform parallel operations on

images without developing any CUDA kernel code is presented. The developed image

reconstruction algorithm was run separately on a CPU and a GPU. Two different SIM recon-

struction algorithms have been developed for the CPU as mono-thread CPU algorithm and

multi-thread OpenMP CPU algorithm. SIM reconstruction of 1024 × 1024 px images was

achieved in 1.49 s using GPU computation, indicating an enhancement by*28 and*20 in

computation time when compared with mono-thread CPU computation and multi-thread

OpenMP CPU computation, respectively.

1 Introduction

Fluorescence microscopy is a key imaging modality enabling visualization of specific sub-cel-

lular structures that are highlighted with fluorescence markers. In wide-field illumination fluo-

rescence microscopy where the sample is illuminated with a homogeneous intensity
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distribution across the field, the lateral resolution is limited by the diffraction limit ( l

2NA) that

can be brought down to *200 nm at visible wavelengths with the use of high numerical aper-

ture (NA) microscope objectives [1, 2].

In order to achieve resolution improvements beyond the diffraction limit, a number of

super-resolution imaging techniques have been developed, i.e. photoactivated localization

microscopy (PALM), stochastic optical reconstruction microscopy (STORM), stimulated

emission depletion microscopy (STED) and structured illumination microscopy (SIM) [3–7].

In addition to these techniques, the anisotropic resolution of the 2D camera detector can be

used to improve the spatial resolution of microscopic images [8]. In this work, SIM is selected

as the method of choice due to its relative ease of setup and cost-effective nature. Majority of

the SIM setups in the literature employ spatial light modulators (SLMs) [9, 10]. In such an

exemplary system, in order to obtain accurate illumination patterns and phase shifts, sequen-

tial optical components are used together with an SLM [11]. An SLM positioned in the camera

conjugate plane generates the periodic phase patterns. Following the SLM, a liquid crystal

waveplate rotates the laser beams to ensure the beam is s-polarized. Finally, a rotating mask is

used in order to select the desired diffraction orders. In another work, Markwirth et al. devel-

oped a real time image reconstruction system using an SLM. In that work, the setup employed

a graphics processing unit (GPU) for real time image reconstruction, a Fourier mask and a

polarizer were used to select the desired diffraction orders together with an SLM in a SIM

configuration [12]. SIM devices developed using an SLM are relatively expensive and fragile

[13–15].

A common and cost-effective alternative for illumination pattern generation is the digital

micromirror device (DMD) technology. Laser sources have been frequently used with DMDs

for generation of high-contrast illumination patterns in SIM setups [16, 17]. Due to its periodic

surface, the DMD creates a blazed grating effect and generates multiple diffractive orders.�1

diffracted orders are then selected and using a polarizer the equivalence of the polarization of

diffracted beams are ensured. Such setups utilizing lasers as sources require high precision

alignment and are generally costly. In addition, there are low-cost studies that use LED and

DMD instead of laser. Dan et al., performed optical sectioning by reconstructing the raw

images obtained from the sample illuminated with three DMD illumination patterns with 90˚

phase difference between them and obtained a 3D high resolution image [18]. In this work, we

used a DMD together with LEDs as sources, strongly reducing the complexity of the SIM

setup. Hence we took advantage of the low cost, high frame-rate and wide availability of DMD

systems [19]. Combined with LED illumination, no additional polarization maintenance was

required and diffractive effects were not observed due to the incoherent nature of LED sources.

On the other hand, LED illumination is an incoherent illumination mode that reduces speckle

noise caused by laser interference [20]. In our setup, square wave modulated intensity patterns

were loaded onto the DMD which were later turned into sinusoidally modulated intensity pat-

terns via the diffraction were displayed on the DMD and imaged onto the sample to achieve

super-resolution fluorescence microscopy employing conventional striped SIM illumination.

Furthermore, the system we have developed has three different colours of programmatically

controllable LEDs, enabling multi-spectral imaging of samples with the addition of a suitable

filter set.

In this study, we introduce a MATLAB based parallel image reconstruction algorithm uti-

lizing a custom computer code in CUDA programming language that achieves GPU accelera-

tion of SIM reconstruction. Users can run their programs in parallel without having any prior

understanding of parallel programming by simply giving arguments to the appropriate
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routines. Using GPU acceleration we achieve a speed enhancement of up to *28 in SIM

reconstruction of images with 1028 × 1028 px.

This paper is organized as follows. Section 2 describes the theory of SIM. Section 3 describes

the experimental setup. In Section 4, the steps of the image reconstruction algorithm are

explained. In Section 5, GPU-based parallel image reconstruction technique is described. In

Section 6, the results obtained from this study are shown and discussed. Conclusions are

drawn in Section 7.

2 Theory of structured illumination microscopy

SIM is a microscopic super-resolution imaging modality employing spatially modulated illu-

mination patterns and post-processing for obtaining images with a resolution exceeding the

diffraction limit. In conventional SIM, the illumination pattern at the focal plane of the sample

consists of a sinusoidal stripe pattern with a high spatial frequency, a well-defined phase and

orientation. As an example, Fig 1 shows illumination patterns created in 3 different orienta-

tions with the same phase value (the illumination patterns created for all 9 images can be

found in S4 Fig in S1 File).

Spatial modulation of the illumination pattern results in shift in the overall frequency spec-

trum of the image obtained from the sample. This shift enables the detection of high spatial

frequency components which are otherwise undetectable due to the diffraction limit set forth

by the microscope objective. In SIM, a single high resolution image is created by running the

image reconstruction algorithm with the obtained raw images under all illumination patterns.

In order to create the characteristic formulation of a microscopic system, the optical system

characteristics can be determined by an impulse response. When an input impulse function is

given, the output of the system is calculated by the convolution of the input and the impulse

[21]. The basic mathematical formulation of image formation in an optical imaging system is

given as [22]:

DðrÞ ¼ ½EmðrÞ � PSFðrÞ�; ð1Þ

where, D(r) is the optical intensity information detected by the detector (e.g. CMOS camera),

Fig 1. Exemplary illumination patterns created in 3 different orientations θ1 = 0˚, θ2 = 120˚, θ3 = 60˚ with the same phase value of φ = 120˚.

https://doi.org/10.1371/journal.pone.0273990.g001
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Em(r) is the distribution of the sample fluorescence emission, PSF(r) is the point spread func-

tion of the microscope, r� (x, y) is two dimensional spatial position vector at the image plane

and� denotes the convolution operation. Fourier transform of Eq 1 reveals:

~DðkÞ ¼ ½~EmðkÞ � OTFðkÞ� ; ð2Þ

where, the optical transfer function OTF(k) is the Fourier transform of PSF(r) and k is the spa-

tial frequency vector. OTF(k) indicates the the spatial frequencies accessible by the microscope.

In a conventional fluorescence microscope, the fluorescence intensity detected at the image

plane is directly proportional to the illumination light intensity, I(r), and is calculated as:

EmðrÞ ¼ IðrÞ � SðrÞ ; ð3Þ

where S(r) indicates the fluorescence emission distribution of the sample. Fourier transform of

Eq 3 reveals:

~EmðkÞ ¼ ~IðkÞ � ~SðkÞ : ð4Þ

Substitution of Eq 4 in Eq 2 reveals:

~DðkÞ ¼ ½~IðkÞ � ~SðkÞ� � OTFðkÞ : ð5Þ

Hence, for uniform illumination, namely the wide-field illumination, I(r) will take a con-

stant value, and the resulting image will be the product of the sample and the OTF(k), reveal-

ing:

~DðkÞ ¼ ~SðkÞ � OTFðkÞ : ð6Þ

According to Eq 6, all spatial frequency components of the image detected by the micro-

scope will be limited by the spatial frequency bandwidth of the OTF(k). In SIM however, the

sample is illuminated with patterns modulated in the form of sinusoidally distributed stripes.

A sinusoidally modulated illumination distribution can be expressed as:

IðrÞ ¼ I0½1þm cosð2pkθ � r þ φÞ� ; ð7Þ

where kθ and φ are the magnitude of the frequency vector and initial phase angle value of the

sinusoidal illumination pattern, respectively. I0 and m are constants that specify the average

light intensity and the modulation depth. Fourier transform of Eq 7 then reveals:

~IðkÞ ¼ I0 dðkÞ þ
m
2
� eiφdðk � kθÞ þ

m
2
� e� iφdðkþ kθÞ

h i
: ð8Þ

Substituting Eq 8 into Eq 5, the frequency spectrum of the obtained image, which is modu-

lated with sinusoidal illumination pattern, is obtained as:

~DðkÞ ¼ I0
~SðkÞ þ

m
2

eiφ~Sðk � kθÞ þ
m
2

e� iφ~Sðkþ kθÞ
h i

� OTFðkÞ : ð9Þ

Here, the first term, I0
~SðkÞ, corresponds to the frequency spectrum obtained by conven-

tional wide-field illumination microscopy. OTF imposes a cutoff spatial frequency kc ¼ 2p 2NA
l

(NA numerical aperture, λ wavelength) such that k� kc is satisfied in the frequency spectrum

of the obtained image due to the Abbe diffraction limit [23]. The actual experimental cutoff

frequency is generally lower due to additional optical elements and vibrations coupling into

the system. Hence, the microscope objective works as a low pass filter in frequency domain,

and images can be obtained between ±kc cutoff bands.
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The 2nd and 3rd terms in Eq 9 (I0
m
2
ei�~Sðk � kθÞ, I0

m
2
e� i�~Sðkþ kθÞ respectively) indicate the

additional frequency content of the detector image that fall within the cutoff frequency range

of k� kc thanks to the sinusoidal modulation of the illumination pattern. This additional

information resides outside the OTF cutoff frequency and thus can be employed to obtain

image resolution beyond the diffraction limit by combining images obtained using sinusoidal

illumination patterns with different phases, kθ represents the spatial frequency vector of the

sinusoidal illumination pattern where θ indicates the orientation of the sinusoidal illumination

pattern.

In conventional stripe SIM, a total of 9 raw images are obtained. These images are modu-

lated by illumination patterns with three different θ values 0; p
3
; 2p

3

� �
each generated with three

different φ values 0; 2p

3
; 4p

3

� �
at each orientation. As a result of modulation, the center point of

the image ~Sðk � kθÞ is shifted by kθ. These raw images are then shifted back to their original

positions in frequency space as specified in Eq 9. This reveals the following linear set of equa-

tions which can be solved for ~DðkÞ:

~Dφ1
ðkÞ

~Dφ2
ðkÞ

~Dφ3
ðkÞ

2

6
6
6
4

3

7
7
7
5
¼ I0M �

~SðkÞ � OTFðkÞ

~Sðk � kθÞ � OTFðkÞ

~Sðkþ kθÞ � OTFðkÞ

2

6
6
6
4

3

7
7
7
5
; ð10aÞ

M ¼

1
m
2

eiφ1
m
2

e� iφ1

1
m
2

eiφ2
m
2

e� iφ2

1
m
2

eiφ3
m
2

e� iφ3

2

6
6
6
6
6
4

3

7
7
7
7
7
5

: ð10bÞ

Here, the OTF emerges as the most critical parameter needed for solving the set of equa-

tions, which is experimentally determined for a given SIM setup. The raw images ~Dφ1
ðkÞ,

~Dφ2
ðkÞ, ~Dφ3

ðkÞ obtained for three different phase values (φ1 = 0˚, φ2 = 120˚, φ3 = 240˚) are

given in Eq 10. Images encoded by illumination patterns with different phase values are

obtained when the separated frequency components for the raw images are calculated. ~SðkÞ,
~Sðk � kθÞ,

~Sðkþ kθÞ functions are obtained separately when the equation system below is

solved:

~SðkÞ � OTFðkÞ

~Sðk � kθÞ � OTFðkÞ

~Sðkþ kθÞ � OTFðkÞ

2

6
6
6
4

3

7
7
7
5
¼ M� 1

~Dφ1
ðkÞ

~Dφ2
ðkÞ

~Dφ3
ðkÞ

2

6
6
6
6
4

3

7
7
7
7
5
: ð11Þ

When the modulated raw images are multiplied by the inverse of the M matrix, the spectral

components are correctly separated according to Eq 11 revealing the solutions for ~SðkÞ,
~Sðk � kθÞ,

~Sðkþ kθÞ. The resulting nine functions are shifted in the spatial frequency domain,

combined, and super resolution images are obtained by inverse Fourier transform. These steps

are described in detail in Section 4.
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3 Experimental setup

A home-built, LED-based, compact, low-cost SIM setup employing a DMD was used in the

experiments (Fig 2) (see S16 Fig in S1 File for a picture of the setup).

In the experimental setup, an oil immersion 60x/1.4 N.A. objective and a f = 200 mm tube

lens (L2) form an infinity corrected microscope with 60x magnification. The illumination pat-

terns generated by the DLP projection module (Texas Instruments DLP LightCrafter

DLP3000 Evaluation Module) are coupled into the microscope via a f = 30 mm lens (L1) and

imaged onto the sample in the focal plane of the objective lens.

A dichroic mirror (DC1) and a flip mirror (M1) located in the illumination path are used to

reflect the excitation beam onto the sample. The returning signal from the sample is magnified

1.6 times with lenses L2 (f = 30 mm and L3 (f = 50 mm), and filtered using an appropriate

emission filter selected from the wheel. The fluorescence image is registered via a 2MP mono-

chrome sCMOS camera (CS2100M-USB, Thorlabs) placed after the emission filter. The com-

puter used for all experimental studies has the following specifications (Intel Core i7–8700k,

16GB DDR4 2666 MHz RAM, Nvidia Geforce GTX 1070 8GB DDR5 2048 CUDA Cores,

Memory Bus 256 Bit). A series of image pre-processing steps, i.e. histogram matching and

median filtering, are performed before SIM image reconstruction algorithm, for detailed infor-

mation about the pre-processing steps please see Section 4 in S1 File.

For SIM pattern generation using DLP LightCrafter DLP3000 Evaluation Module, a func-

tion called patternGenerator (see S5 and S6 Figs in S1 File) has been developed. This function

takes phase and period values as parameters and creates illumination patterns in binary image

format using these values. The generated patterns are in fact square wave functions since the

DMD pixels have only two illumination states. The pattern, when projected onto the sample,

will be smoothed out due to the PSF and turn into a sinusoidal pattern. Eq 7 is used to create

the illumination patterns and there is a φn = 120˚ phase difference between each illumination

pattern. Each of the mirrors on the DMD correspond to a pixel in an illumination pattern

image. To create a phase difference of φn = 120˚ between the three illumination patterns in

each angular orientation, illumination patterns are created on the DMD chip as a binary

image with a minimum period of six pixels (three pixels on, three pixels off). DMD pixels must

Fig 2. Schematic of the home-built LED-based SIM setup.

https://doi.org/10.1371/journal.pone.0273990.g002
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be at least 6 px/period to create a φn = 120˚ phase difference between each illumination pat-

tern. Fig 3 illustrates how illumination patterns are created by programming DMD mirrors.

As shown in Fig 3(b), all pixels are shifted horizontally by 2 positions to create a φn = 120˚

phase difference between the three illumination patterns. Fig 3(c) shows three illumination

patterns with the same angular orientation and a phase difference of φn = 120˚ between them.

4 Estimation of the experimental parameters and SIM

reconstruction

Phase shift estimation and illumination frequency estimation processes, which are two impor-

tant steps of the developed image reconstruction algorithm, are explained in this Section.

Phase shift estimation is achieved with step following peak finding in the spatial frequency

domain. The modulation frequency estimation of illumination patterns is calculated with

phase only correlation [24]. In this Section we describe the steps followed for both estimation

processes in detail. Accurate determination of these experimental parameters is one of the

most crucial steps in SIM reconstruction. These parameters should be accurately determined

for each of the 9 illumination patterns prior to SIM reconstruction as ill-determined parame-

ters often lead artefacts in the reconstructed final images [25, 26] (see S1 Fig in S1 File).

4.1 Estimation of experimental phase shift

During SIM image acquisition, the sample is sequentially illuminated with periodic illumina-

tion patterns with different phase values and orientation angles as specified in Eq 7. For image

reconstruction, each spectral component corresponding to unique kθ values must then be sep-

arated. After each spectral component in Eq 11 is solved using the phase information of the

illumination patterns that modulate the raw images, the center points of the images ~SðkÞ,
~Sðk � kθÞ and ~Sðkþ kθÞ are calculated for 0, − kθ, +kθ orientations. The phase shift of illumi-

nation patterns in a specific region of raw images obtained in a θ = 0˚ orientation and modu-

lated with three separate phase values is schematically shown in Fig 3. The region marked with

a yellow line on the images in Fig 3 shows the beginning of the period of the illumination pat-

tern that modulates the image. As seen in the resulting images, a phase difference of φ = 120˚

exists between the illumination patterns on the image. At the bottom of Fig 3(d)–3(f) the posi-

tions and states of the DMD mirrors which are used for the generation of the corresponding

illumination patterns are indicated.

The phase values cannot be assumed to be equal to those defined for the DMD illumination

patterns, and should be experimentally extracted from detector images. Each DMD illumina-

tion pattern is originally constructed with a phase shift of φ = 0˚, 120˚ and 240˚. The actual

phase however, depends on the optical pathway and the DMD position relative to the sample

and should be determined experimentally. In SIM literature, different methods are reported

for phase shift estimation from detector images. K, Wicker et al. proposed an iterative method

for phase shift estimation with cross-correlation [27]. The method comes together with a rela-

tively high computational cost due to its iterative nature. In addition to iterative phase shift

estimation, K. Wicker et al. proposed a method that makes phase shift estimation with non-

recursive auto-correlation [28], and the method may produce erroneous results when the spa-

tial frequency of the illumination pattern is low. If the resulting raw images have low SNR or

high background blur and the presence of noise from imaging devices (e.g. camera readout

noise), the performance of image reconstruction will degrade considerably and will cause

residual artefact to occur in the final image [28]. In this study, the phase shift calculation was

performed by estimating peak positions in the spatial frequency domain. The developed

method is known as “phase of peak” in the literature, and has been used in different studies

PLOS ONE GPU accelerated image reconstruction for structured illumination microscope
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Fig 3. Generating SIM illumination patterns with the DMD chip. (a) Representation of six consecutive DMD

mirrors that used for creating illumination patterns. (b) Binary patterns loaded on the DMD in one period of six pixels

at three different phases of φ ¼ 0; 2p

3

4p

3
, respectively. (c) Corresponding illumination patterns with the same angular

orientation and phase values of φ ¼ 0; 2p

3

4p

3
, respectively. Cos7 cells were labeled with Alexa-488 (alpha-tubulin,

microtubule marker). Microtubule images acquired using three different illumination patterns with the phase values of

(d) φ = 0, (e) φ ¼ 2p

3
, (f) φ ¼ 4p

3
are shown. The graphs and sketches below the images show the corresponding

sinusoidal illumination patterns.

https://doi.org/10.1371/journal.pone.0273990.g003
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[29]. Here, the performance of this method has been further increased by the approach used in

finding the Fourier peaks and reduction of the overall processing time as a result of GPU

acceleration.

In order to limit the search area in finding peaks in the Fourier transform of a detector

image, a high-pass filter, binary mask filter and a low-pass filter were applied. After this step,

peak positions, kn-peak, were found in the limited search and the corresponding phase values,

φn, were calculated as:

φn ¼ tan� 1
Im½~Dnðkn� peakÞ�

Re½~Dnðkn� peakÞ�

( )

: ð12Þ

Exemplary two-dimensional (2D) spatial frequency spectra analyzed for extraction of the

phase shifts and angular orientations from peak positions are shown in Fig 4.

The fluorescence images that reveal these 2D spatial frequency spectra following Fourier

transform are discussed later in Fig 8. The DMD patterns used to obtain Fig 4(a)–4(c) had the

same phase shift of φ = 120˚, and three different angular orientations of θ = 0˚, 60˚, and 120˚,

respectively. 2D spatial frequency spectra in the second row in Fig 4 show the peak positions,

kn-peak, with respect to the origin after band-pass filtering operation.

Fig 4. 2D spatial frequency spectra of raw images obtained with DMD patterns generated with φ = 120˚ and different θ values of 0˚, 60˚, and 120˚

are shown in (a), (b), and (c), respectively. Second row shows the same 2D spatial frequency spectra after band-pass filtering. Peak finder algorithm

reveals experimental φ and θ values of (θ = −2.04˚, φ = −21.6˚), (θ = 57.09˚, φ = 144.19˚), (θ = −120.06˚, φ = 75.3˚) for (a), (b), and (c), respectively.

https://doi.org/10.1371/journal.pone.0273990.g004
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The phase shifts can be obtained through Eq 12. The process of finding phase shifts and

peak positions is repeated for all images in each angular orientation, thus a total of nine phase

values and peak positions are obtained for three different angular orientations. For the specific

case shown in Fig 4 our peak finding algorithm reveals experimental (θ, φ) values of (−2.04˚,

−21.6˚), (57.09˚, 144.19˚), and (−120.06˚, 75.3˚) corresponding to those numerically defined

in DMD patterns of (0˚, 120˚), (60˚, 120˚), and (120˚, 120˚) in (a), (b), and (c), respectively.

The first pixel of the DMD doesn’t correspond to the first pixel of the camera. Hence the phase

of the sinusoidal is shifted.

4.2 Estimation of experimental spatial frequency vector of an illumination

pattern

In our SIM implementation, each illumination pattern was created as a 6 px/period binary

image in order to create a φ = 120˚ phase difference between the illumination patterns. During

the execution of the SIM image reconstruction algorithm, each frequency component should

be shifted to their correct positions after the separation of frequency components with the

solution of Eq 11. Using the Fourier shift theorem given below, the separated frequency com-

ponents obtained from the solution of Eq 11 are shifted by an amount of the spatial frequency

vector kθ of the illumination pattern [30].

F ½F � 1f~Sðk � kθÞg � e� i2pðkθ �rÞ� ¼ ~Ssðk � kθÞ ; ð13aÞ

F ½F � 1
f~Sðkþ kθÞg � eþi2pðkθ �rÞ� ¼ ~Ssðkþ kθÞ : ð13bÞ

In order to calculate the spatial frequency of the illumination pattern, a low-pass filter is

applied to each acquired image to suppress the high frequency components outside the OTF
cutoff frequency, kc using:

~Dn� filtered kð Þ ¼
ðOTFðkÞÞ� � ~DnðkÞ
jOTFðkÞj þ s

; ð14Þ

where σ is a small positive constant that prevents division by zero error. After the suppres-

sion of high frequency noise, the illumination pattern spatial frequency vector is calculated

using Eq 11, which separates modulated images with three different phase values. Eq 13 is

applied to the separated spectral components in each angular direction (except the DC

component), so that the center points of all spectral components are shifted to the origin.

The extended frequency spectra of the nine images with θ = 0˚, 60˚, 120˚ orientations are

calculated using Eq 13, and the center points of the spectral components separated in each

angular direction are shifted to the origin by an amount of kθ. This process is illustrated in

Fig 5.

4.3 SIM reconstruction

After experimental phase shift and spatial illumination frequency values are obtained, nine

images are combined to form a single high resolution image. In the final step of the SIM image

reconstruction, the generalized Wiener filter was used to generate the high-resolution image.

The Wiener filter is a statistical filter model that aims to minimize the mean square error by

removing the added noise in general image reconstruction [31]. Equations below are used to
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combine nine images using the Wiener filter:

R1ðkÞ ¼ ~S1ðkÞ ;

R2ðkÞ ¼ ~S2ðk � kθÞ ;

R3ðkÞ ¼ ~S3ðkþ kθÞ ;

SSIMðkÞ ¼
PN

n¼1
OTFnðkÞ

�RnðkÞ
PN

n¼1
jOTFnðkÞj

2
þ w

;

ð15Þ

where, SSIM(k) represents the Fourier transform of the final reconstructed high resolution

image, OTFn(k) represents shifted OTF corresponding to the nth image, “�” indicates the com-

plex conjugate operation, and w is the Wiener filter constant. The high resolution image in

real space Ss(r) is then obtained by inverse Fourier transform of SSIM(k) as:

SsðrÞ ¼ F � 1½SSIMðkÞ� : ð16Þ

5 GPU acceleration

Graphics Processing Unit (GPU) provides computation of high resolution graphics in com-

puter systems. Modern high power GPUs have thousands of cores within a single hardware

unit, allowing for thousands of hardware threads to be run simultaneously [32, 33]. The high

computational power of GPUs and their suitability for parallel processing of data led to their

wide adoption in microscopy image processing applications. It has been demonstrated that

GPUs provide the expected performance improvement in imaging systems where real-time

image reconstruction is required [12, 34–37].

Element-wise matrix operations on GPU cores are executed simultaneously with CUDA

kernel functions using the developed parallel SIM reconstruction algorithm. For each element-

wise matrix operation, a CUDA kernel function has been developed. Each thread in the corre-

sponding CUDA kernel function is configured to access a specific item in the matrix in order

to perform element-wise matrix operations with many threads in parallel. As an example, in

the MATLAB, the operation c = a + b (where, a, b and c are all matrices of M × N size) is a

matrix addition and the elements of the matrices are added to each other and then written to

the corresponding index in the result matrix. A kernel function was designed with SIMD (Sin-

gle Instruction, Multiple Data) approach to perform this calculation made in MATLAB with

the Parallel CUDA kernel function. In multidimensional data, initial block and thread sizes

Fig 5. Combined frequency spectrum of images shifted by the kθ in the angular direction of θ = 0˚, 60˚, 120˚, respectively.

https://doi.org/10.1371/journal.pone.0273990.g005
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must be determined in accordance with the data type in the CUDA kernel function. Fig 6

shows the organisation of CUDA threads and block sizes designed for a two-dimensional

matrix.

In Fig 6, the matrix consists of a total of 12 blocks and each block consists of a total of 16

threads. The thread in each block has a unique block number. Fig 6 shows the calculation of a

matrix element’s global index value for Block (1,2). In this structure, there are a total of 192

threads that operate simultaneously with the Matrix items. Since these threads can work simul-

taneously, in the process of adding two-dimensional matrices to each other, the sum of each

element is carried out in parallel by a different thread. In this study, several operations on 2D

image matrices are performed using CUDA kernel functions. To begin with, the parameters

for each kernel’s launch process should be determined. Each kernel data is a 2D image matrix.

For CUDA kernel function to be executed it is necessary to define how many blocks the kernel

function will have and how many threads will be in total in each block. Size of grids and blocks

is calculated as follows. Suppose we have two variables, dimx and dimy, at x and y to determine

the number of threads in each block. Grid parameter defines how many blocks the data will

consist of. In addition, when determining ThreadBlockSize and GridSize values, the image

matrix dimensions to be calculated should be considered. For example, let szX and szY be the

dimensions of the image matrix, and dimx and dimy are the frame size of each thread block in

this matrix (it is recommended to set ThreadBlockSize as 16 or 32), the GridSize covering all

Fig 6. CUDA threading and block organisation of two-dimensional matrix.

https://doi.org/10.1371/journal.pone.0273990.g006
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image matrix elements is as follows must be calculated. grid = [ceil(((szX + dimx − 1)/dimx))

ceil(((szY + dimy − 1)/dimy))];. dimx and dimy are set to 32 and show the total number of

threads in a tile. More detailed explanation on kernel functions and kernel launches is pro-

vided in S1 File.

In this study, thousands of CUDA hardware threads were used to calculate raw image data

in the parallel image reconstruction algorithm developed for SIM, and a general purpose

toolbox was created in MATLAB for the developed parallel SIM image reconstruction algo-

rithm. This toolbox enables the user to perform all calculations on the image data in parallel

via the GPU cores. An explanation of the developed parallel CUDA kernel functions and the

definitions of these functions can be found in the S1 Table in S1 File. All codes are also avail-

able in https://github.com/msaaydin/SIM1 repo.

The schematic diagram of the parameters passing between the developed CUDA parallel

kernel functions and MATLAB variables is shown in Fig 7 together with the flowchart.

First, a CUDA kernel function is developed to perform calculations with the GPU, and

then a MATLAB mex function is designed to pass parameters between MATLAB and the

CUDA kernel function. The image data in MATLAB is passed as a parameter using the mex
function. After the parameters are sent, space is allocated for this data in the GPU memory

and the data is copied from the CPU memory to the GPU memory. The CUDA kernel func-

tion designed for GPU computation is compiled with nvcc and the CUDA kernel function is

executed in parallel with the GPU cores. The results of the data run with the GPU are copied

back to the host memory (CPU memory) and the previously allocated memory areas in the

GPU memory are freed. The list of functions optimized with CUDA is provided in Section 2

of the S1 File.

Fig 7. The diagram of parameter passing and communication architecture between MATLAB-CUDA.

https://doi.org/10.1371/journal.pone.0273990.g007
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6 Results

Raw images are used for obtaining single super-resolution images with the developed SIM

reconstruction algorithm using both GPU computation and CPU computation. Before SIM

reconstruction, image pre-processing consisting of histogram matching and median filtering

steps is performed on raw images (see S1 File for more details). Developed SIM reconstruction

algorithm was initially tested on an artificial image, and the algorithm’s accuracy was validated.

Section 6 in the S1 File contains the results of the artificial image test. Fig 8 shows exemplary

raw images illuminated by sinusoidal illumination patterns at 6 px/period spatial frequency

with the same phase shift value of φ = 120˚, and three different orientations corresponding to

θ values of 0˚, 60˚, and 120˚).

2D spatial frequency spectra of these raw images are also shown in Fig 9. Peaks correspond-

ing to illumination pattern modulations are clearly visible in 2D spatial frequency spectra.

Fig 9 shows an exemplary pair of images obtained with wide-field illumination and SIM

reconstruction, together with the corresponding 2D spatial frequency spectra.

The image with wide-field illumination image is recorded by keeping all DMD mirrors in

their on state. For the image obtained using wide-field illumination (Fig 9(a)), it is seen that

the 2D spatial frequency spectrum is dominated by relatively low spatial frequency

Fig 8. Cos7 cells were labelled with anti-tubulin and secondary Alexa-488. Raw fluorescence images of microtubules modulated with sinusoidal

illumination patterns with the same phase angle of φ = 120˚, and three different orientation angles of θ = 0˚, 60˚, are shown in (a), (b), and (c),

respectively. Bottom row shows the frequency spectra of the corresponding raw images at the top row. Scale bar indicates 5 μm.

https://doi.org/10.1371/journal.pone.0273990.g008
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components. On the other hand, Fig 9(b) shows that with the usage of SIM, the observable

bandwidth in the 2D spatial frequency spectrum has increased considerably, and as such,

more information from the high frequency components is included in the image.

Line profiles of intensity changes along the yellow lines inside regions indicated with the

red boxes in Fig 9(a) and 9(b) are shown in Fig 10. Line profile obtained from the SIM image

reveals clearer details with a higher feature contrast as compared to the line profile obtained

Fig 9. Cos7 cells were labelled for tubulin (Alexa Fluor 488). Microtubule images obtained with (a) wide-field illumination and (b) SIM

reconstruction are shown together with their Fourier transforms. Scale bar indicates 10 μm. Yellow circles indicates the limits of assumed OTF.

https://doi.org/10.1371/journal.pone.0273990.g009
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from the image obtained using wide-field illumination where the details are lost and the image

becomes blurred (see Fig 10).

Another pair of images obtained by wide-field illumination and SIM reconstruction is

shown in Fig 11.

As a result, the DMD plane’s spatial frequency is 6 px/cycle. The spatial frequency on the

sample plane was measured at 33 px/cycle (The pixel size in the simulated raw image corre-

sponds to 45 nm in sample space, therefore, the resolution in the sample plane is calculated as

1485 nm/cycle). This is the maximum spatial frequency that can be achieved. Line profiles

obtained from the regions indicated by blue boxes show minimum feature sizes of microtu-

bules observed in those cases. Line profile obtained from the wide-field illuminated image

reveals a FWHM of *254 nm while a FWHM of *187 nm is obtained from the SIM recon-

structed image.

In order to quantify the improvement in computation time caused by GPU acceleration,

SIM reconstruction was performed using GPU computation and CPU computation for

Fig 10. Line profiles of intensity values in areas indicated with red boxes in Fig 9. Insets show the zoomed wide-field and SIM images of

microtubules. Line profiles were plotted along yellow lines presented in the figures.

https://doi.org/10.1371/journal.pone.0273990.g010
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different images with different dimensions. Total computation times elapsed for different

cases are shown in Fig 12.

Fig 12 shows the total execution times of all steps in the SIM reconstruction algorithm

including reading images, data transfers between CPU and GPU, performing all calculations,

and plotting of the results. For CPU and GPU algorithms execution times given in Fig 12, all

algorithms were run 10 times on both CPU and GPU, and the average of these times deter-

mines the execution time. As a result, 28, 25, 22, 14, and 6 times faster computation is observed

for GPU computation in contrast to mono-thread CPU computation for image dimensions of

1024 × 1024 px, 900 × 900 px, 750 × 750 px, 512 × 512 px, and 256 × 256 px, respectively. Such

a performance improvement can not be achieved using a multi-core CPU parallel threads

Fig 11. Cos7 cells were labelled for tubulin (Alexa Fluor 488). Microtubule images obtained with (a) wide-field illumination and (b) SIM reconstruction

together with line profiles in selected regions. Line profiles were plotted along yellow lines presented in the insets. Scale bar indicates 10 μm.

https://doi.org/10.1371/journal.pone.0273990.g011
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[38, 39]. We also tested our mono-thread CPU algorithm with multi-thread OpenMP CPU

using 12 threads and 6 CPU cores [40]. As a result, 20, 18, 14, 12, and 5 times faster computa-

tion is observed for GPU computation in contrast to multi-thread OpenMP CPU computation

for image dimensions of 1024 × 1024 px, 900 × 900 px, 750 × 750 px, 512 × 512 px, and

256 × 256 px, respectively. Computation time improvements by less than a factor of 1.6 for

mono-thread CPU algorithm were observed for all images dimensions. These improvements

are much less significant than improvements by up to 28 times observed as a result of GPU

acceleration in our work. For the case of 512 × 512 px, we also tested the execution times of the

algorithm with OpenSIM [26] and built-in gpuArray enabled functions in MATLAB. Total

execution times for SIM image reconstruction of 512 × 512 px images were measured 68 sec

and 3.82 sec using OpenSIM and gpuArray, respectively. These execution times are much

larger than the total execution time of 0.628 sec reached with our CUDA based implementa-

tion for 512 × 512 px images.

Fig 12. Total GPU and CPU computation times of SIM reconstruction algorithms executed using images with different sizes.

https://doi.org/10.1371/journal.pone.0273990.g012
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7 Conclusion

SIM employs sinusoidal modulated fluorescence microscopy images with shifted spatial fre-

quency components. By means of a reconstruction algorithm, it is possible to obtain a recon-

structed fluorescence image with spatial frequency components reaching beyond the critical

frequency set by the diffraction barrier of the overall imaging system. This approach is favour-

able to other super-resolution fluorescence microscopy methods because it enables relatively

fast image reconstruction, and requires relatively low cost modifications in the setup of a con-

ventional wide-field fluorescence microscope. In this work, we realized such a compact experi-

mental setup that employs an LED illuminated DMD projector for intensity modulation of the

illumination patterns. The use of an LED illuminated projector provides a low cost approach

avoiding the need for expensive components including laser light sources and SLMs while pro-

viding sufficient performance on pattern resolution and refresh rate. A SIM reconstruction

algorithm was designed that includes pre-processing with histogram matching and median fil-

tering, extraction of experimental parameters including the phase shift and spatial illumination

frequency, and use of the generalized Wiener filter for obtaining the super-resolution image.

Furthermore, we also presented a tool consisting of GPU-based parallel CUDA kernel func-

tions that enables parallel executions of SIM reconstruction in MATLAB for general purpose

users. The presented tool is compatible with all NVIDIA GPUs. Our experiments performed

with Cos7 cells labelled for tubulin with Alexa FLuor 488 revealed significant improvements in

contrast and minimum feature size observed in SIM reconstructed images in contrast to

images collected by wide-field illumination. For different image dimensions we evaluated the

computation times obtained with our tool based on GPU acceleration, standard approach

using a mono-thread CPU and multi-thread OpenMP CPU. We observed up to *28 and

*20 times speed up in SIM reconstruction when mono-thread CPU vs GPU and multi-thread

OpenMP CPU vs GPU are used respectively for image dimensions of 1024 × 1024 px. The

demonstrated algorithmic and optical design of a low-cost, portable, super-resolution imaging

system for SIM can be extended with the use of a higher resolution DMD, and a more compact

mechanical design. Future improvements to our approach may include extension to multiple

wavelength acquisition, 3D optical sectioning, high-speed subcellular live imaging, and incor-

poration of machine learning approaches for SIM reconstruction [41].

8 Materials

COS-7 (African green monkey kidney cells, CRL1651; ATCC) were cultured with Dulbecco’s

modified Eagle’s Medium DMEM/F12 50/50 medium (Pan Biotech, Vienna, AUT) supple-

mented with 10% Fetal Bovine Serum (FBS, Life Technologies, Carlsbad, Ca, USA) and 1%

penicillin-streptomycin (Gibco, Thermo Fisher Scientific) with 5% CO2 in 37˚ C. Cell line

was tested for mycoplasma by MycoAlert Mycoplasma Detection Kit (Lonza, Basel, CH). The

S1 File contains detailed information of the material (samples) used in this study.
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Project administration: Berna Morova, Alper Kiraz.

Resources: Berna Morova, Fatmanur Tiryaki, Elif Nur Firat-Karalar.

Software: Musa Aydın.

Supervision: Musa Aydın, Alper Kiraz.

Validation: Musa Aydın, Yiğit Uysallı, Alper Kiraz.

Visualization: Musa Aydın.

Writing – original draft: Musa Aydın, Alper Kiraz.

Writing – review & editing: Musa Aydın, Yiğit Uysallı, Berna Morova, Alper Kiraz.

References
1. Schermelleh L, Heintzmann R, Leonhardt H. A guide to super-resolution fluorescence microscopy.

Journal of Cell Biology. 2010; 190(2):165–175. https://doi.org/10.1083/jcb.201002018 PMID: 20643879

2. Diaspro A, Bianchini P, Cella Zanacchi F, Lanzanò L, Vicidomini G, Oneto M, et al. In: Hawkes PW,

Spence JCH, editors. Fluorescence Microscopy. Cham: Springer International Publishing; 2019.

p. 1039–1088. Available from: https://doi.org/10.1007/978-3-030-00069-1_21.

3. Vicidomini G, Bianchini P, Diaspro A. STED super-resolved microscopy. Nature Methods. 2018;

15(3):173–182. https://doi.org/10.1038/nmeth.4593 PMID: 29377014

4. Rust MJ, Bates M, Zhuang X. Sub-diffraction-limit imaging by stochastic optical reconstruction micros-

copy (STORM). Nature Methods. 2006; 3(2):793–796. https://doi.org/10.1038/nmeth929 PMID:

16896339

5. Olivier T, Moine B. 1. In: Confocal Laser Scanning Microscopy. John Wiley and Sons, Ltd; 2013. p. 1–

77. Available from: https://onlinelibrary.wiley.com/doi/abs/10.1002/9781118574386.ch1.

6. Gustafsson MGL. Surpassing the lateral resolution limit by a factor of two using structured illumination

microscopy. Journal of Microscopy. 2000; 198(2):82–87. https://doi.org/10.1046/j.1365-2818.2000.

00710.x PMID: 10810003

7. Shroff H, White H, Betzig E. Photoactivated Localization Microscopy (PALM) of Adhesion Complexes.

Current Protocols in Cell Biology. 2013; 58(1):4.21.1–4.21.28. https://doi.org/10.1002/0471143030.

cb0421s58 PMID: 23456603

8. Jiang S, Guan M, Wu J, Fang G, Xu X, Jin D, et al. Frequency-domain diagonal extension imaging.

Advanced Photonics. 2020; 2(3):1–9. https://doi.org/10.1117/1.AP.2.3.036005

9. Förster R, Lu-Walther HW, Jost A, Kielhorn M, Wicker K, Heintzmann R. Simple structured illumination

microscope setup with high acquisition speed by using a spatial light modulator. Opt Express. 2014; 22

(17):20663–20677. https://doi.org/10.1364/OE.22.020663 PMID: 25321271

10. Han JH, Yoo NW, Kang JH, Ju BK, Park MC. Optimization of structured illumination microscopy with

designing and rotating a grid pattern using a spatial light modulator. Optical Engineering. 2019;

58(9):1–8.

11. Fiolka R, Shao L, Rego EH, Davidson MW, Gustafsson MGL. Time-lapse two-color 3D imaging of live

cells with doubled resolution using structured illumination. Proceedings of the National Academy of Sci-

ences. 2012; 109(14):5311–5315. https://doi.org/10.1073/pnas.1119262109 PMID: 22431626
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